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Abstract A new observational synthesis of diazotrophic biomass and nitrogen fixation provides the
opportunity for systematic quantitative evaluation of these aspects in biogeochemical models. One such
model of the Atlantic Ocean is scrutinized, and the simulated biomass is found to be an order of magnitude
too low. Initial attempts to increase biomass levels through decreasing grazing and other loss terms caused
an unrealistic buildup of nitrate in the upper ocean. Two key changes to the model structure facilitated a
closer match to the observed biomass and nitrogen fixation rates: addition of a pathway for export of
diazotrophically fixed organic material and uptake of inorganic nitrogen by the diazotroph population. These
changes, along with a few other revisions to existing model parameterizations, facilitate more accurate
simulation of basin-scale distributions of diazotrophic biomass, as well as mesoscale variations contained
therein. The resulting solutions suggest that the Trichodesmium spp. populations of the North Atlantic export
the vast majority of the nitrogen they fix, a finding that awaits assessment through direct observation.

1. Introduction

Nitrogen fixation by cyanobacteria of the genus Trichodesmium constitutes an important input into the global
nitrogen cycle [Carpenter, 1983; Capone et al., 1997; Karl et al., 2002]. As such, modeling the abundance, dis-
tribution, and productivity of these populations offers an important tool for quantification of the associated
fluxes of nitrogen and their impacts on ecosystems and climate. A number of prior studies have documented
realistic simulations of diazotrophic biomass and nitrogen fixation on basin to global scales [Coles et al., 2004;
Hood et al., 2004; Coles and Hood, 2007; Moore and Doney, 2007; Monteiro et al., 2010, 2011; Dutkiewicz et al.,
2012]. However, a recent global compilation and synthesis of observations [Luo et al., 2012] provide the
opportunity for more thorough evaluation of models of this type. Herein direct comparisons are made
between one such model of the Atlantic Ocean and the new observational synthesis. Although prior simu-
lations [Anderson et al., 2011] were able to capture the large-scale patterns described by Luo et al. [2012],
diazotrophic biomass was underestimated by an order of magnitude in the high-abundance region of the
tropics and southern Sargasso Sea. Revisions to the model are described that allow for closer agreement
between simulated and observed distributions of diazotrophs, both in terms of basin-scale biogeography as
well as mesoscale variations. A key change in the model structure is a direct pathway for vertical export of
Trichodesmium spp., which allows the solution to reach the observed levels of biomass and nitrogen fixation
while avoiding unrealistic buildup of nitrate in the surface ocean.

2. Model Description

The physical model is the Los Alamos Parallel Ocean Program (POP) [Smith et al., 2000] version 2.0.1. The
spatial grid is an eddy-resolving (0.1° longitude × 0.1° cos(latitude)) North Atlantic domain (20°S to 72°N,
98°W to 17°E) with 42 z coordinate levels. Configuration of the physical simulation is identical to that of
Anderson et al. [2011], as is the coarse resolution implementation (1.6° longitude×1.6° cos(latitude); 40 levels in
the vertical) used for parameter dependence and sensitivity analysis.

The biological/chemical component is based on a 24 state variable version of the “Biogeochemical Elemental
Cycling” (BEC) model [Moore et al., 2002, 2004, 2006; Moore and Doney, 2007; Doney et al., 2009] as modified
by Anderson et al. [2011]. The model has three phytoplankton groups (Figure S1 of the supporting informa-
tion): diatoms, small phytoplankton, and N2-fixing diazotrophs (DIAZ). Although diazotrophic organisms in
the ocean are comprised by a diverse assemblage of taxa [LaRoche and Breitbarth, 2005; Zehr, 2011], the
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colonial cyanobacteria Trichodesmium spp. tends to dominate in terms of biomass and nitrogen fixation in
the Atlantic region of primary interest in this study [Goebel et al., 2010]. Thus, for the present purposes, the
terms diazotroph and Trichodesmium spp. are used interchangeably. Model phytoplankton, zooplankton,
and sinking particulate organic matter (POM) have constant C/N/P ratios, but variable content of Fe and Chl
(for all phytoplankton), CaCO3 (for small phytoplankton), and SiO2 (for diatoms). The limiting nutrients are
NO3, NH4, PO4, Fe, and for diatoms SiO3. The remaining biological state variables are O2, dissolved inor-
ganic carbon (DIC), alkalinity, dissolved organic carbon, dissolved organic nitrogen, dissolved organic
phosphorus, and dissolved organic iron. The biological model is coupled to and run concurrently with the
physical model. The multidimensional positive definite centered difference advection scheme is used for
biological tracers [Oschlies and Garcon, 1999], and its implementation in the POP model is described by
McGillicuddy et al. [2003].

In an attempt to better match the observations, the one-dimensional Regional Testbed model [Friedrichs
et al., 2007] was set up at contrasting locations: the Bermuda Atlantic Time-Series Study (BATS) site where
Trichodesmium spp. abundance is relatively low and in the tropics where it is much higher. The Regional
Testbed software includes an optimization algorithm that permits fitting parameters simultaneously among
the selected sites. The optimized parameters were then tested in coarse resolution (1.6°) three-dimensional
simulations. Because optimal parameters derived in a one-dimensional setting are not necessarily optimal in a
three-dimensional environment, additional sensitivity experiments were carried out in the coarse resolution
model to improve upon the parameter choices derived from the Regional Testbed. This was an iterative process
that included not only refinements within the existingmodel structure, but also revisions to themodel structure
itself (Figure 1 and Table S1 of the supporting information). Both aspects are described in turn below.

Several parameterizations within the prior model structure were modified. First, the factor specifying temper-
ature dependence on diazotroph growth rate was changed from a Q10-type relationship Tfunc_diaz = 2

(T–30)/10 to
a functional fit of laboratory experiments (using an isolate of Trichodesmium erythraeum) described by Breitbarth
et al. [2007]. The data suggest a quasi-parabolic dependence of growth rate on temperature within the interval
between 18°C and 36°C, with maximal growth at 26.9°C. To represent this, a temperature anomaly Ta is defined
relative to the optimal temperature Ta =max (18, min (36,T))� 26.9 tomodel the temperature dependencewith
Tfunc_diaz =max (0, 1 – 0.0215 * Ta

2 + 0.000109 * Ta
4) such that Tfunc_diaz is zero outside the temperature window

and rises to a value of one at the optimal temperature. Qualitatively, this provides a good fit to the data
presented in Figure 1 in the work of Breitbarth et al. [2007].

Second, the parameterization of iron scavenging by adsorption onto particles was updated from that described
by Moore and Doney [2007] to Moore and Braucher [2008]. The primary difference between them is that the

Figure 1. Schematic of the simulated diazotrophic nitrogen cycle. Fluxes added to the present model are indicated in bold, whereas thin
lines indicate fluxes present in both prior and current versions. The dashed box for PON reflects the fact that it is not a true state variable,
insofar as that the material is assumed to sink and remineralize instantly.
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definition of the sinkingmass onto which scavenging occurs is expanded from particulate organic carbon (POC)
and mineral dust to include biogenic silica and calcium carbonate components. In addition, the scaling factor
for scavenging at high iron concentrations was increased in order to bring the near-surface iron concentrations
into better agreement with observations. Half-saturation constants for iron uptake by small phytoplankton and
diatoms were updated to values used in version 1.0.4 of the Community Earth System Model (CESM; http://
www.cesm.ucar.edu). The half-saturation constant by iron uptake by diazotrophs was increased to 0.8 nM.
Although this value is a bit high relative to experimental assays [Berman-Frank et al., 2001], it helps compensate
for the continued overestimation of near-surface iron concentrations despite the improved scavenging pa-
rameterization mentioned above.

Third, the mortality and grazing losses of diazotrophs were modified in an attempt to rectify the systematic
overestimation of Trichodesmium spp. biomass in the subtropics and underestimation in the tropics. In the
Anderson et al. [2011] solution, diazotroph concentrations over most of the subtropical gyre were near their
mortality threshold concentration, below which mortality and grazing losses do not occur. The threshold
value used in that simulation was higher than observed concentrations of Trichodesmium spp. in the sub-
tropics (see Orcutt et al. [2001], and references therein) and was therefore lowered to the same value used for
small phytoplankton and diatoms. To ameliorate the underestimation of biomass in the tropics, grazing and
mortality rates, which are among the least constrained parameters, were lowered. Justification for the former
lies in that relatively few copepod species appears to graze Trichodesmium spp., most notably the
harpacticoid copepod Macrosetella gracilis [O’Neil and Roman, 1994]. As for the latter, the mortality rate for
Trichodesmium spp. probably should not be higher than that used for small phytoplankton and
diatoms (0.1 d�1).

Although these changes to the model parameters resulted in an intermediate solution with improved rep-
resentations of Trichodesmium spp. biomass and nitrogen fixation, there was an unintended consequence:
unrealistic accumulation of nitrate in near-surface waters of the high-biomass regions. Increased abundance
and productivity of the Trichodesmium spp. population led to increased supply of biologically fixed nitrogen,
through remineralization of both particulate and dissolved organic material. This in turn caused a regional
shift from nitrogen to phosphorus limitation in the phytoplankton community, resulting in buildup of nitrate
in surface waters to unrealistic levels (>1μM) in those areas. In order to simulate the high biomass and ni-
trogen fixation rates in the tropics and southern subtropical gyre without building up excess nitrate in surface
waters, two structural changes to the model were made.

First, a separate parameterization for export of diazotrophically derived particulate organic matter was
added. An observational basis for this revision consists of isotopic data suggesting penetration of biologically
fixed light nitrogen into the main thermocline via sinking particles at station ALOHA in the Pacific [Karl et al.,
1997; Dore et al., 2002; Casciotti et al., 2008]—although the source of that material may be primarily nitrogen-
fixing endosymbionts living within diatoms rather than Trichodesmium spp. [Karl et al., 2012]. In the model,
the sources of diazotrophic POM include both grazing losses and mortality; a quadratic term was added to
the latter to create an aggregation term like those for small phytoplankton and diatoms. All of the diazotroph
mortality and 27.5% of diazotroph grazing losses go to POM. As in prior implementations of the BEC model,
the N/P ratio of diazotrophs is assumed to be 50:1 to reflect the supra-Redfield ratio observed in natural
populations of Trichodesmium spp. [Letelier and Karl, 1998]. However, there is evidence for plasticity in this
ratio from both laboratory experiments and field samples [Krauk et al., 2006;White et al., 2006]. The C/N ratio
in diazotrophs is close to Redfield, the same as that used for the sinking flux of small phytoplankton, diatoms,
and zooplankton. In contrast to the treatment of other POM in the model, diazotrophic POM does not include
ballasting by SiO2, CaCO3, or lithogenic minerals. Thus, the sinking flux of diazotrophic carbon POCtflux has
only a single unprotected, unballasted component:

POCtflux z þ dzð Þ ¼ POCtflux zð Þ exp �dz= POCt―diss=T funcPð Þð Þ
þPOCtprod * 1� exp �dz= POCt―diss=T funcPð Þð Þð Þ POCt―diss=T funcP

where the remineralization length scale POCt_diss is distinct from that used for other “soft” fractions of the
export flux. Numerical experiments in the one-dimensional test bed framework suggested a value of 300m
for POCt_diss provided the best fit to observations, although the solutions were not particularly sensitive to
that precise value.
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A second change to the model structure allowed for uptake of inorganic nitrogen by diazotrophs, a pathway
that has also been implemented in the CESM 1.0 version of the BEC [Moore et al., 2013]. It has been known for
some time that Trichodesmium spp. is capable of taking up both nitrate and ammonium [Goering et al., 1966],
yet the partitioning of uptake among the various forms of nitrogen, including dissolved organic forms, is still
not fully understood [Mulholland et al., 2001]. Based on continuous culture experiments by Holl and Montoya
[2005] that document preferential uptake of nitrate over dinitrogen, diazotrophs in the model first take up
what they can in the form of nitrate and ammonium and then meet any remaining need by fixing nitrogen.
Unfortunately, the extant literature does not provide direct estimates of the half-saturation constants for
uptake, although nitrate uptake has been observed in experimental amendments as low as 0.03–1.0μM
[Mulholland et al., 2001]. FollowingMoore et al. [2013], values for the half-saturation constants for nitrate and
ammonium uptake are chosen to be significantly larger (2X and 10X, respectively) than those for small
phytoplankton, so that diazotrophs do not compete with that group for dissolved inorganic nitrogen in the
oligotrophic open ocean.

3. Experimental Design

The coupled physical-biological simulation was initialized with climatological temperature, salinity, and
nutrients, and with previous model results for the rapidly adjusting biological variables, as described by
Anderson et al. [2011]. The simulation was run for 14.5 years with a 6 h, repeating “normal year” atmospheric
forcing [Large and Yeager, 2004], during which time it reached quasi equilibrium. The biological model
changes mentioned above were then made, the nutrients (NO3, PO4, SiO3, and O2) reinitialized with World
Ocean Atlas July distributions [Garcia et al., 2006a, 2006b] and the coupled model run for 7 more years. Only
the last 4 years of simulation are analyzed, after the biological fields (excluding DIC, alkalinity, and O2, which
in this model do not affect the other biological variables) reached a new quasi equilibrium. Model output was
saved in 5 day averages.

4. Basin-Scale Patterns in Biomass and Nitrogen Fixation

The simulation of Trichodesmium spp. biomass (Figure 2, top ) captures many of the large-scale features
present in the Luo et al. [2012] synthesis. The solution is improved over the prior results described by
Anderson et al. [2011] (Figure S2 of the supporting information). In particular, near-surface biomass in the
high-abundance region of the tropics and southern subtropical gyre is closer to observed concentrations.
The model also predicts high concentrations in the Gulf Stream and its eastward extension into the North
Atlantic. Although this feature is not resolved by the in situ database, it is evident in satellite observations
[Westberry and Siegel, 2006].

Despite the overall improvement in the fidelity of the simulated biomass, some discrepancies remain—such
as overestimation east of South America at 10–15°S and in the 28–32°N latitude band of the Sargasso Sea.
Another area of apparent bias in the model is located off west Africa in the latitude band 10–20°N, where the
simulation seems to systematically exceed the observations. Repeated transects in April/May and
September/October reveal consistently high biomass in this area from the equator to 15°N [Tyrrell et al.,
2003], although the binned annual averages computed by Luo et al. [2012] show considerable spatial
variability in that vicinity.

The large-scale patterns in nitrogen fixation (Figure 2, bottom ) generally mimic those of biomass. Differences
between the revised and prior solutions are less dramatic than in the biomass fields (Figure S3 of the supporting
information), but there are improvements. For example, the northern boundary of the high-fixation region in
the tropics (yellow-to-green transition in Figure 2 (bottom)) is shifted northward, bringing the simulated rates
into better agreement with the observations in the southern limb of the subtropical gyre. Enhanced nitrogen
fixation is also evident in the Gulf Stream region, bringing the simulation into closer agreement with observa-
tions off the coast of northeastern North America. There are some areas in which model predictions of nitrogen
fixation are degraded, such as in the northeast Atlantic where previously well-simulated rates are
underestimated (Figure S3 of the supporting information).

Although the high biomass and rates of nitrogen fixation in the western tropical Atlantic are relatively well
captured in the model, the river plume dynamics thought to be important to nitrogen fixation in that area
[Borstad, 1982; Lenes et al., 2005] are not. Specifically, Subramaniam et al. [2008] describe how the Amazon

Global Biogeochemical Cycles 10.1002/2013GB004652

MCGILLICUDDY ©2014. American Geophysical Union. All Rights Reserved. 4



River outflow stimulates nitrogen fixa-
tion both by diatom-diazotroph assem-
blages as well as Trichodesmium spp. in
different stoichiometric niches within the
plume, which can extend more than
1000 km from the river mouth. Neither of
these two nitrogen-fixing regimes is
represented in this model, insofar as
riverine influences are parameterized by
restoring surface salinity to climatologi-
cal values. As such, freshwater fluxes are
prescribed, but the associated nutrient
and micronutrient inputs are not.

Another important caveat with respect
to assessment of the simulated rates
arises from a recently discovered bias in
an established isotopic method for mea-
sure nitrogen fixation [Groβkopf et al.,
2012]. Typically, 15N2 tracer is introduced
as a gas bubble which is assumed to
rapidly equilibrate with the liquid phase.
Direct comparisons with a new approach
using dissolved 15N2 gas challenge that
assumption, indicating that the gas
bubble method significantly underesti-
mates nitrogen fixation. Because this
method is used in much of the data that
comprise the Luo et al. [2012] analysis for
the Atlantic, the observational estimates
with which the model results are
compared (Figure 2, bottom) may have
to be revised upward by as much as a
factor of two.

5. Controls on the Simulated
Diazotrophic Populations

Over most of the high-abundance
region of the tropical and subtropical
North Atlantic, diazotrophic populations

are regulated by the availability of phosphorus (Figure 3), a pattern roughly consistent with predecessors of this
model [Moore et al., 2004; cf. their Figure 7]. North of that area, temperature exerts the primary control, although
there is a narrow zonal band of iron limitation associated with the Gulf Stream and its extension (see section 7
below). From the equator south, iron generally limits diazotrophy in the model with the exception of a small
region in the vicinity of 10°S, 20°W. Qualitatively similar large-scale patterns in phosphorus and iron limitation of
diazotrophs are predicted by a biogeographical model driven by nutrient supply stoichiometry [Ward et al.,
2013; cf. their Figure 7].

Phosphorus limitation of diazotrophic populations in the high-abundance region of the North Atlantic is
consistent with the notion of ample iron supply from aeolian deposition of dust particles originating from
African deserts [Fung et al., 2000; Berman-Frank et al., 2001; Mahowald et al., 2005; Moore et al., 2009].
Moreover, a wide variety of assays on natural populations from this region indicate phosphorus stress,
including cell quota measurements [Sañudo-Wilhelmy et al., 2001] and quantification of alkaline phosphatase
activity [Dyhrman et al., 2002; Webb et al., 2007; Mather et al., 2008; Sohm et al., 2008; Hynes et al., 2009].

Figure 2. Simulated near-surface (0–10m) (top) diazotrophic biomass and (bottom)
nitrogen fixation. Data from Luo et al. [2012], binned onto the 1.6° model grid, are
shown as colored circles. Outlined in black are the locations of BATS (circle near 32°N,
64°W), as well as tropical west (rectangle centered at 10°N, 54°W) and tropical east
(rectangle centered at 6°N, 28°W) domains, for which detailed flux diagnosis is
presented in Figure 4.
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Selective remineralization of phospho-
rus from the dissolved organic material
pool is also indicative of phosphorus
limitation [Clark et al., 1998], and
Trichodesmium colonies appear to have
complex consortia of epibionts that
serve precisely this purpose [Van Mooy
et al., 2012]. Experimental incubations
with additions of inorganic phosphorus
can stimulate nitrogen fixation [Webb
et al., 2007], although results from the
eastern tropical North Atlantic suggest
colimitation by phosphorus and iron
[Mills et al., 2004]. Abundances of iron-
binding photosynthetic and nitrogen-
fixing proteins in natural populations of
Trichodesmium spp. in the North
Atlantic are also consistent with iron
stress [Richier et al., 2012].

6. Nitrogen Fluxes

Detailed nitrogen budgets for three of the most densely sampled sites (Figure 4) further illustrate the
improvement in simulated diazotrophic biomass. Whereas biomass was underestimated by an order of
magnitude in the tropical west and tropical east domains of the Anderson et al. [2011] solution, biomass in the
present simulation is much closer, albeit still smaller, than observed. Diazotrophic biomass also increased at
BATS, degrading the solution at that location. However, biomass at BATS is still an order of magnitude smaller
than in tropical areas and thus still qualitatively consistent with observed large-scale biogeography of
Trichodesmium spp. Nitrogen fixation also increased, eclipsing the observedmeans in all three sites. However,
given the high variability in the observations, the simulated rates at the tropical sites are not unrealistic.
Nitrogen fixation is no doubt overestimated at BATS, but is an order of magnitude less than in the high-
abundance region. As mentioned above, upward revision of nitrogen fixation rate estimates based on 15 N2

assimilation measurements [Groβkopf et al., 2012] could bring the simulation and observations into
closer agreement.

Nitrogen fluxes are significantly reorganized in the present model (Figure 4). The most significant change is
the large amount of diazotrophic biomass that is converted into particulate organic nitrogen (PON) and
subsequently exported, a pathway not available in the prior model. At the tropical sites, 70–75% of the
nitrogen fixed by diazotrophs is exported by this process. This was a key addition to the model formulation,
allowing for higher standing stocks of diazotrophic biomass while avoiding unrealistic buildup of inorganic
nitrogen via remineralization within the euphotic zone. Unrealistic buildup of inorganic nitrogen was also
ameliorated by allowing for uptake of nitrate and ammonium by diazotrophs, a pathway that supplies
15–20% of the diazotrophic nitrogen utilization at the tropical sites.

7. Mesoscale Variations

To assess eddy-driven fluctuations in the simulated populations of Trichodesmium spp., mesoscale features
were identified by local extrema in sea level anomaly (SLA) computed from the 5 day averages of model
output. Model-based SLA was defined by the residual after removing the large-scale spatial trends by a
symmetric two-dimensional Gaussian filter with a 3° longitude e-folding scale and a 7.5° maximum radius.
Following Anderson et al. [2011], each eddy was classified as one of four types according to the sign of their
SLA and the sense of the isopycnal displacement at the base of the euphotic zone (taken to be 97m): regular
cyclones (“C”; negative SLA and positive density anomaly at 97m), regular anticyclone (“A”; positive SLA and
negative density anomaly), mode-water eddy (“M”; positive SLA and positive density anomaly), and “thinny”
(“T”; negative SLA and negative density anomaly). The term thinny derives from the fact that in the Sargasso

Figure 3. Most limiting factor for growth of the simulated diazotrophic population
in near-surface (0–10m) waters, averaged over the final 4 years of the simulation:
iron (Fe), temperature (T), phosphate (PO4), and light.
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Sea, these eddies have a relatively thin layer of 18° mode water between the seasonal and main thermoclines,
whereas in “mode-water” eddies that layer is anomalously thick. In both cases, displacement of the main
thermocline dominates the SLA and associated surface geostrophic velocity, such that thinnies are cyclonic and
mode-water eddies are anticyclonic.

The model simulates realistic mesoscale varia-
tions in Trichodesmium spp. populations. For
example, Davis and McGillicuddy [2006] noted
enhancements of Trichodesmium spp.
populations in anticyclones within the subtropi-
cal gyre, with local abundance anomalies of up
to an order of magnitude. This aspect was not
captured in the Anderson et al. [2011] solution
(Figure S4 of the supporting information), yet is
clearly evident in the present simulation
(Figure 5). Because the observations were
collected in the August–September time frame,
the analysis of the model solutions is restricted
to that time interval. Of the 4 years that were
analyzed, the association of positive biomass
anomalies with anticyclones was most
pronounced in year two (not shown). A synop-
tic (5 day) snapshot during that time period
illustrates the nature of the association:

Figure 4. Annual mean surface (0–10m) diazotroph-related nitrogen budget at the locations shown in Figure 2. Fluxes between boxes are in
μmol Nm

�3
yr

�1
. Diazotroph biomass values are shown inside the DIAZ box. Observed values and standard deviations are in bold, the work

of Anderson et al. [2011] in italics, and the new model results shown in regular font.

Figure 5. Vertically integrated (0–104m) diazotrophic biomass anomalies
(mgCm

�2
), expressed as percent anomaly from the large-scale mean,

binned according to SLA and in situ density anomaly at 97m in the
subdomain bordered by the white rectangle in Figure 6 (30–35°N, 30–48°W).
The four quadrants correspond to anticyclones (A), mode-water eddies
(M), thinnies (T), and cyclones (C). The background shading indicates the
observed correlations in this region, which suggest the enhancement of
Trichodesmium spp. populations in anticyclones [Davis and McGillicuddy,
2006]. For consistency with the observations, analysis of the model output
is restricted to the August–September time frame.

Global Biogeochemical Cycles 10.1002/2013GB004652

MCGILLICUDDY ©2014. American Geophysical Union. All Rights Reserved. 7



anticyclonic eddy features derived from the Gulf Stream extension region carry high biomass into the
north-northwestern region of the observational domain (Figure 6). Biomass in the Gulf Stream and its
extension was much lower in the Anderson et al. [2011] solution (Figure S2 of the supporting information),
which may explain why the association with anticyclones was not present in that simulation.

Based on the snapshot presented in Figure 6, it is clear that the eddy-driven transport of Trichodesmium spp.
biomass plays a role in generating the association with anticyclones. However, that does not discount the
possibility of local eddy-induced enhancement of the population. To investigate this, a composite anticyclone
was created by averaging all such features within the space/time domain of interest in eddy-centric coordi-
nates. Indeed, there is a local enhancement of growth rate within these anticyclones (Figure 7a). Analysis of the

limitation terms in the diazotrophic
growth rate equation reveals that they
are limited by phosphate in the upper
ocean and temperature below
(Figure 7b). The shallower temperature
limitation horizon in the interior of the
eddies suggests relief from phosphorus
limitation, and phosphate in the lower
euphotic zone (60–100m) is on average
higher in the interiors of anticyclones
in this region (Figure 7c). In fact, the
phosphorus enhancement is sufficient to
shift the population toward iron limita-
tion in an isolated area at 60m depth at
approximately 50 km radius (Figure 7b).

What is the source of the excess phos-
phate in these anticyclones? A transect
from the high-abundance region in the
Gulf Stream through the domain of in-
terest (magenta line in Figure 6) reveals
a gradient in phosphate with concen-
trations increasing to the northwest,
particularly at depth (Figure 8, bottom).
This large-scale gradient is consistent
with the climatology used to initialize
the model nutrient fields. Detailed
comparison of the vertical section with

Figure 6. Vertically integrated (0–104m) diazotrophic biomass (color) with isolines of sea level anomaly overlayed (contour interval of 6 cm;
solid corresponds to +3 cm and above, dashed to�3 cm and below). Fields are averaged over the 5 day period, 8–12 September in year 18 of
the simulation. White rectangle indicates the area of comparison with observations from Davis and McGillicuddy [2006]. Magenta dots
indicate two anticyclonic features with enhanced diazotrophic biomass (see text). Location of the transect shown in Figure 8 is depicted as a
magenta line. Note that sea level anomaly has been smoothed with a Gaussian-weighted running average with an e-folding scale of four
grid points and a maximum cutoff of 10 points (1° longitude).

Figure 7. (a) Diazotrophic-specific growth rate anomaly, (b) limitation factors, and
(c) phosphate concentrations in anticyclones with high diazotrophic biomass located
within the white rectangle in Figure 6 (30–35°N, 30–48°W) during August–September.
Two such features are identified by magenta dots in the snapshot shown in Figure 6.
Radial averages were constructed from synoptic snapshots of model output using
local maxima in sea level anomaly to define the positions of eddy centers. In each
panel, density (σθ) contours are overlayed in white.
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the phenomenology in SLA and diazotrophic biomass in Figure 6 suggests eddy-driven transport of phos-
phate which in turn drives local enhancement at the base of the euphotic zone (Figure 8, top). This finding is
consistent with the suggestion by Palter et al. [2011] that excess phosphate supplied from the Gulf Stream
system is a key source of nutrition for nitrogen fixation in the subtropics. Their study stressed the importance
of wind-driven Ekman transport and isopycnal mixing in phosphate transport, estimating the eddy-induced
fluxes to be small and upgradient via a parameterization derived from the work of Gent et al. [1995]. This
eddy-resolving simulation suggests that the downgradient transport by the eddies provides an additional
mechanism of phosphate supply which would add to those described by Palter et al. [2011]. In the simulation,
the supply of phosphate from the Gulf Stream system is sufficient to transform the northern periphery of the
subtropical gyre from phosphorus limitation to iron limitation of diazotrophic populations (Figure 3).

8. Conclusions

In this model, large export fluxes of diazotrophically derived material are required to sustain observed
nitrogen fixation rates while maintaining realistic nutrient gradients in the upper ocean. Unfortunately, there
do not appear to be any direct measurements in the high-biomass region of the North Atlantic that can be
used to test this hypothesis—although the relative paucity of Trichodesmium spp. found in sediment traps
has led some to conclude that their sinking flux is small [Mulholland, 2007]. However, recent laboratory
experiments simulating bloom termination with T. erythraeum IMS101 suggest that the primary fate of the
bloommaterial and its associated products was sinking to the bottom of the experimental chamber [Bar-Zeev
et al., 2013]. While observations of the vertical flux of Trichodesmium spp. are scarce, there is ample isotopic
evidence that diazotrophically derived material makes its way into the food web [Montoya et al., 2002],
suspended particulate matter [Landrum et al., 2011], sinking particles [Capone et al., 1998], and deepwater
nitrate [Knapp et al., 2008]. Furthermore, supra-Redfield ratios of nitrate to phosphate in themain thermocline
of the North Atlantic imply substantial rates of nitrogen fixation and subsequent export of that material
[Lipschultz and Owens, 1996; Michaels et al., 1996; Gruber and Sarmiento, 1997; Hansell et al., 2004].
Reconciliation of these various imprints of nitrogen fixation on near-surface and deep ocean properties will
require a mechanistic understanding of the nature of export flux of diazotrophically derived material, for
which an expanded observational basis is essential.

Similarly, the effects of mesoscale ocean dynamics on diazotrophy are just beginning to come into focus. This
simulation suggests that the eddy-induced transport of Trichodesmium spp. populations and the excess
phosphorus from the Gulf Stream region can potentially explain the observed association with anticyclones
in the northern subtropical gyre [Davis and McGillicuddy, 2006]. However, this is also just a hypothesis that
awaits evaluation with direct observations of the nutrient environment in such features, as no such

Figure 8. Phosphate section (color) along the magenta line in Figure 6, averaged over the 5 day period, 8–12 September of year 18 in the
simulation, the year duringwhich diazotrophic biomass anomalies weremost pronounced in anticyclones. Density (σθ) contours are overlayed in
white at intervals of 0.2 kgm

�3
. (top) The 0–110m concentrations are plotted on a log scale; (bottom) the 0–320m concentrations are plotted on

a linear scale.
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measurements were available in the prior study. Enhancement of Trichodesmium spp. in anticyclones has also
been noted in other regions, such as the eastern North Atlantic [González Taboada et al., 2010] and oligotrophic
North Pacific [Fong et al., 2008; Church et al., 2009]. In both cases, the mechanism of enhancement is different
than that described herein, and future studies of mesoscale variations in such populations are likely to reveal a
wide variety of physical-biological interactions.
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