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Abstract 40 

 41 

Inference of the sea surface chlorophyll field from incomplete satellite coverage is posed as a 42 

formal inverse problem using a Monte Carlo approach to Bayesian estimation.  We introduce a 43 

new method, the strong constraint iterative ensemble smoother, for solving the general coupled 44 

physical-biological parameter estimation problem where model nonlinearities may be relevant. 45 

The forward model is posed in four ways: (1) advection-diffusion, (2) linear advection-diffusion-46 

reaction, (3) nonlinear advection-diffusion-reaction, and (4) a nonlinear nutrient-phytoplankton 47 

model. Hindcast skill is demonstrated through analysis of the fit to independent data in a series 48 

of experiments utilizing MODIS chlorophyll imagery from the Middle Atlantic Bight during 49 

summer of 2006.  The data assimilative model demonstrates skill over a range of presumed 50 

observational error.  Both the purely physical model (advection-diffusion only) and the coupled 51 

physical-biological models exhibit skill fitting unassimilated data.  The skill of the coupled 52 

physical-biological models is greater than the skill of the advection-diffusion model, owing at 53 

least in part to greater degrees of freedom in those inversions. 54 

 55 

 56 
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1. Introduction  63 

Common methods for compositing and interpolating satellite imagery typically rely on 64 

regression and smoothing of individual pixels, inherently ignoring the effect of advection.  With 65 

improvements in shelf-scale observing systems and expanding areas of coverage by operational 66 

models, we are faced with the opportunity to improve sea surface chlorophyll (SSC) estimates. 67 

An analogous situation exists with respect to biological models.  Although the dynamics of 68 

plankton ecosystems remain an active topic of research, direct contact between models and 69 

observations via biological data assimilation (Fennel et al., 2001; Hofmann and Friedrichs, 2002) 70 

is leading to demonstrable improvements in skill (Lynch et al., 2009). Herein we pose the SSC 71 

compositing problem as dynamic interpolation, formally inverting a model to fill in the gaps in 72 

the data.  73 

In the data assimilation problems characteristic of today’s ocean (spatially explicit models 74 

with millions of state variables assimilating hundreds of sparsely distributed data points) some 75 

type of Bayesian reasoning must be brought to bear to obtain a well-posed inverse problem. The 76 

prior information may enter as gradient or other penalty in a cost function or be explicitly stated 77 

as prior distributions on the parameters being estimated. A potential drawback to any Bayesian 78 

approach to data assimilation is that the analyst will bias the results with the specification of the 79 

prior error distributions.  We seek to demonstrate robustness of an estimation procedure with 80 

respect to specification of the prior error distributions for several different models, using an 81 

example set of eleven sequential satellite images from the Middle Atlantic Bight during summer 82 

2006.   83 

Satellite sensed ocean color data has been assimilated by various methods.  Ishizaka 84 

(1990) used a simple insertion-based methodology with Coastal Zone Color Scanner (CZCS) 85 

data.  Natvik and Evensen (2003a; 2003b) assimilated Sea-viewing wide Field-of-view Sensor 86 
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(SeaWiFS) data into a three-dimensional plankton ecosystem model using a Ensemble Kalman 87 

Filter (EnKF).  More recently Gregg (2008) assimilated SeaWiFS data into a global 88 

biogeochemical model using the Conditional Relaxation Analysis Method (CRAM) in a 89 

sequential manner. In all these applications the inverse problem is formulated in a weak 90 

constraint manner.  Examples of ocean color assimilation using strong constraint formalism are 91 

comparatively few in number, generally making use of the adjoint method (e.g. Friedrichs 92 

(2002)).  Seldom have such variational methods been applied in spatially explicit models (e.g. 93 

Garcia-Gorriz et al. (2003); Zhao and Lu (2008); Fan and Lv (2009)). 94 

Monte Carlo ensemble methods offer an alternative approach, which can be formulated 95 

either in terms of weak constraint (Evensen, 2006; van Leeuwen and Evensen, 1996) or strong 96 

constraint (Smith et al., 2009). The ensemble smoother (EnS) holds two practical advantages 97 

over variational methods described above.  Firstly, the implementation is vastly simpler because 98 

it does not require computation of the tangent linear model, which can be complicated for 99 

biological models.  This allows for easy porting between applications to different biological 100 

models. Secondly, the method provides a Monte Carlo sample of the posterior error distribution 101 

without the need for computing the Hessian matrix.  Posterior statistics are an important part of 102 

any estimation procedure, providing a context for assessing confidence in the conclusions. The 103 

ensemble smoother derivation relies on an assumption that the log likelihood is approximately 104 

quadratic (or, equivalently, that the model responds approximately linearly to the parameters at 105 

the observation points).  This assumption can fail to hold depending on nonlinearities in the 106 

model, the oceanographic phenomenology present during the time period the data were collected, 107 

and the assumed observational error.   108 

Herein we introduce a variation on the strong constraint Ensemble Smoother, the Iterative 109 
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Ensemble Smoother (ItEnS), for estimation problems in which the log likelihood is potentially 110 

strongly non-quadratic.  The method utilizes a Monte Carlo approximation of the sensitivity 111 

matrix to provide the gradients for an iterative descent.  Like the EnS, the iterative ensemble 112 

smoother does not require a tangent linear model.  We apply this methodology to assimilating 113 

satellite-based ocean color data into four different dynamical models of varying complexity, and 114 

assess the performance of the algorithm and its dependencies on the underlying models and 115 

prescribed error statistics. 116 

 117 

2. Methods 118 

2.1 Forward Models 119 

We investigate four coupled physical-biological models.  The first model we consider is a 120 

simple advection-diffusion (AD) model with no active biological interactions: 121 

0=cDcv+
dt

dc
      (1) 122 

where c is the chlorophyll concentration, v is the velocity field and D the diffusion field. The 123 

circulation estimate (v) is prescribed from a hindcast of the region described in He and Chen 124 

(submitted) (Figure 1).  The velocity is a monthly average and the mesh resolution is 125 

approximately 8.9 km.  A uniform horizontal diffusion coefficient (D) of 25 m
2
 s

-1
 is used 126 

throughout.  The model represents the vertical average over the top 20 meters of the water 127 

column. 128 

The second biological model is a simple advection-diffusion-source (ADS) equation, 129 

),( yxS=cDcv+
t

c





    (2) 130 
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where S is a spatially variable source-sink  term.  An imposition of positivity on c causes the 131 

model to be nonlinear. 132 

Our third model is an advection-diffusion-reaction (ADR) model with first order density 133 

dependence, 134 

cyxR=cDcv+
t

c
),(




    (3) 135 

where R is a spatially variable growth/loss rate.  This is the simplest nonlinear model for a single 136 

biological state variable.   137 

The last model we consider is a nutrient-phytoplankton (NP) model with Lotka-Voltera 138 

interaction and constant mortality rate for the phytoplankton, 139 

γncc=nDnv+
t

n





     (4) 140 

cγnc=cDcv+
t

c





    (5) 141 

 142 

where n is the nutrient concentration and c is the phytoplankton concentration. Parameters γ and 143 

  represent the nutrient uptake rate and phytoplankton mortality rate, respectively.  For the NP 144 

model the chlorophyll observations are assumed to be linear measurements of the phytoplankton 145 

field.  This measurement model could be improved by explicitly accounting for variations in 146 

chlorophyll per unit biomass that can occur in phytoplankton due to photoadaptation (e.g. Cullen, 147 

(1982)).  However, that refinement is left for future work. 148 

All of these models offer simple description of the satellite-based chlorophyll 149 

observations, differing in explicit biological assumptions.  For the ADS model, the free 150 
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parameters are initial conditions for c and the source/sink term S(x,y).  Likewise for the ADR 151 

model, the unknowns are initial conditions for c and the growth/mortality rate R(x,y). For the NP 152 

model, the free parameters are the initial conditions for the two state variables n and c, as well as 153 

values of the parameters γ  and  .  The abiotic AD model has only the initial condition of c for 154 

free parameters.  The forward models are solved with an implicit time stepping finite element 155 

method as described in Smith et al. (2009).  156 

 157 

2.2 Bayesian parameter estimation   158 

We formulate the data assimilation problem using Bayesian formalism to estimate the 159 

parameters of a dynamical model given a set of observations.  Let θ  denote the unknown model 160 

parameters: for the AD model  )=c(t=θ 0 , for the ADS model  S),=c(t=θ 0 ,  for the ADR 161 

model  R),=c(t=θ 0 , and for the NP model   ,,00 )=p(t),=n(t=θ .  Let  θf  denote the 162 

prior distribution for the parameters, and θψ  the dynamical model solution given parameter 163 

choiceθ . The data, d , are an imperfect observation of the true state of the system, 164 

ξ+Hψ=d true where ξ  is the observational error and H is the measurement operator for the 165 

observations.  Bayes theorem allows us to compute the posterior likelihood over θ , 166 

 
   

   
       θfψ|df=θfθ|df

dθθfθ|df

θfθ|df
=d|θf θ


 (6) 167 

We seek the maximum likelihood estimate of θ  over this posterior distribution. Assuming  θf  168 

is Gaussian, let  and P  denote the prior mean and covariance of θ . If the observations are 169 

unbiased and perturbed by an additive Gaussian error distribution with covariance W and zero 170 

mean, then 171 
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 
 

       
















 


 θPθdHψWdHψ

PW
=d|θf

T

θ

T

θNN dm

11

2

1
exp

2

1
exp

2π

1
   (7) 172 

where Nm is the dimension of the model and Nd is the dimension of the data.  The analogy to 173 

strong constraint data assimilation methods is illuminated by defining a cost function 174 

proportional to the log of the conditional likelihood function, 175 

        θPθ+d)(HψWd)(HψdfJ
T

θ

T

θ

11)|(log2)(  (8) 176 

By monotonicity of the log, the value of θ  minimizing the cost is also the maximum likelihood 177 

estimate. 178 

Bayesian methodology requires the specification of prior distributions for unknown 179 

parameters, )f(θ , and observations, )ψ|f(d θ .  In general, the prior distributions over the 180 

parameters and observations are specified by analytic functions with a handful of scalar 181 

parameters.  Herein we refer to these parameters as “hyper-parameters,” and their values for 182 

models describing geophysical systems are often not known with great confidence. 183 

  184 

2.3 Observational error covariance  185 

Above we asserted that the observations contain additive Gaussian errors with mean zero 186 

and covariance W. Generally W is assumed to be a constant diagonal matrix (measurement errors 187 

are not correlated and have the same expected error). For the satellite data used herein, we 188 

employ a block diagonal covariance 189 

 
 ji

obs

ji2

obsij ttδ
l

xx
σ=W 









 
exp      (9) 190 
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defining the covariance between observation i and j, where  it and jt are the times of the 191 

observations and ix and jx are the positions of the observations.  The delta function, δ(t) , is one 192 

at the origin and zero elsewhere. This form is based on the assumption that while the errors in 193 

separate images are uncorrelated, data within an image is contaminated with a spatially 194 

correlated signal.  The decorrelation length scale of the observations lobs was estimated directly 195 

from the satellite-based chlorophyll data (Table 2), and a range of values for the observational 196 

error σobs is investigated (see section 2.7 below). 197 

 198 

2.4 Prior error distributions 199 

We assume a Gaussian error distribution for the initial conditions in all of the models.  200 

The distribution is truncated to enforce positive definiteness in the initial conditions.  The prior 201 

model distribution at later times is estimated through the solution of the forward models 202 

(Equations 1-5).  The distributions of S, R, n(t=0), , and   are also assumed to be Gaussian and 203 

independent of the initial conditions. 204 

The covariance for the initial conditions varies spatially in proportion to the 205 

climatological mean field, 206 

 







 


m

ji2

0ij
l

xx
σ=C )exp)g(xg(x ji

0      (10) 207 

where g(x) is mean initial condition for chlorophyll provided by the MODIS August 208 

climatology.   The nondimensional hyper-parameter 0  is the standard deviation of the 209 

chlorophyll data itself scaled by the climatological mean value.  The length scale for model 210 
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errors ml was also estimated from the observations by computing the decorrelation length scale of 211 

normalized chlorophyll anomalies 
c

cc 
 (Table 2). 212 

The covariance for the reaction term in the ADS and ADR models are: 213 

 







 


m

ji2

S

S

ij
l

xx
σ=C exp and 

 







 


m

ji2

R

R

ij
l

xx
σ=C exp   (11) 214 

respectively.  The means for both S and R are zero, and variances were estimated from satellite 215 

imagery under the assumption of no flow (Table 2):  216 


























2

2 )()(

t

tcttc
ES   and 






















 




2

2

)(

)(
log

1

tc

ttc

t
ER   (12) 217 

 218 

For the NP model, the error distribution for the initial condition of phytoplankton is the 219 

same as for the chlorophyll field in the other forward models.  For the nutrient field, we assume 220 

the mean to be spatially uniform with a value (n=0.3 mmol m
-3

) prescribed by the domain-221 

average nitrate concentration extracted from the World Ocean Atlas 2005 climatology (Garcia et 222 

al., 2006).    The covariance for the nutrient initial conditions takes a similar form 223 

 224 

 







 


m

ji2

n

n

ij
l

xx
σ=C exp

     (13) 225 

and the standard deviation n  is assumed to be the same as the mean value (Table 2).  The prior 226 

distribution for the phytoplankton mortality υ and nutrient uptake rate γ are independent normal 227 

distributions with mean 0.1 d
-1

 and 0.3 m
3
 mmol

-1
 d

-1
 respectively. These values result in a steady 228 
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state at the prior mean, consistent with the assumption of zero mean for S and R in the ADS and 229 

ADR models.  The prior standard derivation for the uptake and mortality are assumed to be four 230 

times their mean value, reflecting large uncertainty in the prior estimates. 231 

 232 

2.5 Ensemble Kalman Smoother 233 

The EnS algorithm solves the strong constraint data assimilation problem using an 234 

analysis scheme and statistical forecasting methodology closely related to the Ensemble Kalman 235 

filter (EnKF) described in Evensen (2006). To obtain the model error distributions at the 236 

observation points, )f(Hψθ , we employ a Monte-Carlo method.  For example, in the ADS model 237 

spatially variable initial conditions and source-sink terms are simulated from the prior 238 

distributions (Equations 10 and 11).  The forward model (Equation 2) is integrated with a finite 239 

element solver to produce a Monte Carlo sample of the prior model error distribution at the 240 

observation points. An analogous procedure is employed for the AD, ADR and NP models. 241 

Suppose the model response to the parameters is linear at the observation points, 242 

)(    QHH , where 









H
Q .  To obtain the optimal estimate of   we utilize the 243 

normal equations,  244 

)())(()()(
)(

0 1111 



 




  PdQHWQPdHWQ

J TT  (14) 245 

Solving for  we have, 246 

)()( 1111

 HdWQQWQP TT        (15) 247 

Or equivalently, utilizing a matrix lemma,  248 



 12 

)()()()( 11

  HdWCCHdWQPQPQ ddd

TT   .  (16) 249 

Here )])([(   HHEC d   and )])([(   HHHHECdd   are the model 250 

error covariances between the parameters and observation points and the model error covariances 251 

between the observation points respectively.  The EnS optimal estimate uses a Monte Carlo 252 

approximation of these two covariance matrices, thus avoiding the need for a gradient 253 

calculation.   The optimality of the estimate is conditioned on the existence of a good linear 254 

approximation to the dynamic model, though it is never computed explicitly.  The approximation 255 

only needs to be valid at the observation points in space/time and over the likely regions in the 256 

prior distribution for .  A more detailed derivation of this optimal estimate, its posterior 257 

statistics and method for its computation are described in Smith et al. (2009).  The posterior 258 

estimate of the state is obtained by solving the forward model for a sample of the parameters 259 

drawn from their posterior distribution.  In this sense, the model provides a stochastically-based 260 

strong constraint estimate of the model parameters and state.   261 

 262 

2.6 Iterative Ensemble Kalman Smoother 263 

In cases where the log likelihood (Equation 8) is not approximately quadratic we can 264 

generalize the EnS approach by iterating the analysis scheme, linearizing the cost function about 265 

a series of points of increasing likelihood.  The linearization is accomplished with an ensemble 266 

approximation to the gradient rather than a numerical or analytic linearization of the forward 267 

model.  If H is differentiable, then for any value of the parameter vector y we can linearly 268 

approximate the cost function in some neighborhood of y 269 

      θPθ+d)yQ(HψWd)yQ(HψJ
T

yy

T

yy

11 )()()(  (17) 270 
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And thus 271 

   μθP+dyQHψWQ
θ

J 1

yy

T

y
y=θ




  )(
)( 1 


    (18) 272 

where 273 

y=θ
y

θ

Hψ
=Q



           (19) 274 

is the sensitivity matrix evaluated at y=θ .  The first order condition for a minimum is found by 275 

setting Equation 17 to zero and solving for θ obtaining, 276 

    μyQ+HψdW+PQQPQ+μ=θ yy

T

yy

T

y 
1

.       (20) 277 

Note that here μ  and P are the specified prior mean and covariance for θ rather than their Monte 278 

Carlo approximation as in the EnS. 279 

We wish to find a sequence of parameter values, nyyy ,...,, 21 that will converge to the 280 

maximum likelihood estimate for .  The starting point for this sequence is the prior mean, 281 

μ=y1 .  Using the optimal update based on the local normal equations, we define the update 282 

candidate  283 

  μyQ+HψdW+TPQQTPQ+μ=y i
i

yy
i

y
i

y
i

y+i i








1

1'     (21) 284 

Because the linear approximation 
iyQ is local and may not be valid out to 1' iy , the update, 1iy , 285 

is the point on the line between iy and 1' iy that minimizes the exact cost function (Equation 8). 286 

Formally we have   11 '1  ii+i y+y=y   where  287 

))('min(arg  iJ  for )')1(()(' 1 iii yyJJ  .         (22) 288 

The discrete ensemble (of size SN ) over which the minimum of the exact cost function is 289 



 14 

computed is 
s

j
N

j
  for sNj ,...,1,0 .  The minimal cost corresponds to the optimal step size. 290 

The implementation of the optimal step size calculation utilizes the existing parallel ensemble 291 

forward model, though other choices might be more efficient such as a divide and conquer 292 

approach or curve fitting.    293 

The local derivative estimates,
iyQ , are computed with an SVD decomposition of an 294 

ensemble of parameter vectors, and the solution of the dynamical model for the ensemble. Let  295 

         Tiiiiniiiiiiniii VDU=Yyyy
ee
 ,2,1,,2,1, ,,,...,,     (23) 296 

denote the SVD decomposition of the ensemble of parameter vectors at the thi iteration and let 297 

    ii YHψ=M denote the ensemble estimate at the data points. By definition iU  and iV  are 298 

unitary and iD is diagonal.  The approximate sensitivity matrix is given by 299 

     Tiiiiy UDVM=Q
i

1
as in related methods such as the Iterative Ensemble Kalman Filters of 300 

Li and Reynolds (2009).  The ensemble is regenerated at each iteration; the perturbation vectors 301 

ji , are simulated independently from a scaled prior covariance with mean zero. The ensemble 302 

standard deviation for the ji , is 1/1000 of the prior standard deviation. The sampling scheme 303 

used to generate the ensemble is generally not optimal for estimation of the sensitivity matrix. 304 

The problem of defining an optimal sampling strategy for the derivative estimate is left for future 305 

work.  306 

The requisite size of the ensemble for estimating 
ixQ depends on the number of 307 

parameters being estimated. For problems with only a handful of parameters a deterministic 308 

approach to sampling, such as the sampling scheme of the Unscented Kalman filter (UKF) 309 
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(Julier and Uhlmann, 1997), would be a natural choice. Such a scheme would require a sample 310 

size of )dim(21  . For the joint initial condition and spatially variable parameter estimation 311 

problems solved herein, 10000)dim(  , making such a sample unfeasible for our numerical 312 

experiments.  313 

In addition to dealing with strongly non quadratic log likelihoods, the ItEnS allows the 314 

sampling distribution to not conform to the prior distribution.  This is advantageous if the prior 315 

error distribution is ill specified, such as the assumption of a Gaussian prior for a field which 316 

must be positive in the dynamical model.   The ItEnS methodology also guarantees convergence 317 

to a minimum of the cost function whose basin of attraction contains the prior mean.  In cases 318 

where the likelihood is multimodal, this may not be a global minimum (e.g. Smith (2007)).  319 

However, an extensive search for the global minima can be conducted utilizing multiple starting 320 

points.  If the prior estimate is reasonable (or equivalently if the observations are noisy and 321 

provide little constraint) the algorithm will converge to the global minimum.  322 

 323 

2.7 Experimental design 324 

The data set consists of eleven partial images on July 24, August 3,9,12,17,19,21 325 

September 3, 4, 7 and 9 (Figure 2, top row), which are located in an interior subdomain of the 326 

regional model (Figure 1).  In order to test our data assimilation methodology, we sequentially 327 

subdivided this time series of images into nine time windows, each containing three successive 328 

images.  In each case, the first and last images were assimilated and the middle image was used 329 

to evaluate the posterior estimate (Table 1).   For the time scales associated with these 330 

experiments, the regional domain was large enough that assimilation of data in the interior 331 
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subdomain did not involve boundary conditions of the regional model. 332 

Because satellite-based chlorophyll estimates can be contaminated by a variety of 333 

atmospheric and oceanic sources, it is difficult to prescribe an appropriate observational error 334 

model. We therefore assess the sensitivity of the estimation to the observational error standard 335 

deviation by testing ten values of obs with a log uniform structure, 336 

-3

obs m mg 25.6] 12.8, 6.4, 3.2, 1.6, .8, .4, .2, .1, [.05, .  337 

 338 

3. Results 339 

 The observational basis for this study is satellite-based chlorophyll imagery from late 340 

July to early September 2006 (Figure 2, top row).  Chlorophyll concentrations in late July and 341 

early August are generally low overall.  In mid-August, enhanced chlorophyll appears in the 342 

vicinity of the shelf break (Figure 1), oriented in the northeast to southwest direction; highest 343 

concentrations are located in the northeast.  By early September, the enhanced chlorophyll 344 

disappears, although weak gradients persist along the shelf break. 345 

  The best prior estimate (Figure 2, second row) consists of a simulation with the abiotic 346 

AD model initialized with the climatological mean chlorophyll concentration for August derived 347 

from MODIS data.  The climatology contains enhanced chlorophyll in the northwest corner of 348 

the domain, and low values elsewhere—and thus bears little resemblance to the observations in 349 

July-September 2006.  Nevertheless, this forward model simulation without data assimilation 350 

constitutes our best prior estimate of the chlorophyll field for all the models: AD, ADS (S=0), 351 

ADR (R=0), and NP (γ, υ chosen so the right hand sides of Equations 4 and 5 are zero). 352 

 Data assimilation vastly improves the fit to passive observations for the entire suite of 353 
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dynamical models (Figure 2, rows 3-6).  The mid-August enhancement of chlorophyll along the 354 

shelf break is recovered in each case, albeit to varying degrees (cf. August 19).  Also evident are 355 

remnants of the high chlorophyll in the northwestern part of the domain present in the best prior 356 

estimate, especially during time periods for which observations are lacking in that particular area 357 

(e.g. July 24 / August 9, September 4 / September 9). 358 

 The inferred biological parameters vary significantly over time, and depend on the 359 

underlying model formulation (Figure 3).  Buildup of chlorophyll along the shelf break in mid-360 

August is fostered by enhanced growth in that area, reflected by positive S(x,y) and R(x,y) in the 361 

ADS and ADR models, respectively (Figure 3, rows 1 and 2).  These areas of growth are flanked 362 

by areas of mortality (negative S(x,y) and R(x,y)), which tend to keep the biomass enhancement 363 

confined to the shelf break.  Disappearance of the chlorophyll enhancement in late August results 364 

from widespread mortality in the ADS and ADR models.  Dynamics of the NP model are 365 

considerably different (Figure 3, row 3).  The mid-August chlorophyll enhancement is bolstered 366 

by high nutrients extending seaward from the shelf break.  Lower nutrients landward of the shelf 367 

break (August 12, 17, and to some extent on August 19) prevent chlorophyll buildup in that area.  368 

The decline in biomass along the shelf break from late August to early September is controlled 369 

primarily by a decrease in the nutrient uptake rate γ and an increase in mortality υ.   370 

 371 

4. Discussion 372 

4.1 Misfit 373 

Fit to the active data depends on both the observational error and the underlying 374 

dynamical model (Figure 4).  As expected, the fits generally degrade monotonically with 375 
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increasing obs .  However, there are some exceptions (e.g. experiment 6, NP model, observational 376 

error 0.1-0.4).  These could be due to local minima or premature convergence triggered by the 377 

stopping rule (see section 4.3 below) when Monte Carlo errors in the gradient calculation cause 378 

an increase in the cost function. For some models (especially the ADR model), there is a 379 

systematic tendency for a local maximum in misfit at the lowest observational error.  This 380 

“convergence error” is likely a result of the Monte Carlo approximation, and could be 381 

ameliorated by an increase in ensemble size (with a commensurate impact on computational 382 

cost). 383 

On average, the ADR model fits the data better than the ADS model, which fits better 384 

than the NP model, which fits better than the AD model.  Why are the fits so different amongst 385 

the various models?  There are three reasons: differences in the number of degrees of freedom, 386 

differences in model structure, and differences in the prior distributions of the inferred 387 

parameters.  For example, the AD model has the fewest number of degrees of freedom, and it 388 

produces the worst fit. The ADS and ADR models both have the same number of degrees of 389 

freedom, yet the ADR model fits the active data systematically better than the ADS model.  Due 390 

to the exponential nature of the solution to the ADR model, it is generally more effective at 391 

fitting outliers in the terminal data than the linear ADS model.  Moreover, the prior distributions 392 

of S and R are necessarily different given they have different units—and those differences 393 

undoubtedly affect the fit. 394 

Although the degrees of freedom for the NP model are slightly higher than the ADS and 395 

ADR model (2Nm+2 rather than 2Nm), the misfit is generally greater.  There are several reasons 396 

for this, including the aforementioned differences in specification of prior for n relative to S and 397 

R, as well as the positive definite constraint on n.  Moreover, the nature of the inversion is quite 398 
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different in the NP model: whereas in the ADS and ADR cases consist of inverting for initial 399 

conditions for the single state variable c and a spatially variable parameter of the right hand side, 400 

in the NP case we invert for initial conditions for the two state variables n and p plus two 401 

parameters that tie them together dynamically.  Unlike the inversions for S and R in the ADS and 402 

ADR models, diffusion acts on the inferred initial conditions for n in the NP model, leading to 403 

fewer effective degrees of freedom in fitting the terminal data.  The misfit of the NP model 404 

relative to terminal data is further limited by the NP model’s tendencies toward a spatially 405 

uniform steady state at long times. This last effect becomes more important in the longer 406 

simulations (experiments 1, 6 and 7). 407 

 408 

4.2 Skill 409 

We define the skill of the estimation procedure as the ratio of root mean square (RMS) 410 

prior misfit to unassimilated data to the RMS of the posterior misfit to the same data.  This 411 

metric is non-dimensional and can be compared across the nine time windows which each have 412 

different prior misfits to their passive data.  If this ratio is greater than one, we consider the 413 

estimation procedure to have skill. 414 

Averaging the results across all nine time windows, we find that all of the models have 415 

skill across the full range of obsσ (Figure 5).  Average skill is optimal for σobs=0.8-1.6 mg m
-3

, 416 

depending on the model.  Skill is poor across all models and observational error for time 417 

windows 1 and 2, and good for all models in for time windows 3, 5, and 6.  Overfitting (poor 418 

skill at low obsσ ) with the ADR model is found in experiments 4 and 9.  Overfitting also occurs 419 

with the AD model in experiments 7 and 8.  The NP model only exhibits overfitting in 420 
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experiment 8.   421 

 422 

4.3 Non quadratic log likelihoods: necessity of an iterative approach 423 

To illustrate the necessity of the iterative approach, we evaluate the cost function between 424 

the prior estimate (   ) and the first candidate estimate of the ItEnS ( 2'y ).  The cost 425 

function is computed on regularly spaced values in the interval 2'y . We find that the cost 426 

function deviations from quadratic vary greatly amongst the nine experiments with each model 427 

(Figure 6).  As expected, the cost functions for the explicitly nonlinear models (ADR and NP) 428 

exhibit the most significant departures from quadratic form.  The ADR model exhibits 429 

asymmetry about the minimum, while the NP model occasionally contains multiple local 430 

minima.  In experiment 9 the cost function is quadratic for all models.   431 

For most of the experiments we find convergence of the cost function in 1-10 iterations, 432 

most requiring only a single iteration due to the cost function being nearly quadratic.  Models 433 

with strong nonlinearities and low observational error generally required more iteration.  We 434 

consider the convergence to have occurred if the improvement in the cost function is less than 435 

1/1000 of the current value, i.e. 
1000

1
1


  i

ii

y
yy . 436 

 437 

5.  Conclusions  438 

We have demonstrated an alternative smoother formulation for strongly non-linear 439 

systems, the ItEnS.  As in the EnS, the strong constraint data assimilation problem is formulated 440 

in a Bayesian framework and solved without the need for a tangent linear model.  441 
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Bayesian formalism combined with dynamical models provides a useful context for 442 

compositing satellite-based ocean color imagery.  We find that, with respect to the hindcasting 443 

experiments presented here, assimilating chlorophyll data improved the fit to unassimilated data 444 

over a broad range of presumed observational error. This is an important property because the 445 

relationship between ocean color and phytoplankton abundance is highly variable in both space 446 

and time, and consequently error models are rarely specified with great confidence.  447 

For the abiotic AD model based on advection and diffusion only, the estimation procedure 448 

was used to infer optimal initial conditions.  For this model we find an average of 18% 449 

improvement in the fit to unassimilated data, demonstrating the utility of assimilating data into 450 

circulation-based predictions of surface chlorophyll. 451 

We find significant skill in all of the coupled physical-biological models tested here. 452 

While the ADR and ADS models generally fit the assimilated data better than the NP model, the 453 

skill of the three models was similar. Examination of the results over a range of prescribed 454 

observational error obsσ revealed the best improvement in fit to the passive data averaged 36%, 455 

43%, and 32% for the ADS, ADR, and NP models respectively.   The skill of each biotic model 456 

was better than the purely physical advection-diffusion model, and the inferred biological 457 

dynamics of course depends on model formulation.   458 

Looking deeper than these average statistics, we note that the skill of the assimilation 459 

procedure was more dependent on the particular time window being tested than on the 460 

underlying dynamical model or presumed observational error. In other words, the results depend 461 

strongly on the space-time distribution of the data and their depiction of the oceanographic 462 

phenomenology.  For example, in some experiments for very low obsσ we find poor skill with the 463 

ADR model due to classical overfitting.  Thus, although the mean skill scores mentioned above 464 
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are promising, the results of individual experiments can be substantially worse.   Detailed skill 465 

assessment of such methodologies is an essential ingredient to their practical application. 466 

 467 
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Figure Captions 565 
 566 

Figure 1.  Model domain and mean circulation for August 2006 extracted from the He and Chen 567 

(submitted) hindcast.  Bold line depicts the boundary of the 2°x2° subdomain for the data 568 

assimilation experiments.  Thin gray lines show the 30, 60, 100, 200, 500, 1000, 2000, 3000 and 569 

4000 meter isobaths. 570 

Figure 2.  Top row: Sequence of satellite-based chlorophyll estimates in the 2°x2° subdomain 

domain bounded by 38-40°N and 72-74°W (indicated by the dashed line in Figure 1).  Rows 2-6 

depict simulated chlorophyll for various dynamical models at the times for which passive data 

are available in each of the nine time windows (Table 1).  Observational error for this suite of 

results is σobs = 0.8 mg m
-3

, for which skill is at or near maximum in a mean sense (Figure 5, 

lower right). 

Figure 3. Inferred biological parameters for the ADS (top row), ADR (middle row), and NP 

(bottom row) models.  Time series correspond to the results presented in Figure 2.  Values of the 

nutrient uptake (γ) and phytoplankton mortality (υ) parameters inferred for the NP model are 

reported below each nutrient field (bottom row).  Date labels along the top are identical to those 

in Figure 2, indicating the intermediate dates on which the solution is evaluated with passive data 

(see text).  The inferred initial nutrient concentrations (bottom row) pertain to the start of each 

experiment, and as such correspond to the dates shown one column to the left.  In the case of the 

leftmost column, the initial nutrient field corresponds to July 24 (Figure 3). 

Figure 4.  RMS of posterior misfit to active data as a function of observational error for the four 

dynamical models in each of the nine time windows.  The lower right panel is the average of all 

nine experiments.  The dashed line represents RMS of the prior misfit. 

Figure 5. Skill in each of the experiments and skill averaged across all nine experiments.  Skill is 

defined as the ratio of RMS prior misfit to unassimilated data to the RMS of the posterior misfit 

to the same data.   

Figure 6. Normalized cost function between prior estimate (   ) and first candidate estimate 

( 2'y ) in the first iteration the ItEnS.  The departure of the cost function from quadratic curve 

depends on the model as well as the data.  For a purely quadratic cost function the curves should 

be quadratic with the minima occurring at the right hand side of the plot. The actual minima are 

marked as open circles on the curves.  The cost functions shown here are for the case 4.0obs . 

 



Tables 
 

 

Experiment Active Data Passive data 

1 7/24, 8/9 8/3 

2 8/3, 8/12 8/9 

3 8/9, 8/17 8/12 

4 8/12, 8/19 8/17 

5 8/17, 8/21 8/19 

6 8/19, 9/3 8/21 

7 8/21, 9/4 9/3 

8 9/3, 9/7 9/4 

9 9/4, 9/9 9/7 

Table 1: Dates of images used in the nine experiments used 

to test the assimilation procedure. 

 

 

 

Parameter Value 

Observational error length scale, lobs 10 km 

Model error length scale, lm 34 km 

Chlorophyll/Phytoplankton scaled standard error, 0  1.6 

Source-Sink standard error, s  0.5 m
3
 mmol

-1
 d

-1
 

Growth rate standard error, R  0.5 d
-1

 

Nutrient scaled standard error, n  0.3 mmol m
-3

 

Table 2: Hyper-parameters for the prior models and values used in the 

assimilation experiments. 
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