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Abstract

An ecosystem model that supports considerable phytoplankton diversity

is coupled to a circulation model of the California Current System. The Re-

gional Ocean Modeling System is configured for a realistic simulation at 0.1

degree resolution for years 2000-2004. The concentration-based ecosystem

model includes multiple nutrients, dissolved and particulate organic pools,

two grazers, and 78 phytoplankton. Primary producers divide into 4 func-

tional groups representing diatoms, large phytoplankton that do not require

silicate, Prochlorococcus-like organisms, and small phytoplankton that can

use nitrate. Random selection of phytoplankton growth parameters creates

an autotrophic community able to fill multiple environmental niches created

by the physical circulation. In the 5-year average, over 98% of the total

biomass at the surface is contained within 8 primary producers, with 30
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additional phytoplankton sustained at lower levels. Modeled surface phy-

toplankton biomass is evaluated on multi-annual and seasonal bases using

satellite chlorophyll estimates for the same period. The self-organized com-

munities produced by the model represent various features of the Califor-

nia Current Ecosystem, including the biogeographic break at Pt. Concep-

tion. The annual average fields generally reveal high diatom concentrations

nearshore, with small phytoplankton more broadly distributed. Prochloro-

coccus-like organisms are absent or at very low concentrations at the coast,

increasing across the California Current. Small non-Prochlorococcus-like phy-

toplankton are found at highest concentrations nearshore and far offshore.

The model exhibits both surface and subsurface features, including a sea-

sonal subsurface chlorophyll maximum along CalCOFI Line 67 between May

and October. Time-series of area-averaged model fields show succession of

different phytoplankton groups over the annual cycle.

1. Introduction1

One challenge for modeling ocean ecosystems is representing the remark-2

able diversity of marine planktonic organisms. In nature, such diversity is3

revealed by observations of multiple species at varying biomass concentra-4

tions and having differing community structure within spatially or temporally5

distinct biogeographical domains. Ever improving observational approaches6

have over time increased documentation of oceanic species. Identifying sub-7

species differentiation is now routine through the use of molecular techniques.8

How such diversity in the ocean is sustained given the small number of limit-9

ing nutrients remains a long-standing scientific question (Hutchinson, 1961;10
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Roy and Chattopadhyay, 2007), and our understanding of its impact on over-11

all ecosystem dynamics and net biological production remains incomplete. If12

ecosystem models are able to represent the complex heterogeneous plank-13

tonic diversity in the ocean, they represent one method to investigate and14

better understand the underlying causes and impacts.15

Historically, concentration-based ocean ecosystem models have addressed16

biodiversity minimally, typically budgeting phytoplankton, for example, through17

the use of one or a small number of functional groups that implicitly represent18

many different phytoplankton species. Among the simplest of these models19

is the NPZ model (e.g., Franks, 2002), which includes one nutrient (N), one20

phytoplankton type (P ), and one zooplankton (Z). More complex variants21

(Fasham et al., 1990; Gruber et al., 2006) include two nutrient compartments22

as well as one or two detrital pools. Other models (e.g., Chai et al., 2002;23

Moore et al., 2002a; Litchman et al., 2006) expand phytoplankton into two24

functional groups and zooplankton into one, two, or three boxes. All models25

described have been valuable tools to study ocean ecosystems in different26

contexts, and choosing the appropriate level of model complexity has been27

considered typically on a problem dependent basis. Taken as a series, these28

examples highlight the fact that over decades traditional ecosystem models29

have evolved in systematic but incremental progression, resolving only a very30

small amount of total planktonic diversity.31

An alternate approach toward ecosystem model construction has been32

developed recently (Follows et al., 2007). At its core, this type of emergent33

community ecosystem model is not fundamentally different from the more34

traditional type. It solves a series of coupled nonlinear differential equations35
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quantifying changes in time for biological and chemical concentrations with36

formulations similar to other models. However, this approach is unique both37

in the large number (O(100)) of viable phytoplankton fields included and in38

the method by which some rate-controlling parameters are set.39

In traditional NPZ-type models, parameters that control growth, graz-40

ing, and remineralization processes are precisely chosen by the modeler. At41

times, this selection is made with careful attention to observations or field42

studies appropriate for a particular region (Banas et al., 2009), but some43

parameters (e.g., zooplankton mortality) are not easily measured, and the44

value used is less constrained. Other parameters, such as the sensitivity of45

growth rate to ambient temperature, show substantial scatter (Eppley, 1972;46

Brush et al., 2002); choosing a single value may not represent the breadth of47

values found in nature within a functional group. Furthermore, underlying48

model evolution can be sensitive to parameter choice (Edwards et al., 2000b).49

In the Follows et al. (2007) approach, some rate-controlling parameters are50

fixed as in more traditional cases, but others are randomly chosen within rea-51

sonable limits given observational scatter. Thus the model ocean is seeded52

with a large number of independent phytoplankton species or subspecies,53

each with its own growth parameters and able to compete individually for54

available resources. Applied to the global ocean, this model resolved latitu-55

dinal structure for 3 ecotypes of Prochlorococcus spp. similar to that found56

along the Meridional Atlantic Transect (Follows et al., 2007; Johnson et al.,57

2006). The structure derived from differing temperature and light environ-58

ments in different oceanic regions combined with the availability within the59

model of organisms able to utilize resources efficiently in the differing en-60
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vironmental niches. Microbial populations and underlying processes have61

typically been neglected by more traditional modeling exercises, and the Fol-62

lows et al. (2007) model is among the first to represent these explicitly in a63

fully prognostic fashion.64

Like their global ocean counterparts, coastal regions also exhibit a range65

of chemical and physical environments owing to the presence of an oceanic66

boundary and the changes with cross-shore distance in the large-scale circu-67

lation, mesoscale variability, sub-mesoscale motion, and vertical mixing. The68

California Current System, off the west coast of the United States, includes69

such variations in oceanic environments, and evidence suggests considerable70

planktonic diversity regionally, particularly between seasonally varying, often71

nutrient replete, upwelled waters nearshore and oligotrophic offshore waters72

(e.g., Venrick, 2009).73

In this paper, we investigate the potential for the Follows et al. (2007)74

model to represent the biogeography and biodiversity of the California Cur-75

rent System. The model is seeded with 78 viable phytoplankton types that76

can be collated into four functional groups. Physiological traits (e.g., nutri-77

ent utilization and affinity, and response to temperature and light) for each78

phytoplankton are randomly assigned from a range of values drawn from the79

literature. With this approach, multiple, viable phytoplankton types com-80

pete for resources, enabling a self-organizing phytoplankton community to81

emerge. In Section 2 we describe the model, its components, and both fixed82

and randomized biological parameterizations. Section 3 presents results, in-83

cluding a quantitative model evaluation and descriptions of the surface and84

subsurface fields, both time-averaged and over an annual cycle. We conclude85
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in Section 4 with a discussion of the results in context with CCS observations.86

2. Model Formulation87

2.1. Emergent Community Ecosystem Model88

The ecosystem model is derived from the original, global-scale version of89

Follows et al. (2007). The model is schematically shown in Figure 1. Multiple90

phytoplankton populations access five inorganic nutrients (NO3, NO2, NH4,91

PO4, Si(OH)4) and are grazed by two different sized zooplankton. Transfers92

from phytoplankton and zooplankton populations to dissolved and partic-93

ulate pools represent respiration, mortality, excretion, and sloppy feeding.94

Dissolved and particulate constituents are remineralized into inorganic form.95

The equations that govern the evolution of the ecosystem components are96

provided in the Appendix and parameters are presented in Tables A.1, A.2,97

and A.3.98

Our model is seeded with 78 individual phytoplankton types that are ran-99

domly subdivided. Phytoplankton are first divided approximately equally100

into small and large size classes. Large phytoplankton are similarly subdi-101

vided into one group, representing diatoms, that require silicate for growth,102

and a second category, referred to as LND (large non-diatoms), that does103

not use silicate. Small phytoplankton are split into three different groups104

according to their nitrogen utilization. Roughly one third of small phyto-105

plankton use both NH4 and NO2, one third use NH4 only, and the remainder106

can take up NH4, NO2, and NO3. We refer to these small phytoplankton as107

SP1, SP2, and SP3, respectively. For analysis described in this paper, SP1108

and SP2 are grouped into a category referred to as PLP (Prochlorococcus-like109
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phytoplankton), which are thought to primarily use NH4 and NO2 (Moore110

et al., 2002b). SP3 is assumed to include all other small prokaryotes and111

eukaryotes, and we refer to this group as SNP (Small Non-Prochlorococcus-112

like). For clarity below, we refer to organisms within a particular functional113

group as subtypes as our categorization can not distinguish between differ-114

ent ecotypes of a single species and entirely different taxa within a particular115

functional group.116

Large phytoplankton are assigned faster maximum growth rates than117

small phytoplankton. Diatoms are an important functional group in coastal118

upwelling systems, and studies frequently report diatom growth rates that119

exceed the community average (Chan, 1978, 1980; Brand, 1981; Brand and120

Guillard, 1981; Furnas, 1990, 1991). For diatoms, we use a maximum diel-121

averaged growth rate of approximately 3.6 divisions per day, near the upper122

end of the net growth rates reported by Furnas (1990). Studies of maximum123

net growth rate for large non-diatoms, such as dinoflagellates, have been124

found in the same range but generally lower than that of diatoms (Chan,125

1978; Weiler and Eppley, 1979; Chan, 1980), and our value corresponds to126

a maximum 2.9 doublings per day. Small phytoplankton are allowed to di-127

vide at a maximum of 2 times per day; this value is somewhat higher than128

that implied by the culture experiments for Synechococcus and Prochlorococ-129

cus (Moore et al., 2002b), but similar to the maximum net growth rates for130

picoeukaryotes in dilution-based studies by Worden et al. (2004).131

We note that the maximum growth rates listed in Table A.1 are twice132

those normally reported and implied by the preceding discussion; however,133

in our model these values result in approximately equivalent daily averaged134
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growth. Phytoplankton growth depends on incident photosynthetically ac-135

tive radiation which undergoes diel variations in our model configuration.136

Literature-based rates are obtained usually from laboratory measurements137

over a 24-hour period. Figure 2 compares the time-evolution of phytoplank-138

ton biomass for two simplified models including only uptake and respiration139

(no grazing). In both experiments, nutrients are plentiful, and the respira-140

tion rate is 0.1 d−1. The dashed curve results from a growth rate of 1.4 d−1
141

and a light field that is constant with time. The solid curve corresponds to142

a growth rate of 2.8 d−1 but with a light field that varies as a step function143

between day and night cycles (dotted line). While respiration occurs at all144

times (Marra and Barber, 2004), it is most evident in the solid curve during145

nighttime. It is clear that the net increase in phytoplankton biomass in our146

two experiments is roughly equivalent over multiple days of growth.147

Generally, realized phytoplankton growth is less than the maximum pos-148

sible rate resulting from modeled limitations associated with nutrient concen-149

trations, ambient temperature, and local light intensity. The four parameters150

that control these environmental responses are the half-saturation constants151

for uptake of each nutrient (generically referred to here as kx), a tempera-152

ture optimum (To) and two light optimum parameters (kinh and kpar). These153

parameters are determined randomly for each phytoplankton analog.154

Nutrient limitation by inorganic phosphate and silicic acid is expressed155

using Michaelis-Menten kinetics. Inorganic nitrogen limitation is functionally156

similar, but quantitatively determined for each form of nitrogen assimilated.157

Oxidized forms of nitrogen are theorized to be more energetically expensive158

to assimilate, and their uptake is inhibited by the presence of ammonium in159
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the model (Nianzhi, 1993; L’Helguen et al., 2008). Phytoplankton growth is160

reduced by the most limiting nutrient resource. Half-saturation constants for161

phosphorous are related to those for nitrate and nitrite by a fixed Redfield162

Ratio. Half-saturation constants for ammonium are one half those for nitrite163

or nitrate; a higher affinity for NH4 than NO3 (Dugdale and Goering, 1967;164

Eppley et al., 1969; Conway, 1977) has been reported in small phytoplank-165

ton such as green algae (Litchman et al., 2007). The half-saturation constant166

for silicate is fixed for diatoms, while that for phosphorous and other stoi-167

chiometrically related nutrients are drawn from uniform distributions hav-168

ing size-dependent ranges (Table A.1). Large phytoplankton typically have169

higher kx than small phytoplankton (Eppley et al., 1969).170

Realized phytoplankton growth is also modified by local temperature,171

with warmer conditions generally enabling faster growth rates. However,172

each phytoplankton analog is individually and randomly prescribed a tem-173

perature optimum, To. This value, along with a specified temperature decay174

scale, Td, defines a phytoplankton-specific temperature window for growth175

within a broader temperature limitation curve. The optimum is drawn from176

a uniform distribution between specified minimum and maximum tempera-177

tures characteristic of the CCS (Table A.1). This approach generates warm178

and cold adapted phytoplankton types in both size classes.179

Finally, light limitation of phytoplankton growth is determined by the180

local photosynthetically active radiation and two parameters: kpar governs181

the limitation function under low-light conditions, and kinh controls growth182

when solar radiation is high. Chloroplast placement due to packaging effects183

observed in large phytoplankton (Finkel, 2001) justifies a high light optimum184
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(i.e., low kinh and a narrow range of kpar). Small phytoplankton have been185

observed to grow optimally at a wider range of light levels due to the pres-186

ence of both high and low light-adapted strains (Veldhuis et al., 2005), and187

therefore were assigned a wider range of light optima. The distributions from188

which light parameters for large and small phytoplankton are drawn, how-189

ever, overlap (Table A.1), and therefore such generalizations can occasionally190

be reversed. The light limitation model includes self-shading but does not191

resolve spectral bands.192

The remaining ecosystem model parameters that describe phytoplank-193

ton losses (mortality, export and sinking) and heterotrophic processes (zoo-194

plankton grazing, sinking of particulates, particulate and dissolved organic195

matter remineralization, and nitrification) are fixed rather than randomly196

prescribed. See Appendix for the formulations.197

Export and sinking of phytoplankton are size-specific. The rates for these198

processes are greater for large phytoplankton than for small phytoplankton.199

Mortality rates are set equal for all phytoplankton.200

Two grazers are included in the model, and their parameters are not201

drawn from a random distribution of values. Change in biomass for each202

zooplankton is modeled using a sigmoidal grazing scheme (Gentleman et al.,203

2003), dependent on a maximum grazing rate (Gmax), assimilation efficiency204

(α), and prey palatability (π) (Table A.2). The maximum grazing rate is205

size-specific. Mesozooplankton Gmax is smaller than the microzooplankton206

rate (e.g., Leising et al., 2005a). Grazing varies also with the palatability and207

assimilation efficiency of the prey. Microzooplankton and large non-diatoms208

are parameterized as highly palatable to mesozooplankton, and small phyto-209
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plankton are highly palatable to microzooplankton. Diatoms are less palat-210

able to all zooplankton within the model, as supported by evidence of the211

size, shape, ornamentation, exudates, and accessibility of their siliceous frus-212

trule. Small phytoplankton populations are modeled as least palatable to213

mesozooplankton, and large phytoplankton are of medium palatability for214

microzooplankton. Assimilation efficiencies are highest for mesozooplank-215

ton consuming small phytoplankton, medium for phytoplankton grazing by216

like-sized zooplankton, and lowest for microzooplankton ingesting large phy-217

toplankton. Grazing of microzooplankton by mesozooplankton is included218

providing potential relief of grazing pressure on the prey of the microzoo-219

plankton, as observed in nature (e.g., Leising et al., 2005b). Modeled zoo-220

plankton stoichiometry is allowed to vary, as opposed to the Redfield-based221

ratio of phytoplankton. Zooplankton mortality obeys a linear relationship222

with biomass.223

In addition to the two explicitly modeled grazers, the heterotrophic com-224

ponent also includes an implicit representation of microbes that remineralize225

dissolved and particulate organic detrital pools that accumulate from the226

mortality and excretion of phytoplankton and zooplankton (Figure 1). Rem-227

ineralization of organic matter varies linearly with its concentration. Or-228

ganic phosphorous is remineralized into phosphate, while organic nitrogen229

is remineralized into ammonium, which is then nitrified to nitrite and then230

to nitrate. Nitrification is modeled as a linear function with fixed coeffi-231

cients (Table A.3). Rate parameters for remineralization processes are based232

on sensitivity tests of literature-based values. There is no dissolved silicate233

pool, and particulate silica is converted to the inorganic pool.234
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Care is taken to reduce all biological transfers between ecosystem compo-235

nents when a calculated transfer in a discrete time-step exceeds the amount236

available plus a very small baseline level. In this way, biological processes237

maintain positive-definite quantities, the ecosystem model is conservative,238

and very small seed populations remain for future growth.239

For comparison to observed biomass estimates, modeled biomass in µmole240

phosphorous liter−1 is converted to carbon using a Redfield ratio and then to241

mg chlorophyll m−3 as follows. The carbon to chlorophyl ratio, C:Chl, is rep-242

resented as a constant value for each functional group. Phytoplankton C:Chl243

ratios (as g C g chl−1) reported in the literature range from values of 10 to244

more than 700. Interspecific variation in C:Chl ratios of phytoplankton have245

been shown to vary across conditions of light, nutrients, and temperature246

(Geider, 1987). C:Chl ratios within a functional group however, are relatively247

consistent, ranging from high values for oligotrophic, low-chlorophyll regions248

(Buck et al., 1996) and low values for larger phytoplankton in eutrophic en-249

vironments (Geider, 1987). C:Chl ratios exceeding 300 have been observed250

in oligotrophic waters where small phytoplankton predominate (Buck et al.,251

1996; Chavez et al., 1996; Chang et al., 2003; Veldhuis and Kraay, 2004) and252

were observed to reach values of 300 in waters that contained only small phy-253

toplankton cells (<5 µm) (Putland and Iverson, 2007). We used a C:Chl ratio254

of 300 to represent the small phytoplankton in our model. Diatom-specific255

C:Chl found throughout the literature falls within the lower range of ratios,256

from 15 to 46 (Chan, 1980; Geider, 1987; Gallegos and Vant, 1996), while257

the C:Chl ratio in eutrophic environments ranged from 16 to 83, most of258

which fell between 27 and 67 mg C mg chl−1 (Riemann et al., 1989; Sathyen-259
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dranath et al., 2009). We represent coastal diatoms with a C:Chl ratio of 50,260

a middle value within this range. Reports of C:Chl ratios for dinoflagellates261

fall between that of small phytoplankton and large diatoms. Geider (1987)262

measured a range of 20 to 140 and Chan (1980) measured a range of 90 to263

120, while Sathyendranath et al. (2009) measured a range of 27 to 80 in264

Tokyo Bay. Based on these ranges for dinoflagellates which exceed those for265

diatoms, we apply a C:Chl of 100 for large non-diatoms. Gruber et al. (2006)266

applied a variable C:Chl ratio in their ecosystem model of the CCS. Resul-267

tant C:Chl in their model demonstrated onshore values of 40 and offshore268

values of 100, which fall within the ranges chosen here. Gruber et al. (2006)269

demonstrated the small benefit of utilizing a modeled C:Chl ratio when com-270

pared to using the average modeled value for the photic zone in instances271

where one is concerned only with surface chlorophyll concentrations. They272

found that a canonical, constant value of 40 would have largely impacted273

both the depth distributions and the relative onshore-offshore chlorophyll274

concentrations. In the present study, we also find a variable ratio important275

in estimating chlorophyll concentrations associated with small phytoplankton276

offshore, though our variability is expressed on a functional group basis.277

2.2. Physical model and coupled model conditions278

The ecosystem model is embedded within a physical circulation model of279

the California Current System. We use the Regional Ocean Modeling Sys-280

tem (ROMS) configured for the CCS. Our implementation extends from the281

middle of the Baja California Peninsula to Vancouver Island and over 1000282

km offshore at 1/10 degree resolution and 42 vertical, topography-following283

levels. The model is forced at the surface by atmospheric fields from a high-284
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resolution atmospheric model (COAMPSTM, provided by the Naval Research285

Laboratory). Lateral boundary conditions are obtained from output from the286

global ocean state estimate ECCO (Estimating the Circulation and Climate287

of the Ocean). Details of the forward physical circulation model, its quan-288

titative comparison to observations, and its sensitivities to local and remote289

forcing are provided in Veneziani et al. (2009a,b). Additional information290

relating to how the forward model circulation changes as a result of regional291

data assimilation can be found in Broquet et al. (2009). The primary dif-292

ference between the physical implementation in the present study and those293

previously documented is the application of a positive definite tracer ad-294

vection scheme as opposed to a third-order upstream tracer advection. We295

use the Multidimensional Positive Definite Advection Transport Algorithm296

(MPDATA; Smolarkiewicz and Margolin, 1998). A positive definite scheme is297

particularly helpful for ecosystem model studies to eliminate negative tracer298

values associated purely with advection and diffusion.299

The physical model is initialized from a resting state, and run with300

climatological surface and side-boundary forcing for a period of 6 years.301

The physical state following spinup is then combined with initial conditions302

for the ecosystem model to provide complete fields for the coupled physi-303

cal/ecosystem model. Initial conditions for nitrate, silicate, and phosphorous304

are taken from the winter season estimates of the 2005 World Ocean Atlas305

(http://www.nodc.noaa.gov/OC5/WOA05/pubwoa05.html). Initial condi-306

tions for all other fields are set to a very small value (10−5 µmole P l−1 or307

a related value based on a Redfield ratio). Lateral boundary conditions for308

the ecosystem components are similar to the initial conditions, except that309

14



the nitrate, phosphate and silicate values vary seasonally according to the310

seasonal average WOA05 fields. The coupled physical/ecosystem model is311

run with realistic forcing for 6 years duration from 1999 through 2004. The312

first year, 1999, is considered spinup of the ecosystem as it adjusts from its313

initial conditions to a more realistic state and is discarded from our analysis.314

3. Results315

3.1. Model Evaluation316

Since the primary aim of this paper is to investigate biodiversity and bio-317

geography in the CCS, it is important to quantitatively evaluate the model318

performance. Although we have no data to compare directly with biomass319

concentrations of individual modeled phytoplankton, we can evaluate the sum320

total of modeled phytoplankton biomass with satellite estimates. Chlorophyll321

estimates were obtained for years 2000 to 2004 from the monthly Seaviewing322

Wide Field-of-View Sensor (SeaWiFS) products using the OC4V4 algorithm323

(O’Reilly et al., 1998) and were provided to us by NOAA Environmental Re-324

search Division. Data was reprocessed using a median smoothing algorithm325

and regridded to the same resolution as the model output.326

Figure 3 shows log10(φ) where φ is the 5 year average chlorophyll from327

(a) the surface level of the numerical model or (b) the satellite derived data.328

The overall structure of the upwelling system is evident. In both panels, high329

biomass standing stock is found nearshore, the result of nutrient transport330

into the photic zone by coastal upwelling. The highest levels found in na-331

ture occur in the Gulf of the Farallones (∼38◦N), north of Cape Mendocino332

(∼41◦N), near Heceta Bank (∼44◦N), and the Washington coast (∼46◦N).333
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With the exception of the stock off Washington, modeled alongshore chloro-334

phyll variation has a similar alongshore structure though at lower amplitude;335

small local enhancements to the 5-year average concentration are found in336

the model output in the Gulf of the Farallones, between Capes Mendocino337

and Blanco, and a small increase near Heceta Bank. One reason for the338

reduced amplitude in alongshore chlorophyll variation is the limited repre-339

sentation of nearshore motions due to the model resolution and associated340

topographic smoothing, common to all terrain-following coordinate models341

(Haidvogel and Beckman, 1999). The high chlorophyll levels observed off342

Washington and British Columbia have multiple causes, including nutrient343

supply from the Straits of Jaun de Fuca and Columbia river outflows (Hickey344

and Banas, 2008), neither of which is included in the present model. Note-345

worthy also in the visual comparison of Figure 3 is the chlorophyll reduction346

in the southern California Bight. Though the depletion to the south is larger347

in amplitude than found in nature, the model includes a small phytoplankton348

increase in the Santa Barbara Channel just south of Pt. Conception as well349

as a tongue extending to the southeast over the subsurface Santa Rosa Ridge350

(topographic feature not shown).351

The cross-shore breadth of the high chlorophyll zone is O(100 km), similar352

to the observations and other modeling studies (Plattner et al., 2005), though353

the chlorophyll reduction with distance from coast is somewhat more rapid354

in the model than in the nature. Offshore levels are consistently low, less355

than about 0.3 mg chl m−3 and consistent with more oligotrophic subtropical356

gyre water. Modeled chlorophyll is too high in the southwestern portion of357

the domain, likely the result of a numerical boundary influence.358
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We quantify model fidelity via a Taylor diagram, which graphically presents359

the correlation coefficient (CC), standard deviations normalized to that of360

the observations (NSD), and normalized, centered root mean squared error361

(RMSE) (Taylor, 2001). In this diagram, radial distance from the origin in-362

dicates NSD and the azimuthal direction represents CC, maximum of 1 along363

the x-axis. Truth in our analysis is defined by the observations and is repre-364

sented by the point in Figure 4a labeled SeaWiFS at a value of NSD=CC=1365

on the x-axis. The point labeled DOMAIN represents the statistical compar-366

ison of panels in Figure 3 and is found near the intersection of NSD=0.4 and367

CC=0.7. The high value for the correlation coefficient reflects the general368

agreement in overall structure of the near and offshore fields. To better under-369

stand the cause of the roughly one half reduction in variability, we decompose370

the domain into various subregions, similar to Gruber et al. (2006). North371

and South subdomains are divided by latitude 40.5◦N, and coastal and off-372

shore regions are delineated by the 1000 m isobath. It is clear from the figure373

that the overall low standard deviation is dominated by the coastal region,374

related to alongshore variability nearshore discussed above. The southern375

offshore region has slightly lower NSD than the northern region, both rela-376

tive to their respective observations, and this low value likely results from the377

enhanced chlorophyll concentrations modeled in the southwest corner, also378

discussed above. All subregions exhibit correlation coefficients greater than379

0.5. Overall (data minus model) biases are also presented in the diagram380

as the number in parentheses near each point label. The domain average381

modeled field has an average bias (B) of -0.13 mg chl m−3, and this value382

represents a weighted average of the small value offshore (B=-0.059 mg chl383
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m−3) and the considerably larger bias in the coastal zone (B=-1 mg chl m−3).384

The CCS seasonal cycle is reasonably represented as well (Figure 4b).385

Seasons (winter, spring, summer, fall) are defined as collections of three calen-386

dar months (JFM, AMJ, JAS, OND). All seasons have correlation coefficients387

greater than 0.5, with the largest value (CC=0.75) occurring in springtime388

(April-June). Spatial variability in chlorophyll is particularly low (SD∼0.2)389

in Autumn (Oct-Dec) but approximately equal to the 5-year average vari-390

ability in other seasons. Overall bias is low (|B| <0.26 mg chl m3) in all391

seasons with the model usually under-predicting total chlorophyll biomass392

(i.e., B<0), as in the 5-year average.393

3.2. Surface Distributions394

With good correlation between total phytoplankton biomass modeled and395

remotely sensed estimates in various parts of the domain, we now investigate396

the magnitude and distributions of the phytoplankton that make up this397

total. The 78 independent phytoplankton analogs initially seeded equally at398

a low level (10−5 µmole P l−1) and uniformly throughout the domain self-sort399

themselves over time into a hierarchy that can be ordered by total biomass400

contained within the full model volume. The 5-year average field reveals401

38 phytoplankton existing at levels well above the baseline minimum level402

maintained in the model for all fields. However, most of these members’403

biomass are extremely small compared to the biomass of the top several404

contributors. Eight primary producers that have concentrations exceeding405

10% of the maximum, and six more maintain biomass between 0.3% and406

1% of the maximum. Of these top eight phytoplankton, we find 2 diatoms,407

1 LND, 3 PLP, and 2 SNP. In the next grouping of six are 2 diatoms, 2408
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LND, and 2 PLP. Thus all functional groups enabled are well represented409

by the model at relatively substantial concentrations, and each consists of410

further subtypes at various biomass levels. For simplicity, this manuscript411

concentrates on total distributions for each functional group and the top412

several subtypes.413

Geographical distributions illustrate population horizontal structure. Shown414

in Figure 5 are the 5-year average surface chlorophyll concentrations for di-415

atoms, PLP, LND, and SNP (note the differing linear color-scale in each416

panel). In the 5-year average, the total phytoplankton field is dominated417

numerically by nearshore diatom concentrations. However, at considerably418

lower but nonzero levels, LND are found more broadly, but at highest concen-419

trations in the coastal transition zone between the upwelling and oligotrophic420

offshore waters off central California. Also, PLP thrive well offshore of the421

upwelling region, and SNP are distributed throughout the domain, though422

with largest amplitudes both in the upwelling zone and in more oligotrophic423

waters offshore.424

It is possible to probe further into phytoplankton structure and biogeog-425

raphy by examining the particular subtypes that constitute the functional426

group totals. Figure 6 shows the top three PLP and two top SNP organisms427

in terms of their total biomass. Multiple subtypes are supported within the428

model, but they are not uniformly distributed. The top three PLP subtypes429

have different temperature optima (approximately 11◦, 17◦, and 20◦C), and430

they thrive in middle, northern, and southern latitudes, respectively. Simi-431

larly, the two dominant SNP are also distributed according to temperature432

optima (16◦ and 10◦C) and are found in the southern and northern portions433
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of the domain.434

Surface distributions for grazers in the 5-year average are shown also in435

Figure 5. Though found at greatest amplitude in the model in the southern436

California Bight, microzooplankton are distributed over the full extent of the437

CCS, supported by small and large phytoplankton available for consump-438

tion throughout the domain. In contrast, large zooplankton have greatest439

palatability for large phytoplankton and are found at highest intensity in440

the upwelling zone, quickly dropping to vanishing levels as offshore distance441

increases. Grazing of large on small zooplankton may also play an important442

role governing these population distributions.443

Over an annual cycle, phytoplankton biomass exhibits a strong seasonal444

cycle (Figure 7) with well defined biogeographic patterns. As equatorward,445

alongshore winds develop following the spring transition in March/April446

(Strub et al., 1987), phytoplankton stocks increase nearshore within the447

coastal upwelling zone. It is perhaps noteworthy that high coastal biomass is448

found first to the south along the central and northern California coasts (be-449

tween Pt. Conception at about 35◦N and Cape Mendocino around 40◦N), and450

then to then north along the Oregon and Washington coasts as the upwelling451

season progresses through August and September. With the weakening of452

upwelling-favorable winds in fall (October through Dec), the CCS exhibits453

relatively low phytoplankton levels over much of the domain. During late454

winter/early spring (February - April), offshore northern waters undergo an455

increase in phytoplankton levels, perhaps due to increased nutrients from456

wintertime mixing and an increase in solar insolation.457
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3.3. Vertical Sections458

Although the maps shown in the previous section provide context for459

organisms that thrive at the surface, additional structure is found by exam-460

ining subsurface concentrations. We illustrate the vertical structure along461

a section (shown in Figure 3a) that overlays Line 67 of the California Co-462

operative Oceanic Fisheries Investigations (www.calcofi.org) which extends463

offshore in the cross-shore direction from Monterey Bay within the central464

California coast. Although our model section extends hundreds of km further465

than CalCOFI Line 67, we refer in this paper to this model transect as Line466

67 for brevity. In the 5-year average (not shown), the vertical sections in467

total phytoplankton and functional group fields reveal only surface maxima468

that extend through a well-mixed region down 40 to 60 meters (shallower469

values nearshore) followed by a gradient to vanishing levels between 90 and470

140 m depth (deeper values nearshore). However, the annual cycle of the471

sections reveal considerably more information. In Figure 8 are the monthly472

sections for total modeled chlorophyll. From November through April phy-473

toplankton structure is characterized by a well-mixed, near-surface field, de-474

caying rapidly beneath. In March an upwelling-induced, nearshore bloom at475

the surface appears and intensifies and persists through October. From May476

through October, a broad subsurface chlorophyll maximum develops offshore477

of the upwelling region. This offshore maximum is found around 70 m depth,478

at the top of the modeled nutricline and within the thermocline beneath a479

seasonally warmed surface layer (not shown).480

Analysis of the individual functional group fields indicates that this sub-481

surface phytoplankton maximum results primarily from diatoms and SNP482
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which occur at much lower levels in the offshore surface waters at these483

times of the year. The PLP group also contributes to the phytoplankton to-484

tal at depth but has significant concentrations above this deep maximum, and485

therefore this group is not itself responsible for its existence. LND are found486

mostly above the deep maximum. Although the PLP group has a broad pres-487

ence extending from the surface to the top of the nutricline, subtypes within488

this group reveal strata. Shown in Figure 9 are the 5-year averaged July489

and August fields for the top two PLP. These two subtypes occupy different490

niches within the water column. PLP #1 (kpar=0.01 W−1 m2) is adapted to491

high light conditions and is found near the surface in both months whereas492

#2 (kpar=0.026 W−1 m2) is more likely to thrive in subsurface waters with493

low PAR levels and is found at depth.494

3.4. Temporal Succession495

The sequence of plankton populations within the modeled CCS is esti-496

mated by integrating the surface biomass distributions horizontally over the497

domain. Figure 10 plots time-series for total phytoplankton and individ-498

ual functional groups. All fields show clear seasonal cycles, but the timing499

of individual functional group maxima varies. The total phytoplankton field500

(panel a, blue) reveals a late springtime peak and is dominated by the diatom501

population (panel b, blue). However, while the diatom population declines502

to small or near zero levels during fall and winter, the total phytoplankton503

biomass within the CCS maintains a low level, but well above zero, and ev-504

idently supported by non-diatom fields. The small phytoplankton biomass505

(panel a, green) shows smaller amplitude variation than the total, with max-506

imum in early spring. This more limited seasonal cycle results from two507
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out-of-phase oscillations; SNP (panel c, green) exhibits a wintertime increase508

preceding the growth in and extending longer than the diatom population.509

In contrast, PLP (panel c, blue) reaches its nadir in spring and maximum in510

fall. LND (panel b, green) exhibit 2 peaks annually, with a maximum in the511

spring but after the diatoms, and then a subsequent, larger increase in late512

summer, early fall that is quite out of phase with the diatom cycle.513

For completeness, we present the grazer fields, although given the complex514

spatial structure of the primary and secondary producers discussed above,515

we caution about over-interpreting the biomass pathways within the model516

from this simplistic representation. Like the phytoplankton, the zooplankton517

fields also display seasonal cycles. Microzooplankton (panel d, blue) levels518

fluctuate similar to, though slightly later than, the PLP distribution. The519

microzooplankton fields grow in late summer/autumn, but it is important to520

note that their minimum levels are not close to zero. Rather, they sustain521

a nonzero integrated biomass and thus nonzero grazing pressure throughout522

the year. Mesozooplankton (panel d, green) begin to develop early in the year523

at the same time as diatoms, but they reach their maximum well after the524

diatom peak, near the same time as the LND group. The large zooplankton525

approach very small levels in winter, unlike the offseason for small grazers.526

As with the surface maps, each functional group can be further inspected527

for subtypes. Figure 11 shows the top few subtypes for diatoms, LND, SNP,528

and PLP in panels a, b, c, and d, respectively. Whereas big phytoplankton529

are dominated by single subtypes, the small phytoplankton can be divided530

into multiple non-negligible components whose timing for growth and decline531

are shifted and apparently unrelated. It is perhaps surprising that the spring532
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and fall increases in LND result from only one subtype, but it argues that for533

some organisms, environmental conditions for which they are best adapted534

can arise at multiple times in the year, and not simply once in an annual535

cycle.536

4. Discussion537

The goal of this study is to evaluate the emergent community ecosys-538

tem model for its capacity to represent the biodiversity and biogeography539

of the California Current System. Observations have long shown diverse,540

heterogeneous planktonic communities, though usually with single or a few541

species numerically dominant. Studies based on phytoplankton counts fo-542

cused on larger taxa. The Balech (1960) study of coastal waters off Scripps543

pier in Southern California documented both diatoms and dinoflagellates,544

with diatoms being most abundant but dinoflagellates comprising half the545

listed phytoplankton. Bolin and Abbott (1963) reported that while one genus546

(Chaetoceros spp.) appeared most numerous in the large-sized phytoplank-547

ton population in Monterey Bay between 1954 and 1960, 17 other genera548

were observed at lower levels. More broadly, Venrick (2009) identified 294549

taxa of phytoplankton along Line 87 from the CalCOFI sampling grid off550

southern California. The most abundant were a centric diatom (Chaeto-551

ceros debilis), a coccolithophorid (Emilinia huxleyi) and a pennate diatom552

(robust Pseudo-nitzschia). Together, these three species accounted for 61%553

of the total abundance, and thus the numerical contribution of most of the554

remaining 291 taxa to the total is extremely small. More modern techniques555

have revealed extensive picophytoplankton abundance further contributing556
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to this biodiversity. Flow cytometer analysis and epifluorescence microscopy557

have documented the presence of Synechococcus and picoeukaryotes, and to558

a lesser extent Prochlorococcus, in different coastal domains off Oregon and559

California (Hood et al., 1991; Collier and Palenik, 2003; Worden et al., 2004;560

Sherr et al., 2005).561

Overall, the model output analyzed in this manuscript represents this ob-562

served phytoplankton biodiversity. Of 78 phytoplankton types seeded in the563

model, approximately 40 coexist in the multi-year average. The top 14 or-564

ganisms in terms of area averaged surface biomass span 3 orders of magnitude565

in that measure; they include 4 diatoms, 3 large non-diatoms (a group which566

would include dinoflagellates), 5 Prochlorococcus-like organisms, and 2 small567

phytoplankton that can use nitrate (which would include Synechococcus and568

picoeukaryotes). Although the breadth of organisms and functional groups569

is not as extensive as that in nature, it represents a significant advance over570

existing ecosystem models that characterize the phytoplankton community571

with only one or two components.572

The model biogeography also shows considerable promise when compared573

to observations. We quantitatively evaluated the total modeled chlorophyll574

against SeaWiFS-derived surface chlorophyll estimates on a 5-year and sea-575

sonal mean basis. The model shows good representation of the general pat-576

tern of standing stock in the California Current System (0.5<CC<0.75) for577

the years 2000-2004. The standard deviation of total chlorophyll is approx-578

imately one half that observed in nature. In part we believe, this low vari-579

ability results from limited (∼10 km) physical model resolution, and though580

not shown in this paper, this measure can be adjusted also through some581
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parameter tuning, such as of the carbon to chlorophyll ratio. Noteworthy582

peaks and deficits of surface chlorophyll are found along the coast at multi-583

ple locations in both model and observations. The most widely-recognized584

biogeographic boundary in the California Current System occurs in nature585

at Pt. Conception (Checkley and Barth, 2009). In our model, this break is586

visible in both the total surface phytoplankton stock (Figure 3) and in the587

surface diatom field (Figure 5a). It is perhaps a failing of the model that588

this break is not clearly visible at the next higher trophic level (Figure 5e589

and f). However, our effort has focused on phytoplankton diversity, and it590

may be that greater resolution of the zooplankton community and/or explicit591

temperature dependence on grazing or metabolic rate may be necessary.592

The general horizontal structure of the modeled functional groups also593

appears reasonable, though our ability to quantitatively evaluate this aspect594

is not as great as with the total phytoplankton stock. It is well known that595

high nutrient input resulting from coastal upwelling in the CCS drives new596

production of nearshore diatom blooms (Barber and Smith, 1981), with con-597

siderably smaller diatom abundance found in oligotrophic waters. Because598

many ecosystem models only parameterize in terms of diatoms, the cross-599

shore diatom structure is common to other, single functional group models600

(e.g., Gruber et al., 2006) and also idealized studies (Spitz et al., 2003; Ed-601

wards et al., 2000a). Less common is the representation of Prochlorococcus602

(our PLP group) and Synechococcus or picoeukaryotes (our SNP group). In603

our multi-year average, we find an increase in our SNP group close to the604

coast and offshore, with a smaller but still significant presence all through the605

domain. PLP shows a distinct deficit in the nearshore upwelling zone with606
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increasing concentration westward and to the south in more oligotrophic wa-607

ters (Figure 5).608

We believe that this general small phytoplankton structure is consistent609

with observations. Worden et al. (2004) found off the Scripps pier in southern610

California that Synechococcus dominated cell abundance and picoeukary-611

otes contributed most to estimated carbon biomass. Along a transect off612

Oregon, Sherr et al. (2005) found small-sized phytoplankton dominated by613

Synechococcus and picoeukaryotes at near shore stations just offshore of the614

upwelling front. Collier and Palenik (2003) identified a gradient in Syne-615

chococcus abundance across the CalCOFI sampling grid, with highest levels616

nearshore of the California Current and lower levels offshore. Prochlorococcus617

shows the opposite tendency. Worden et al. (2004) report that Prochloro-618

coccus were small contributors to total biomass and sometimes not found619

at all at their coastal station. Sherr et al. (2005) observed Prochlorococcus620

only at one offshore station in their sampling grid. In contrast, at Station621

ALOHA in the North Pacific Subtropical Gyre, Prochlorococcus has been622

found to contribute about 40% or more of the total photosynthetic biomass623

(Campbell et al., 1994).624

A last aspect of the CCS biogeography that the model appears to capture625

is in the vertical. In the Sherr et al. (2005) study, Synechococcus was often626

found to be nearly coincident with picoeukaryotes, but at some cross-shore627

sections, notably July 2002, Synechococcus occupied surface waters, and pi-628

coeukaryotes exhibited a clear subsurface maximum. Although reported for629

the years 1997-1998 which were complicated by El Niño and La Niña events,630

Chavez et al. (2002) present chlorophyll distributions along Line 67 which631

27



in 1999 (the La Niña year) show subsurface chlorophyll maximum 200-300632

km offshore from February through October. This feature was also noted in633

the modeling study of Gruber et al. (2006) along nearby CalCOFI Line 70634

to the south. In our model, subsurface chlorophyll maxima are found along635

CalCOFI line 67 in the 5-year average fields from May to October. We find636

this maximum is composed of diatoms and SNP. In addition, we find a divi-637

sion within the Prochlorococcus-like organisms. Highest total concentrations638

are found at the surface, though subtypes with low-light adaptations occupy-639

ing subsurface strata. These broad descriptions are similar to those outlined640

from observations along the Atlantic Meridional Transect by Johnson et al.641

(2006) and have been observed and modeled at Station ALOHA (Rabouille642

et al., 2007).643

Finally, within this paper we have investigated phytoplankton succession644

in the CCS. Within Monterey Bay in 1976 and 1977, Garrison (1979) ob-645

served communities in which diatoms dominated from winter through the646

upwelling period and dinoflagellate occasionally becoming more abundant647

in the fall. Chavez et al. (2002) suggest that nearshore central California648

coastal waters transition from diatom dominated upwelling system to a pi-649

coplankton community in the so-called oceanic (fall) period. We find diatoms650

exhibit the largest chlorophyll concentrations in the multi-year average, but651

that their amplitudes are highly variable in time. Strongest diatom levels oc-652

cur in the spring/summer period (Figure 11), and large phytoplankton that653

does not require silicate peaks in late summer/early fall during the diatom654

minimum. Small phytoplankton also experience strong seasonal cycles, with655

our PLP and SNP largely out of phase with one another; we find a fall peak656
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in Prochlorococcus-like organisms and a spring minimum.657

The results presented in this paper describe only one realization of this658

ecosystem model. One distinguishing feature of the present approach is the659

method of parameter selection. Although, as in more traditional models,660

many important constants in this model are chosen by the operator, a few661

key parameters that govern phytoplankton growth are selected randomly662

within reasonable ranges. Different realizations of the random numbers will663

yield different subsets of virtual phytoplankton, allowing for potentially very664

different autotrophic communities. While our main realization described in665

this manuscript consists of 5 years of model output, we have also investi-666

gated other randomizations for a shorter duration. Figure 12 presents the667

Taylor diagram comparing total phytoplankton at the surface from 5 ecosys-668

tem realizations to SeaWiFS chlorophyll estimates for the year 2000 (one669

year following ecosystem spinup). Number 1 corresponds to the run de-670

scribed throughout this paper. It is evident that all ecosystem realizations671

have similar domain-wide correlation coefficients (0.6<CC<0.7). Greater672

scatter is found in the radial direction, and run 3 has the largest NSD, and673

the point closest to the SeaWiFS estimate. All runs also have very similar674

biases. Thus changing the modeled phytoplankton through random physio-675

logical responses gives very robust model output in terms of total, averaged676

phytoplankton biomass.677

What does vary in different realizations is the underlying number and678

detailed distribution of significant functional group subtypes that emerge.679

Within each realization, all four functional groups have members that ex-680

ist at levels exceed 10% of the maximum biomass. Most consistent among681
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realizations is (a) the existence of one, two, or three coastal diatoms of sig-682

nificant biomass, (b) the offshore presence of PLP, and (c) the occurrence683

of SNP both on and offshore. LND are the most variable functional group684

across realizations, with representatives that inhabit the coastal transition685

zone/offshore regions (runs 2 and 4), the coastal domain (run 3) or both686

(runs 1 and 5).687

Although typical of many ecosystem models in which some biological pro-688

cesses are better represented or parameterized than others, it is important to689

note some of the model shortcomings. Large non-diatoms are a group defined690

in this model that, within the California Current System, arguably represents691

flagellates and dinoflagellates. Evidence supports these organisms attaining692

resources in more complex ways than typical of other phytoplankton, such693

as through mixotrophy, vertical migration, and assimilation of nitrogen in694

the dark (Harrison, 1976), which are not included in the model. Although695

zooplankton populations have been shown to play a large role in shaping the696

structure of the phytoplankton community (Verity and Smetacek, 1996), and697

species-specific preferences of zooplankton on phytoplankton have been re-698

ported (e.g., Cowles et al., 1988; Flynn et al., 1996) we maintained relatively699

simple zooplankton representation with only one large and one small member.700

While Redfield ratios enable a compact representation that is computation-701

ally efficient for ecosystem models, considerable evidence reveals interesting702

deviations from these quantities under periods of nutrient stress (Geider and703

La Roche, 2002). In the present model, phytoplankton are assumed to be704

in Redfield proportions. Quantitative model evaluation was aided by vari-705

able, group-specific carbon to chlorophyll ratio. It is possible that a more706
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complex representation of carbon to chlorophyll may further aid in this as-707

sessment, particularly with depth distributions. Finally, we have neglected708

the influence of iron as a limiting micronutrient in the model. Evidence (e.g.,709

Hutchins and Bruland, 1998; Bruland et al., 2001) has shown the possibility710

for iron limitation within the coastal waters of the California Current System,711

and this model capability remains to be explored.712

Thus, the neglect of some phytoplankton behavior, limited grazer di-713

versity, assumed Redfield stoichiometry for phytoplankton, fixed carbon to714

chlorophyll ratios, and the omission of iron as a limiting resource are all as-715

pects of the model that could be improved upon. However, despite these716

shortcomings, this model does an excellent job of representing many aspects717

of the California Current Ecosystem and offers for the first time in this re-718

gion substantial biodiversity of modeled organisms with temporal and spatial719

structure that should further illuminate role of physical and biological pro-720

cesses that govern these populations.721
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Appendix A.731

This appendix documents the equations used in the ecosystem model,732

shown schematically in Figure 1. Constants used in the formulation are733

given in Tables A.1, A.2, and A.3. Using words to represent processes, the734

rates of change of model state variables can be expressed735

∂ phytoplankton

∂t
= uptake − grazing − phytoplankton mortality

∂ zooplankton

∂t
= assimilated grazing − zooplankton mortality

∂ nutrients

∂t
= remineralization − uptake

∂ particulates

∂t
= export to particulates − particulate remineralization − sinking

∂ dissolved organics

∂t
= export to dissolved − dissolved remineralization.

It is convenient to describe each processes individually and consider sep-736

arately the associated rate of change for each state variable. The model737

includes Np phytoplankton members and Nz zooplankton organisms. We use738

subscripts, i, j, and k to identify individual phytoplankton or zooplankton739

but omit these indices when the context is clear. All state variables, which740

are concentrations and denoted with square brackets, are functions of space741

and time, (e.g.,742

[Pi] = [Pi](x, y, z, t) (A.1)

for phytoplankton i) though we omit reference to these dependencies except743

when necessary for clarity.744
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For each phytoplankton, i, growth by nutrient uptake is given by745

Ui = µiIlimNlimTlim[Pi] (A.2)

where µi is the maximum growth rate. Growth is reduced from its maximum746

value by three factors, Ilim, Nlim, and Tlim, representing limitation by light,747

nutrients, and temperature, respectively.748

The light function is expressed749

Ilim =
1

γ
(1 − e−kparIPAR)e−kinhIPAR (A.3)

γ =
kpar

kpar + kinh

ln(
kinh

kpar + kinh

). (A.4)

Here, IPAR is the local photosynthetically active radiation, which depends750

on the surface PAR, Is, and subsurface total phytoplankton concentration:751

IPAR(z) = Ise
−

R

0

z (k0+kpPT (z)) dz (A.5)

and752

PT (z) =

Np
∑

i=0

[Pi](z). (A.6)

Parameters kinh and kpar are phytoplankton-dependent,753

kpar =
∣

∣N (kpar, σkpar)
∣

∣ (A.7)

kinh =
∣

∣N (kinh, σkinh
)
∣

∣ (A.8)

where N (ν, σν) is a normal random deviate with mean, ν, and standard754

deviation, σν . Values for the means and standard deviations of these light755

parameters are provided in Table A.1.756
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Limitation by temperature, T , is given by757

Tlim = ca(c
T
b e

−

“

|T−TO |
Td

”τ

− Tn) (A.9)

(A.10)

where758

TO = U(Tmin, Tmax) (A.11)

is the temperature optimum, and U(ν0, ν1) is a uniform random deviate be-759

tween ν0 and ν1.760

Nutrient limitation is determined as the minimum of multiple nutrient761

limitation functions, the choice of which depends on the silicate requirement762

and the forms of nitrogen utilized. For phytoplankton that require silicate763

and process all three forms of nitrogen,764

LP =
[PO4]

kPO4 + [PO4]
(A.12)

LSi =
[Si(OH)4]

kSi + [Si(OH)4]
(A.13)

LNH4 =
[NH4]

kNH4 + [NH4]
(A.14)

LNO2 =
[NO2]

kNO3 + [NO2] + [NO3]
e−σA[NH4] (A.15)

LNO3 =
[NO3]

kNO3 + [NO2] + [NO3]
e−σA([NH4] (A.16)

LN = LNH4 + LNO2 + LNO3. (A.17)

For phytoplankton that do not use silicate but assimilate ammonium and765
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nitrite, we set766

LP =
[PO4]

kPO4 + [PO4]
(A.18)

LNH4 =
[NH4]

kNH4 + [NH4]
(A.19)

LNO2 =
[NO2]

kNO2 + [NO2]
e−σA[NH4] (A.20)

LN = LNH4 + LNO2. (A.21)

For autotrophs that do not use silicate and take up ammonium only,767

LP =
[PO4]

kPO4
+ [PO4]

(A.22)

LNH4 =
[NH4]

kNH4 + [NH4]
(A.23)

LN = LNH4. (A.24)

Half saturation constants for nutrient uptake are assigned as uniform random768

deviates between bounds given in Table A.1. Finally, the nutrient limitation769

factor is defined770

Nlim =







min(LP , LSi, LN) diatom

min(LP , LN) otherwise
. (A.25)

The rate of change of phytoplankton biomass and nutrients due to growth771
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by a single phytoplankter is expressed772

∂[Pi]

∂t
= Ui (A.26)

∂[PO4]

∂t
= −Ui (A.27)

∂[Si(OH)4]

∂t
= δSi rSiP

∂[PO4]

∂t
(A.28)

∂[NO3]

∂t
= fNO3 rNP

∂[PO4]

∂t
(A.29)

∂[NO2]

∂t
= fNO2 rNP

∂[PO4]

∂t
(A.30)

∂[NH4]

∂t
= fNH4 rNP

∂[PO4]

∂t
. (A.31)

in which the variable δSi takes on a value of 1 if silica is required and 0 when773

it is not, and factors rSiP , etc., are Redfield ratios. Using the δ notation also774

for nitrogen utilization, we define the factors that partition nitrogen uptake775

to depend on both this ability to use a particular form and the relative776

availability of that resource:777

fNO3 = δNO3
LNO3

LN

(A.32)

fNO2 = δNO2
LNO2

LN

(A.33)

fNH4 = δNH4
LNH4

LN

. (A.34)

For grazing, we consider processes influenced by zooplankton k. Total778

grazable material for zooplankton k, weighted by its palatability, is given by779

Ak =

Np
∑

i=0

π
(P )
ki [Pi] +

Nz
∑

j=1

π
(Z)
kj [Zj ] (A.35)

where π(P )
ki and π

(Z)
kj represent the palatability of phytoplankton i and zoo-780

plankton j for grazer k. The rate for grazing of zooplankton j by zooplankton781
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k is given by782

G
(Z)
kj =

Gmax
k π

(Z)
kj [Zj]Ak

k2
g + A2

k

(A.36)

which then gives the rates of change for zooplankton biomass and particulate783

and dissolved concentrations by grazing of organism j by k:784

∂[Zj ]

∂t
= −G

(Z)
kj [Zk] (A.37)

∂[Zk]

∂t
= α

(Z)
k G

(Z)
kj [Zk] (A.38)

∂[POP ]

∂t
= E(G) (1 − α

(Z)
k ) G

(Z)
kj [Zk] (A.39)

∂[DOP ]

∂t
= (1 − E(G)) (1 − α

(Z)
k ) G

(Z)
kj [Zk]. (A.40)

The parameters α(Z) and E(G) represent the assimilation efficiency and frac-785

tion exported to particulate matter, respectively.786

Analogously, the grazing rate for zooplankton k on phytoplankton i is787

given by788

G
(P )
ki =

Gmax
k π

(P )
ki [Pi]Ak

k2
g + A2

k

(A.41)

which yields for each component789

∂[Pi]

∂t
= −G

(P )
ki [Zk] (A.42)

∂[Zk]

∂t
= α

(P )
k G

(P )
ki [ Zk] (A.43)

∂[POP ]

∂t
= E(G)(1 − α

(P )
k ) G

(P )
ki [Zk] (A.44)

∂[DOP ]

∂t
= (1 − E(G)) (1 − α

(P )
k ) G

(P )
ki [Zk]. (A.45)

Mortality of phytoplankton and zooplankton induce changes in biomass790
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and dissolved and particulate compartments,791

∂[Pi]

∂t
= −m(P ) [Pi] (A.46)

∂[Zj ]

∂t
= −m(Z) [Zj ] (A.47)

∂[POP ]

∂t
= E(P ) m(P ) [Pi] + E(Z) m(Z) [Zj] (A.48)

∂[DOP ]

∂t
= (1 − E(P )) m(P ) [Pi] + (1 − E(Z)) m(Z) [Zj ]. (A.49)

Remineralization processes also influence these pools. For phosphorous,792

∂[POP ]

∂t
= −kpop [POP ] (A.50)

∂[DOP ]

∂t
= −kdop [DOP ] (A.51)

∂[PO4]

∂t
= kdop [DOP ] + kpop [POP ]. (A.52)

For nitrogen,793

∂[PON ]

∂t
= −kpon [PON ] (A.53)

∂[DON ]

∂t
= −kdon [DON ] (A.54)

∂[NH4]

∂t
= kdon [DON ] + kpon [PON ]. (A.55)

And for silica and silicate,794

∂[PSi]

∂t
= −kpsi [PSi] (A.56)

∂[Si(OH)4]

∂t
= kpsi [PSi]. (A.57)

For nitrification, we define the light function,795

I =







1 − IPAR

I0
IPAR ≤ I0

0 IPAR > I0

(A.58)
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which takes a value of 1 during darkness and 0 when PAR exceeds a critical796

value. Then797

∂[NH4]

∂t
= −I kA [NH4] (A.59)

∂[NO2]

∂t
= I (kA [NH4] − kB [NO2]) (A.60)

∂[NO3]

∂t
= I kB [NO2]). (A.61)

Finally, sinking obeys the following relations:798

∂[Pi]

∂t
= −wp

∂[Pi]

∂z
(A.62)

∂[POP ]

∂t
= −wpom

∂[POP ]

∂z
(A.63)

∂[PON ]

∂t
= −wpom

∂[PON ]

∂z
(A.64)

∂[PSi]

∂t
= −wpom

∂[PSi]

∂z
. (A.65)
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Table A.2: Zooplankton parameters for microzooplankton and mesozoo-

plankton.

Parameter Description Symbol unit Microzoo Mesozoo

Half saturation constant for grazing kg µM P 0.04 0.07

Maximum grazing rate Gmax d−1 1.0 0.5

Grazing assimilation efficiency by mesozoo α(Z) - 0.3 -

Fraction of unassimilated prey exported to particulates E(G) - 0.8 0.8

Zooplankton mortality m(Z) d−1 0.033 0.033

Fraction of Z mortality exported to particulates E(Z) - 0.2 0.7

Table A.3: Other parameterizations: remineralization of dissolved and par-

ticulate organic matter, nitrification, and light attenuation.

Parameter Description Symbol unit Value

DOP remineralization rate kdop d−1 0.020

DON remineralization rate kdon d−1 0.020

POP remineralization rate kdop d−1 0.033

PON remineralization rate kdon d−1 0.033

PSi remineralization rate kPsi d−1 0.003

POM sinking rate wpom m d−1 10

NH4 to NO2 oxidation rate kA d−1 0.1

NO2 to NO3 oxidation rate kB d−1 0.033

Cricical light level below which oxidation occurs I0 W m−2 10

PAR attenuation coefficient ko m−1 0.04

PAR attenuation coefficent from phytoplankton kp (µM P m)−1 0.06
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Figure 1: Ecosystem model conceptual diagram. Boxes represent different

state variables. Colors correspond to nutrient type. Arrows represent pro-

cesses as labeled. The subscript n refers to the specific nutrient for DOM,

POM, Zoo and Phyto state variables. The subscript i and j represent the

index of phytoplankton or zooplankton analog.
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Figure 2: Left axis: Time series of phytoplankton biomass for a model of
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(dashed) and with a 12-hour on/12-hour off cycle (solid). Growth rate is 1.4

d−1 (2.8 d−1) for dashed (solid) growth curve. Right axis: light limitation
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Figure 3: Log10 of the five-year average (2000-2005) chlorophyll concentration

(mg m−3) from (a) model surface level and (b) SeaWiFS chlorophyll estimate.

Model line along (but longer than) CalCOFI Line 67 is displayed in (a).
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(a) Diatoms (b) LND

(c) SNP (d) PLP

(e) Microzooplankton (f) Mesozooplankton

Figure 5: Five-year average from model surface for (a) diatoms, (b) LND,

(c) SNP, (d) PLP, (e) microzooplankton, (f) mesozooplankton. (a-d) show

chlorophyll in mg chl m−3), and (e-f) present biomass in terms of µmole P

l−1.
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Figure 6: Five-year average chlorophyll concentration (mg m−3) from model

surface for each of the top 3 dominant subgroups for PLP (upper panel: a,

b, c) and the top 2 dominant subgroups for SNP (lower panel: d, e).
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Figure 9: Monthly averages of modeled chlorophyll concentration along line

shown in Figure 3 for the most abundant (a, b) and second most abundant

(c, d) PLP subtypes during the months of July (left column) and August

(right column). Dashed contour occurs at 0.001 mg chl m−3. Heavy solid

contour levels begin at and occur every 0.005 mg chl m−3. Light solid line at

right indicates topography.
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