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Abstract

Models of harmful algal blooms (HABs) need to include autecological char-

acteristics of the HAB species because the bloom dynamics can only be success-

fully described if certain life cycle aspects (in particular en- and excystment)

are included in some way. In this study, an overview is presented on how the

life cycle is considered in current Lagrangian and Eulerian models. Examples

of the latter are given, which range from crude parameterizations in one- com-

partment models, to stage-resolving twelve-compartment models. Advantages

and disadvantages of the different approaches are highlighted. A generalized

model classification is presented which may be used as a framework for further

phytoplankton life cycle modeling studies.

Key words: life cycle, model, phytoplankton, harmful algal blooms (HABs),

seed population, concept

1. Introduction1

Harmful algal blooms (HABs; here defined as ”high” biomass but not neces-2

sarily toxic blooms), are frequently observed in coastal areas but their causes are3

still somewhat obscure. Many different species of microalgae with their different4

requirements for optimal growth can form HABs. Some HABs seem to occur5

entirely naturally, as part of the seasonal succession of marine organisms, others6

Email address: inga.hense@uni-hamburg.de (Inga Hense)

Preprint submitted to Journal of Marine Systems September 11, 2009

Manuscript
Click here to download Manuscript: hense_geohab09.pdf Click here to view linked References

http://ees.elsevier.com/marsys/download.aspx?id=36288&guid=ca110da0-1a47-4965-bc6b-f236ea28f17d&scheme=1
http://ees.elsevier.com/marsys/viewRCResults.aspx?pdf=1&docID=1088&rev=0&fileID=36288&msid={B1C0FCA9-F04D-4C48-8148-D05E62016A21}


seem to be triggered by environmental changes introduced by human activities7

(see, e.g., Anderson et al., 2002).8

HABs typically appear – and disappear – quite abruptly. This is surpris-9

ing because the growth rates of many HAB forming species are comparatively10

low (see, e.g. Stolte and Garcés, 2006). Similarly, blooms are observed to end11

even though the environmental conditions that are considered favorable persist12

(Anderson et al., 1983; Kremp and Heiskanen, 1999). This apparent paradox13

can be explained as the result of the species life cycle. Transitions between veg-14

etative and resting phases – the formation of resting stages (encystment) and15

the reverse process excystment (germination) – are responsible for terminating16

or initiating a bloom (e.g., Anderson, 1998; Garcés et al., 2002; Anderson and17

Rengefors, 2006). Resting cells from a previous bloom may have settled on18

the bottom where they may become an additional benthic source of biomass,19

when germinating simultaneously and rising in synchrony with the onset of the20

bloom of the pelagic population. The number of excysting resting cells recruit-21

ing the water column may actually be the most important factor to determine22

the magnitude of the bloom.23

The various life history strategies of different HAB species do not only in-24

fluence timing, magnitude and duration of blooms but also the dominance and25

seasonal succession of species (Anderson and Rengefors, 2006; Kremp et al.,26

2008). For example, different cyst-forming dinoflagellate species have different27

temperature windows for germination explaining the seasonal succession of the28

respective populations (Anderson and Rengefors, 2006).29

Large year-to-year fluctuations in the abundance of harmful algae are ob-30

served, even though the environmental conditions (light, temperature, nutrients)31

vary much less. This can be explained either by a very high sensitivity to minute32

details in these parameters, by the influence of an unknown external quantity,33

or by variations in the inoculum (Kremp et al., 2008) as a result of the life cycle34

aspects (e.g., maturation times).35

Although the life cycle appears to be essential, it has long been ignored in36

ecosystem models with HAB species. The reason may be related to the com-37
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plexity of the life cycle (Fig. 1) of which we often possess only rudimentary38

knowledge. First of all, it is unclear how many distinct stages need to be con-39

sidered. The triggering factors leading to life cycle stage transition are not fully40

understood. Finally, for each life cycle stage we need to specify parameters with41

respect to nutrient demands (e.g., uptake of dissolved inorganic nitrogen versus42

nitrogen fixation), motility (e.g., sinking versus rising), tolerance for physical43

factors (e.g., salinity, temperature, light, turbulence), mortality, respiration and44

growth.45

This paper presents an overview of existing strategies to include life cycle46

aspects in numerical ecosystem models (in the following LCM: Life Cycle Mod-47

els), in particular for species with growing and resting stages. The advantages48

and disadvantages are discussed and future directions are outlined.49

2. The Lagrangian Approach50

The most natural way to consider the life cycle of an organism is certainly51

to use an individual-based (or agent-based) approach, following the organism52

in time through the fluid (advection) and through the different stages of its53

development (life cycle succession). In other words, organisms are treated as54

discrete individuals with certain properties.55

2.1. Governing Equations56

A Lagrangian model for a population of identical organisms involves a set57

of four equations:58

∂P

∂t
= µP − lP P (1)

∂xP

∂t
= u (2)

∂yP

∂t
= v (3)

∂zP

∂t
= w + wP (4)

where P is the phytoplankton biomass, t the time, µ the actual growth rate, l59

the loss rate including natural mortality, lysis due to viral infection and grazing60
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by zooplankton and higher trophic levels. The position of the population in61

three-dimensional space is given by ~xP = (xP , yP , zP ) and changes according to62

local fluid velocities ~v = (u(x, , z, t), v(x, y, z, t), w(x, y, z, t)). Vertical motility63

of the population can be included through wP .64

In a simple model, the actual growth rate will depend on external factors65

like temperature, light and nutrient availability µ = µ(I, N, T ), while the loss66

rate is a function of grazer and virus concentration. Additional dependencies67

can be included with relative ease.68

2.2. Life Cycle Processes69

Life cycle related changes and transformations of phytoplankton take place70

during the development of the organism. In the Lagrangian approach both71

endogenous and exogenous triggering factors can be easily included. An en-72

dogenous clock can be considered by integrating an equation for the ”age” (AP )73

of the population relative to some reference date:74

∂AP

∂t
= 1 (5)

Growth, mortality and migration can then be made a function of age, varying75

either continuously or abruptly. A maturation time or a mandatory dormancy76

period of a resting stage may also be considered by prescribing specific times or77

time periods. Hence, a characteristic c of the population is a function of external78

factors like irradiance (I), temperature (T ), salinity (S), nutrient concentrations79

(N) and age (AP ):80

c = c(I, T, S, N, AP ). (6)

Mechanistic approaches to phytoplankton dynamics emphasize the role of81

internal factors for the development of organisms. Cell size, as well as the intra-82

cellular availability of energy, nutrients, toxins are probably better descriptors83

of phytoplankton properties than external concentrations. This means that84

for N internal properties ~QP = (QP
1 , QP

2 , ..., QP
N ) the governing equations are85

augmented with another set of equations:86

∂ ~QP

∂t
= ~νP − ~ϕP − l ~QP (7)
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where ~νP and ~ϕP are the source and sink terms of the internal pools (which87

in turn depend on external factors and/or the ratios of internal concentration88

to total biomass (the quotas ~θ = ~QP /P ). Instead of irradiance and external89

nutrient concentration in equation 6, the internal energy and nutrient quotas90

(~θ = (θ1, θ2, ..., θN ) may be used to determine specific characteristics:91

c = c(T, S, ~θ, AP ). (8)

2.3. Advantages and Disadvantages92

The advantage of the Lagrangian approach is that populations retain a fixed93

identity as they move with the fluid. Each population can be unique in its94

properties; the natural diversity can therefore be easily included and life cycle95

transitions (e.g., a change in maximum specific growth rate with size) can be96

represented by linking this property to the age or internal state of the organism.97

The obvious disadvantages of Lagrangian modeling are that (i) a very large98

number of particles needs to be considered for an adequate coverage of any99

three-dimensional model domain, (ii) the representation of diffusion and vertical100

convection is not straightforward but requires additional assumptions, (iii) the101

technical overhead for treating the splitting of populations and re-initialization102

of extinct populations is nontrivial.103

2.4. Examples of Lagrangian LCM104

Recently, Lagrangian LCMs of harmful algae have been applied to local sites105

to study the dispersal of a dinoflagellate (Villanoy et al., 2006) or the effect of106

nutrient reduction on bloom formation of a cyanobacterium (Hellweger et al.,107

2008).108

Villanoy et al. (2006) prescribe the observed cyst distribution on the sea109

floor as initial values. If a threshold value of bottom velocity is exceeded, the110

resuspended cysts from the sediment are transformed into the vegetative stage111

(excystment). The vegetative cells can grow while they are transported with112

the current field. Encystment is assumed to occur after a specified time period.113

The model focuses on one bloom period, hence the fate of encysted cells is not114
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considered. The model was successful in representing the spatial distribution115

patterns of the bloom in Manila Bay.116

In a more sophisticated approach, Hellweger et al. (2008) distinguish five life117

cycle stages comprised of three vegetative stages and two resting stages. Dif-118

ferent characteristics (photosynthesis, respiration, division, phosphorus uptake119

and vertical velocities) are specified to each stage. In addition, the transition120

between the individual stages is assumed to be a function of internal factors121

(e.g., maturation time, cell size). In a one-dimensional model application this122

LCM could very well represent the seasonal cycle of growing and resting stages.123

In these examples the transition between growing and resting stages is a124

function of either internal or external factors. In a somewhat simpler approach,125

Woods (2005) sets the timing of en- and excystment at specific days of the126

year. Overall, these model studies show that Lagrangian methods are well127

suited to study aspects of bloom formation of cyst forming species in real world128

applications.129

3. The Eulerian Approach130

The alternative to the Lagrangian Model approach is to treat a collection of131

organisms or populations as a continuum and to assign a biomass concentration132

value at each grid point of the model. This is the traditional way to design for133

example one-, two-, or three-dimensional NPZD models.134

3.1. Governing Equations135

In this case, the evolution equation for phytoplankton reads136

∂P

∂t
= −~v · ∇P + ∇(~κ∇P )

︸ ︷︷ ︸

∂P

∂t

∣
∣
PHYS

+µP − lP − wP

∂P

∂z
(9)

where ~v · ∇P is the advection term and ∇(~κ∇P ) represents the turbulent diffu-137

sion (with the turbulent diffusivity coefficient ~κ(x, y, z, t)). Advection and tur-138

bulent diffusion are combined into the physical tendency term ∂P
∂t

∣
∣
PHYS

. The139

notation of the biological variables are the same as above.140
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3.2. Life Cycle Processes141

In an Eulerian model the age information, the average size of the organisms,142

or any other internal property can only be included through a set of additional143

equations. Again, let N represent the number of internal pools of phytoplankton144

then the evolution equation for the state vector ~QP = (QP
1 , QP

2 , ..., QP
N ) reads145

∂ ~QP

∂t
=

∂ ~QP

∂t

∣
∣
∣
PHYS

+ ~νP − ~ϕP − l ~QP
− wP

∂ ~QP

∂z
, (10)

where ~νP and ~ϕP are again the source and sink terms of the internal pools or146

properties.147

A particular problem is the diffusion term because mixing assumes that all148

elements of a compartment are identical. Hence, mixing of populations with dif-149

ferent internal quotas will lead to averaged (i.e., erroneous) internal properties.150

A convenient solution is the introduction of so called ”subcompartments” (e.g.,151

Janowitz and Kamykowski, 1999; Beckmann and Hense, 2004). They represent152

distinct parameter ranges for internal characteristics which can be identified as153

individual life cycle stages (Hense and Beckmann, 2006). The remaining task is154

then to define proper transfer conditions and rates between these subcompart-155

ments.156

For considering the different life cycle stages, the phytoplankton compart-157

ment needs to be divided into M subcompartments. The evolution equation for158

the state vector ~P = (P1, P2, ..., PM ) then reads159

∂ ~P

∂t
=

∂P

∂t

∣
∣
∣
PHYS

+ ~µ~P −~l ~P − ~w~P

∂ ~P

∂z
+ T~P (11)

where ~µ, ~l and ~w~P
are vectors of actual growth rate, loss rate and buoyancy160

velocities for each stage, and T = τi,j is the transfer rate matrix between the161

individual stages. In principle, the transfer between any two life cycle stages can162

take place, so the matrix may be dense. A closed single loop life cycle, however,163

in a general multi-compartment Eulerian model is represented by a sparse life164
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cycle succession matrix165

T =












−τ1,2 0 . . . 0 τN,1

τ1,2 −τ2,3 0 . . . 0

0 τ2,3 . . . 0 . . .

. . . 0 . . . −τN−1,N 0

0 . . . 0 τN−1,N −τN,1












(12)

where the elements τi,j denote the transfer from stage i to stage j.166

The transfer rates may be specified as a function of external (environmental)167

factors (irradiance, temperature, salinity, nutrients) only168

τi,j = τi,j(I, T, S, N). (13)

Like for the Lagrangian approach, the functional dependence may be modified169

to rely on internal factors as well170

τi,j = τi,j(T, S, ~θ). (14)

3.3. Advantages and Disadvantages171

Eulerian models share the advantages of all grid point models: a regular172

resolution of the domain under consideration, and the possibility to compute173

integral quantities and gradients in a straightforward way. In addition, the174

effects of subgridscale processes (like turbulence) on the biological variables are175

treated as for the physical variables.176

A significant disadvantage is that explicit time information (e.g., of a manda-177

tory dormancy period) cannot be included in the Eulerian approach. Time scales178

specified for a transfer between compartments merely represent the time after179

which the source concentration is reduced by a factor of e. As a result, the180

specification of transfer rates has to rely on ad hoc choices (see, e.g., Beckmann181

and Hense, 2004).182

It should also be noted that the introduction of subcompartments and inter-183

nal quotas will lead to a significant increase in the number of Eulerian tracers184

and hence computer resources (memory and computing time).185
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3.4. Examples of Eulerian LCM186

Recent Eulerian models that include phytoplanktonic life cycle dynamics187

focus on cyanobacteria and dinoflagellates. They range from very simple ap-188

proaches based on just one compartment to comparatively complex representa-189

tions of four different stages and two internal quotas.190

3.4.1. One-compartment LCM191

Models that attempt to represent a species with a pronounced life cycle with192

only one compartment have to rely heavily on parameterization. As pointed out193

in the Introduction, the most important life cycle aspect is the germination of194

resting cells in spring. This ”seed population” can be represented, very crudely,195

by a minimum concentration or a minimum production throughout the year196

(Fig. 2A). Technically, this is realized by prescription of a ”minimum value” 1.197

The minimum concentration approach (Kiirikki et al., 2001) reads198

∂P

∂t
=

∂P

∂t

∣
∣
∣
PHYS

+ µP − l(P − P0) − wP

∂P

∂z
, (15)

with similar notation as above; P0 is the constant seed population.199

The minimum production approach (Burchard et al., 2006, applying the200

model of Neumann et al. (2002)) reads201

∂P

∂t
=

∂P

∂t

∣
∣
∣
PHYS

+ µ(P + P0) − lP − wP

∂P

∂z
. (16)

The minimum value in both these cases ensures a minimum phytoplankton202

concentration in the pre-bloom phase. Thus, as desired, the bloom formation203

can take place relatively rapidly, despite low species specific growth rates (see204

discussion in Hense and Burchard, 2009). Both approaches yield very similar205

results, depending of course on the specific choice of P0; if the same minimum206

value is used, the former approach leads to higher primary production, i.e.207

nitrogen fixation in case of cyanobacteria (Hense and Burchard, 2009).208

1It should be noted that the use of such a minimum value has often been regarded as a

mere numerical necessity rather than a crude parameterization of the life cycle. Therefore,

there is a tendency to ”forget” this measure in the model description.
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The main advantage of the use of a minimum value is that it is easy to im-209

plement and relatively inexpensive to compute. The most obvious disadvantage210

is, however, that part of the interannual variability is artificially suppressed,211

because the starting basis for growth is the same each year. This can in prin-212

ciple be remedied by varying the minimum value P0 with time to account for213

year-to-year fluctuations (see also next section).214

3.4.2. 1.5-compartment LCM215

One way to more realistically represent the spatial and temporal distribution216

of the seed population is to add a separate compartment P2, which is filled with217

an (observed) concentration of the seed population (Fig. 2B). A one-way transfer218

from this fixed pool of biomass to the vegetative stage P1 will then lead to the219

desired increase in biomass at rates larger than the maximum specific growth220

rate.221

In our classification of life cycle models, such an approach is called a 1.5-222

compartment LCM, because there is no two-way exchange between the com-223

partments. The corresponding equations read224

∂P1

∂t
=

∂P1

∂t

∣
∣
∣
PHYS

+ µP1 − lP + τ2,1P2 − wP1

∂P1

∂z
(17)

∂P2

∂t
= − τ2,1P2, (18)

where τ2,1 is again the actual transfer rate of biomass (see above). The trans-225

fer is occasionally treated as a prescribed (but time-dependent) flux of biomass226

through the lower boundary of the model (e.g., Eilertsen and Wyatt, 2000), or227

as piecewise constant with varying values for day and night (Yamamoto et al.,228

2002). McGillicuddy et al. (2005) consider external factors (temperature, irra-229

diance) as well as a prescribed time dependent ”germination potential” (which230

can be seen as a measure of internal maturation of the cells).231

Several models incorporate encystment ǫ indirectly as a loss term of phy-232

toplankton l (see above): l = ǫ + m, with m being the mortality. Again, the233

encystment rate has been determined to depend on internal factors, e.g., phos-234

phorus quota (e.g., Yamamoto et al., 2002) or as a function of external factors235

10



using a measure of nutrient limitation (McGillicuddy et al., 2005).236

The advantage of this class of models is that a realistic spatially and tempo-237

rally variable seed population can be taken into account. Even if the knowledge238

about the actual transfer rate are sparse, the model will cover the spatial and239

temporal variability of the vegetative stage much better than assuming no or a240

constant seed population (see, e.g., McGillicuddy et al., 2005). However, such241

an approach is restricted to locations and time where information about these242

resting cysts is available and can be used as a ”boundary“ condition for the243

model.244

3.4.3. A two-compartment LCM245

A two-compartment LCM is the most simple version of a model that explic-246

itly resolves a fully closed life cycle with a two-way transfer (Fig. 2C). The cycle247

succession matrix then becomes248

τ2×2 =

(
−τ1,2 τ2,1

τ1,2 −τ2,1

)

(19)

Assuming that we distinguish between the growing stage P1 and the resting249

stage P2 the corresponding equations read:250

∂P1

∂t
=

∂P1

∂t

∣
∣
∣
PHYS

+ µ1P1 − l1P1 + τ2,1P2 − τ1,2P1 − wP1

∂P1

∂z
(20)

∂P2

∂t
=

∂P2

∂t

∣
∣
∣
PHYS

+ µ2P2 − l2P2 − τ2,1P2 + τ1,2P1 − wP2

∂P2

∂z
(21)

where the growth rate µ2 is much smaller (or even zero) than µ1, and the251

mortality rate l2 is much smaller than l1. Without additional equations for252

internal quotas, the transfer between these two stages has to be specified as a253

function of external factors (see above).254

The corresponding vertical velocities can be chosen in various ways. An ob-255

vious choice is to assign a small positive or neutral buoyancy to the vegetative256

stage wP1
while wP2

represents sinking (after encystment) and rising (after ex-257

cystment). Using time-integrated quantities of environmental factors to describe258

the process of motility, the correct timing of the bloom with an ascending and259

descending resting stage may be reproduced. Alternatively, the motility terms260
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may be replaced by a mechanism that instantaneously transfers all encysting261

cells into the bottom layer of the model, while excysting cells are analogously262

transferred to the surface layer.263

3.4.4. A four-compartment LCM264

Current knowledge on how to adequately subdivide the life cycle of HAB265

species into distinct stages and how to describe the conditions for stage transi-266

tions is sparse. Different species may also require a different number of stages.267

While the conceptual model of Whipple et al. (2005) identifies 15 life cycle268

stages for Phaeocystis, the life cycle of other species may be captured with suf-269

ficient accuracy with fewer stages. For example, Hense and Beckmann (2006)270

have proposed a prototype schematic that uses two vegetative and two resting271

stages to describe the life history of cyanobacteria of the order Nostocales. The272

transfer matrix for such a case is expressed as following:273

τ4×4 =









−τ1,2 0 0 τ4,1

τ1,2 −τ2,3 0 0

0 τ2,3 −τ3,4 0

0 0 τ3,4 −τ4,1









(22)

This four stage model (Fig. 2D) allows for the discrimination of resting cells274

that sink (akinetes, the resting stage of cyanobacteria) and rise (germinates).275

It also treats vegetative cells that take up DIN separate from those that fix276

dinitrogen gas. Although in the life cycle model by Hense and Beckmann (2006)277

the transfer between the individual stages are a function of internal quotas (see278

below), it may be possible to relate the transfer to external factors only (e.g.,279

time integrated quantities).280

3.4.5. A twelve-compartment LCM281

The consideration of internal quotas are arguably the best way to determine282

stage transitions. For the four-stage model described in the previous subsection,283

Hense and Beckmann (2006) have added an energy and a nutrient quota, which284

leads to a total of 12 compartments. This enables to clearly distinguish the285
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four stages by their internal quota and in that way to explicitly specify the286

transfer between the stages (Fig. 3). Thus, if the internal quota of a population287

approaches a certain (pre-defined) threshold, a transfer into the neighboring288

stage is induced.289

Discrimination between low and high values of two internal quotas allows290

us to identify each of the four stages with a unique combination of internal291

states, and to relate the stage succession to changes in internal quotas: For292

example (Fig. 3), from P1 (characterized by a high Q1 and Q2-quota) to P2293

(characterized by a high Q1 and low Q2-quota) over P3 (characterized by a low294

Q1 and Q2-quota) to P4 (characterized by a low Q1 and high Q2-quota) and295

back to P1.296

A complex multiple compartment LCM has both advantages and disadvan-297

tages. Since fully prognostic equations exist for all growing and resting stages,298

the model can in principle be applied in cases where information about the299

seed population is missing. It has to be noted, though, that the description of300

the life cycle (i) is not ”mechanistic”, (ii) requires a relatively large number of301

(poorly known) parameters and (iii) may be too expensive to be included in302

three-dimensional ocean general circulation models.303

4. Summary and Conclusions304

More than s decade ago, Franks (1997) has presented an overview of the305

then current harmful algal bloom models, and their representation of biological-306

physical interaction. At the time, the use of assimilation techniques for forecast307

purposes seemed most promising. Since then, the importance of the life cycle in308

HAB dynamics has become clear, and modelers have begun to include life cycle309

aspects in their models.310

Timing, duration, magnitude and distribution patterns of blooms have been311

found to depend critically on life cycle related processes, in particular excyst-312

ment and encystment. For example, McGillicuddy et al. (2005) have shown that313

the inclusion of germination of the benthic resting stages is a prerequisite for314
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obtaining realistic spatial distribution of the toxic dinoflagellate Alexandrium315

fundyense in the Gulf of Maine. Hense and Burchard (2009) demonstrated that316

timing and duration of cyanobacteria blooms in the Baltic Sea are well repre-317

sented in a full life cycle model, while simpler approaches lead to systematic318

biases.319

In order to streamline the various diverse activities of life cycle related HAB320

modeling, this overview has presented an inventory of the various approaches321

and listed their main advantages and disadvantages. The focus was on the322

distinction between growing and resting stages; the methodologies may, however,323

also be adapted to life cycle transitions concerning for instance colony formation324

and disruption. A few modeling (e.g., Lancelot et al., 2005) and conceptual325

studies (e.g., Whipple et al., 2005) have already addressed this topic.326

The two fundamentally different ways of approaching the time evolution327

of marine populations (Lagrangian and Eulerian) are both useful for life cycle328

modeling. While individual-based methods may seem more naturally, fixed329

grid point (Eulerian) models are equally capable to include life cycle aspects,330

if subcompartments are introduced, which represent distinct life cycle stages.331

Preference for one approach over the other should be motivated by the specific332

goals of the study: Lagrangian methods are well suited for studies related to333

short term singular events, if explicit time information of individual populations334

is required and/or in regimes where advection and motility is more important335

than diffusion. Eulerian methods are advantageous, if a larger domain needs to336

be uniformly covered and/or if integrated (biogeochemical) quantities are to be337

determined.338

In the hierarchy of Eulerian HAB models, it seems that one-compartment339

LCMs are hardly able to represent the observed bloom dynamics (see Hense340

and Burchard, 2009), while 1.5-compartment models (Yamamoto et al., 2002;341

McGillicuddy et al., 2005) do better due to the prescription of boundary condi-342

tions (abundance and distribution of resting cells). Such models, however, are343

only semi-prognostic, as the life cycle is not fully closed.344

It is not clear at the moment, whether two- or four-compartment models345
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will be a significant step forward (the evaluation is ongoing); but it seems that346

multi-compartment models (e.g., Hense and Beckmann, 2006) (or a similarly347

complex Lagrangian model) have the largest potential for capturing the essence348

of the life cycle dynamics of HABs. Such models, however, have to rely on a349

large number of (unknown) parameters, which have not yet been determined or350

confirmed by observations.351

Even for key species or key groups we still lack basic understanding of trig-352

gering factors for life cycle transition, as well as rates for en- and excystment,353

metabolism for the distinct stages and biomass losses (e.g., during sex). Thus,354

many open questions need to be resolved to complete our picture of the life cycle355

of phytoplankton. Since the importance of the life cycle in regulating HABs is356

by now obvious, progress in this area is to be expected for the coming years.357

Modeling activities will certainly play a large part in it.358
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Figure 1: Overview of major life cycle stages of marine phytoplankton, the main bi-

ological and contributing physical processes. Beginning with the vegetative phase,

cells grow dependent on endogenous and exogenous factors. For some species this

may be followed by formation and disruption of colonies. Encystment terminates the

vegetative phase and newly formed resting cysts settle down to the sediment. After

maturation and possibly resuspension, germination takes place. Subsequent rising of

the cells (buoyancy induced, by active upward migration and/or due to upwelling) into

the euphotic zone closes the loop. For some (e.g., dinoflagellate, diatom) species sex is

involved in life cycle transition (e.g. cyst or colony formation). The spatial distribu-

tion of HAB-patches (and fate of the blooms) will depend on the ocean currents and

turbulent mixing.
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Figure 2: Schematic diagrams of four different Eulerian life cycle modeling approaches

(A-D): A) one-compartment LCM which considers a minimum value of phytoplank-

ton (P0), B) 1.5-compartment LCM which considers a one-way transfer (τ ) from a

prescribed pool of a seed population (P2, obtained, e.g., from observations), C) two-

compartment LCM which considers a two-way transfer between the growing (P1) and

the resting stage (P2), D) four-compartment model which considers two growing and

two resting stages which are connected by a unidirectional closed loop.
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Figure 3: Schematic illustration of the succession of life cycle stages (P1−P4) which are

characterized by low/high values of two internal quotas (θ1, θ2). The arrows indicate

the decrease (or increase) of the respective quota below (or above) a certain threshold

leading to a transfer into the next stage.
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