

ECO Chlorophyll Fluorometer Characterization Sheet

Date: 3/28/2011

S/N: FLRTD-364

Chlorophyll concentration expressed in $\mu g/l$ can be derived using the equation:

CHL (μg/l) = Scale Factor * (Output - Dark Counts)

	Analog Range 1	Analog Range 2	Analog Range 4 (default)	Digital
Dark Counts	0.085	0.042	0.021 V	69 counts
Scale Factor (SF)	6	12	25 μg/l/V	0.0076 μg/l/count
Maximum Output	4.97	4.97	4.97 V	16322 counts
Resolution	0.8	0.8	0.8 mV	1.0 counts
Ambient temperature during characterization				22.3 °C

Analog Range: 1 (most sensitive, 0–4,000 counts), 2 (midrange, 0–8,000 counts), 4 (entire range, 0–16,000 counts).

Dark Counts: Signal output of the meter in clean water with black tape over detector.

SF: Determined using the following equation: $SF = x \div$ (output - dark counts), where x is the concentration of the solution used during instrument characterization. SF is used to derive instrument output concentration from the raw signal output of the fluorometer.

Maximum Output: Maximum signal output the fluorometer is capable of.

Resolution: Standard deviation of 1 minute of collected data.

The relationship between fluorescence and chlorophyll-a concentrations *in-situ* is highly variable. The scale factor listed on this document was determined using a mono-culture of phytoplankton (*Thalassiosira weissflogii*). The population was assumed to be reasonably healthy and the concentration was determined by using the absorption method. To accurately determine chlorophyll concentration using a fluorometer, you must perform secondary measurements on the populations of interest. This is typically done using extraction-based measurement techniques on discrete samples. For additional information on determining chlorophyll concentration see "Standard Methods for the Examination of Water and Wastewater" part 10200 H, published jointly by the American Public Health Association, American Water Works Association, and the Water Environment Federation.