
Ensemble forecasting of harmful algal blooms in the Baltic Sea

P. Roiha∗,a, A. Westerlunda, A. Nummelina, T. Stipaa

aFinnish Meteorological Institute, Hydrodynamics of the Sea, Erik Palménin aukio 1, P.O.Box 503, FI-00101 Helsinki, Finland

Abstract

Operational marine environmental modelling has been considered notoriously hard; consequently there are very few
operational models of the marine environment. Operational modelling of harmful algal blooms requires the modelling
of individual species and is therefore harder still. The separation of algal species in models requires detailed knowledge
of their behaviour (survival strategy through the life cycle), and in general, very little is known of harmful algal bloom
(HAB) properties.

We present promising results of an ensemble approach to HAB forecasting in the Baltic, and discuss the applicability
of the forecasting method to biochemical modelling. Ensembles were produced by running the biogeochemical model
several times and forcing it on every run with different set of seasonal weather parameters from European Centre for
Medium-Range Weather Forecasts’ (ECMWF) mathematically perturbed ensemble prediction forecasts. The ensembles
were then analysed by statistical methods and the median, quartiles, minimum and maximum values were calculated for
estimating the probable amounts of algae. Validation for the forecast method was made by comparing the final results
against available and valid in-situ HAB data. It turns out that it is possible to forecast HABs with useful accuracy.
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1. Introduction

Modelling of non-linear variables always includes un-
certainties from different sources. The initial conditions
might be inaccurate, the model input has errors and the
modelling of ocean conditions is not exact because of trun-
cation errors and inaccuracies in the modelling of subscale
phenomena (Leutbecher and Palmer, 2008). Therefore the
solution deteriorates in time.

The deterioration of model forecasts with time is a well-
known issue in weather forecasting, where the reliable fore-
cast range is about a week. In oceans the predictability of
some phenomena is typically longer. For example, the in-
ternal weather of the sea, the oceanic meso-scale, includes
mainly phenomena which are occurring in temporal scales
from days to months and spatial scales from kilometres
to hundreds of kilometres (Lermusiaux, 2006). However,
ocean predictability is rarely exploited to its useful lim-
its. Most operational ocean forecasting is limited to ten
day forecasts in the maximum, or to coupled atmosphere-
ocean seasonal forecasts where the focus is nevertheless on
the atmospheric forecast.

Physical ocean models are principally built on the same
well-known and relied upon equations as atmospheric mod-
els, and have the same inherent limitations to their predic-
tive skills. Biogeochemical models, on the other hand do

∗Corresponding author. E-mail address: petra.roiha(at)fmi.fi

not enjoy a firm basis provided by e.g. the primitive equa-
tions of ocean motions. Furthermore, the initial condition
for a biogeochemical forecast is often not well observed,
or the uncertainties are large. While there are significant
constraints to how the biogeochemical models are to be
constructed (Redfield, 1958), the uncertainties involved in
using biogeochemical models for forecasting appear to de-
serve an explicit treatment. This is particularly true with
models that pursue to predict not only the overall biogeo-
chemical processes, but also the behaviour of individual
species.

In harmful algal (HA) bloom forecasts a relationship
between phosphorus concentration and cyanobacterial blooms
has been regognized for decades (Kahru et al., 2000). Var-
ious levels of utilization of this relationship have been em-
ployed for practical and even operational purposes. These
operational estimates of cyanobacterial bloom probabil-
ity and severeness have, however, been based mostly on
the wintertime (January–February) nutrient concentration
fields and best and worst case scenarios for summer weather
conditions, without accounting for the actual weather de-
velopment and forecasts.

Janssen et al. (2004) demonstrated with model exper-
iments that a relationship between winter nutrients and
summer cyanobacterial blooms, in agreement with the in-
ferences of Kahru et al. (2000), is indeed replicated with
biogeochemical 3-dimensional numerical model.

Biogeochemical ensembles offer a quantitative tool for
the assessment of HA bloom related environmental risks
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Figure 1: Bottom topography (m) of the Baleco model.

for a wide range of applications. Ensemble forecasts have
been for long an essential tool in meteorology. In compar-
ison with a single deterministic forecast, ensembles offer
the benefit of estimates of bias, deviation and range of the
modelled variables from real life situation. It is also possi-
ble to analyze the ensembles and recognize forecasts with
low skill (Buizza, 1997).

There are several ways to dissect the ensemble. Vari-
ables can be studied by e.g. calculating the ensemble
mean, which provides an estimate of the probabilistic ex-
pectation forecast. The ensemble can also be divided into
smaller sub-ensembles to make alternative forecasts (Brankovic
and Palmer, 1997) and even individual members can be
used for prediction purposes. Ensembles can be used as a
quantitative tool for risk assessment. The potential eco-
nomic value can be much higher in many applications than
the value of deterministic forecast (Richardson, 2000).

In this work we explore the predictability of ensemble
harmful algal bloom modelling and present the usefulness
of such forecasts in environmental policymaking and risk
assessment.

2. Materials and methods

2.1. Model configuration

For forecasting we used FMI’s operational 3-dimensional
biogeochemical model, Baleco. The model consists of a
general circulation model (Marshall et al., 1997a,b) and
an ecological module. Model is realized on a spherical po-
lar grid. The bottom topography (Fig. 1) is from Seifert
and Kayser (1995). The spatial discretization is made with
minimum filter at 6 nm intervals. The grid size is 6 nau-
tical miles and the model domain reaches 120 grid cells in
latitudinal, 108 grid cells in longitudinal and 21 grid cells
in vertical direction. The model domain’s most south-
western corner is located at (53.85◦ N, 8.7◦ E). The verti-
cal resolution of the model is concentrated to the euphotic

zone so that the top most layer is 3 metres reduced to 2
metres in the cells hugging the coast (Kiiltomäki, 2008).

Ecological model is based on ecosystem dynamics for-
malized by Aksnes et al. (1995) and Tyrrell (1999). The
model consists of three conceptual phytoplankton groups:
diatoms, flagellates and cyanobacteria. These groups have
constant mortality rates and they use phosphate, silicate
and dissolved inorganic nitrogen. Diatoms are potentially
limited by availability of silicate. Cyanobacteria can fix
molecular nitrogen and therefore they are not limited by
availability on DIN. Flagellates group represent autotrophic
flagellates. Altogether the ecosystem model describes the
essence of new production in the presence of three func-
tional groups. The growth rates depend on nutrient con-
centrations, irradiation and temperature (Stipa et al., 2003).
For model equations see Appendix A.

Model runs obtained their initial state from FMI’s de-
terministic Baltic Sea forecast for the start date of the
run. The deterministic forecast’s initial conditions, both
physical and chemical, were obtained from winter moni-
toring data of the HELCOM COMBINE program for the
winter 2007–2008. The observations were interpolated in
three dimensions with a robust nearest neighbour interpo-
lation and then supplemented by climatological values for
the North Sea from the World Ocean Atlas (Boyer et al.,
2006).

2.2. Ensemble forecasts

The ensemble prediction system (EPS) is a technique
to predict the probability distribution of forecast states,
given a probability distribution of random analysis error
and model error. Ensemble forecasts are formed by sev-
eral slightly perturbed forecasts. A single forecast is called
ensemble member and all members together form an en-
semble forecast.

Ensemble forecasts include more information than sin-
gle deterministic forecast and therefore the analysis can
give us a deeper insight to many phenomena. Every en-
semble member represents one possible evolution of system
state in time and space. Therefore the variety of applica-
ble analysis approaches is very wide, when compared to
deterministic forecasts.

One of the oldest and simplest analysis methods is to
calculate ensemble mean to find out the overall trend. It is
also possible to calculate some statistical values for analy-
sis. These values can be for example minimum and maxi-
mum values, which indicates the extreme values, and 25%
an 75% quartiles, which give wider understanding of the
ensemble uncertainties. Another useful approach is to in-
terpret the percentage of ensemble members as the prob-
ability of exceeding some limiting value.

Ensembles in our study were created from an unper-
turbed initial condition by running the model several times
with different sets of weather forcing parameters. The
weather ensembles were made by ECMWF using singular
vector method (Molteni et al., 1996). Weather parameters
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used as external forcing for ocean model were 6 hourly 10
metre winds and 2 metre dew point temperature and 2
metre temperature, 12 hourly surface solar radiation and
surface thermal radiation.

2.3. Chlorophyll-a conversion

As the model gives the amount of cyanobacteria in mo-
lar amount of nitrogen (N) we have used a special C : N ra-
tio, the molar mass number of carbon (12.01) and C : Chla
ratio to calculate the chlorophyll-a concentrations in mg m−3.
Since this work concentrates on the Baltic sea, we have
used C : N = 6.3, which is based on studies made in
the area: Walve and Larsson (2007) found out that C :
N ratio in the cyanobacteria in Western Gotland basin
was 6.2–6.4 ± 0.3, highest ratio being 7.3. Another study
made by Nausch (2009) supports these values as they found
that the mean C : N ratio was 6.2 in the Eastern Got-
land basin. Carbon:chlorophyll ratio is also a non-constant
variable, which depends most of all on the algal species
studied, e.g. it is widely known that C : Chla ratio is
large in cyanobacteria. In this study we have used C :
Chla = 100, which is an approximation based on study
by Chang (2003). They found that C : chla ratio was
94.4 when cyanobacteria dominated phytoplankton. With
these configurations the chlorophyll-a (Chla) concentra-
tion in mg m−3 was calculated from the model results with
formula:

Chla =
Nc · 6.3 · 12.01

100
≈ Nc · 0.76,

where Nc is the molar mass of cyanobacteria produced by
the model. As a limit for the cyanobacterial occurrence
we used chlorophyll-a concentration of 2.0 mg m−3 which
is an approximation based on studies by Seppälä (1999),
Nausch (2004) and Kutser (2006).

3. Results

3.1. Case study: harmful algal blooms and upwelling in

the Baltic Sea, June 2008

The summer weather of 2008 was cool and windy and
thus large scale harmful algal blooms were absent. The
total algal situation can be seen in figure (Fig. 2) In long
term comparison June and August blooms were milder
than usual, in July the situation was average. In the be-
ginning of July the sea water temperature increased a few
degrees and the concentration of cyanobacteria increased
in the Gulf of Finland. Cyanobacteria was mainly mixed
in the water column. The Sea of Åland had some blooms.
From the middle July to end of July the algal blooms in-
creased first in southern Sea of Archipelago, Sea of Åland,
eastern Gulf of Finland and southern Bothnian Sea. In
the end of July the blooms were more frequent and small
blooms were present all along of the Gulf of Finland. The
summer bloom culminated in the end of July, when the
maximum extent (approximately 180,000 km2) of algae

Figure 2: Number of days with cyanobacteria observations
by NOAA-AVHRR satellite imagery during 2008 (HEL-
COM, 2009).

blooms was observed. However the normalized bloom in-
dices for bloom extent (6,575 km2), duration (4.9 days)
and intensity (32,651 km2 days) were lower than the mean
for the period 1997–2007 (HELCOM, 2009).

In our case study we observed upwelling on the west
coast of Gotland on 24th of June. We show here how dif-
ferent weather scenarios affect ocean conditions and how
ensemble forecasts see different biogeochemical phenom-
ena.

Upwelling is very often strong enough for the sea-surface
temperature be affected, and thus the low temperatures in
thin strip to the coasts are a signature of upwelling. Up-
welling can also be seen in the colour of the water and in
the abundance of sea life (Gill, 1982)

Temperature and nutrient ensembles (Fig. 5a), Fig.
5c and Fig. 5d) and cyanobacterial concentrations (Fig.
4) show an upwelling event in the area. We see that some
weather scenarios may cause upwelling while other possible
scenarios do not. Cyanobacteria ensemble (Fig. 5b) and
Algaline biomass observations (Fig. 3) support this inter-
pretation. We see that the lower cyanobacteria biomass
concentrations observed near the coast are captured by
large number of ensemble forecast members. This is an
example of how ensemble forecasting brings added insight
to our understanding of the situation.

3.2. Comparison between observations and forecast

It is desirable to evaluate the quality of a probabilis-
tic prediction system not only in terms of the intrinsic
quality of the results it produces but also in terms of cost
efficiency (Talagrand et al., 1999). In HA bloom verifi-
cation the available observational data is very sparse and
often qualitative in nature. Therefore the verification is
especially challenging.
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(a) Temperature (◦C)
(b) Cyanobacteria (mg m−3)

(c) Nitrate (mg m−3) (d) Phosphate (mg m−3)

Figure 5: Monthly ensemble forecast plumes of biogeochemical parameters limited in the time frame from the beginning
of the forecast 20th of June to 7th of July 2008 on the west coast of Gotland (18.80◦ E 57.25◦ N).

4



Figure 3: Algaline fycocyanin (blue-green algal biomass)
observations (PC fluorescence) on 1st and 2nd of July 2008
on the route from Helsinki to Travemünde. On the west
coast of Gotland the values are clearly lower.

Figure 4: Cyanobacterial ensemble mean forecast (mg
m−3) for the 1st of July from the run beginning from 20th
of June. Lower concentrations. on the coast of Gotland
(18.80◦ E 57.25◦ N) indicates upwelling.

In Fig. 6a we see the observed situation in the end of
July 2008, when the HA blooming had its peak. The obser-
vations are done by volunteers, environmental authorities
and Finnish border guards. Several kinds of observations
are combined in this Figure. Observations are mainly sen-
sory especially near the Finnish coast and there is no data
about biochemical variables during the phenomenon.

Contrast this with Figure 6b, a HAB probability map
produced from an ensemble forecast for the same time.
Unlike the observations, this map is based on probabili-
ties of quantitative values of cyanobacteria chlorophyll-a
as predicted by the model. Therefore, it is not predicting
directly the concentration of chlorophyll-a but rather the
possibility of the blooms.

From the Figures 6a and 6b we can see that in the Gulf
of Finland are several observations of blooming in the areas
where they were predicted. We can also see that in North-
ern Baltic Proper the predicted bloom area is considerably
to the East from the observed blooms. Furthermore, there
are no blooms forecasted for the Sea of Archipelago, yet
there are several observations of blooms.

4. Discussion

Large parts of Baltic Proper and Gulf of Finland are
nitrogen-limited, resulting an excess of phosphorus in the
surface layer in late summer. This excessive DIP pool has
the potential for blooms of nitrogen-fixing cyanobacteria.
That is, the potential of late summer bloom is determined
as early as February by the excessive DIP concentration in
the surface layer. This correspondence has been studied
in the beginning of the millennium by Kahru et al. (2000).
In later studies Janssen et al. (2004) have reached the
same conclusion with computational models and Lilover
and Stips (2008) on their research on observational data.

Our ensembles demonstrate the sensitivity of HABs to
nutrient fields, especially phosphate. Similarities can be
seen in the shape of computational initial phosphate field
after spring bloom in the end of May (Fig. 7b) and proba-
bility based forecast (Fig. 6b). The observed initial phos-
phate field (Fig. 7a) has similar high DIP concentrations
in the Baltic Proper and western parts of Gulf of Finland,
but concentrations in the Bothnian Sea are higher only in
the initial winter DIP field.

The initial nutrient field plays an important role in
algae growth and it appears at first that spatially the nu-
trient field is a more dominant factor in algal blooms than
weather conditions. However, during the summer the me-
teorological variables have a great impact on timing, du-
ration and intensiveness of the blooms as we see in Figure
5. For example Figure 5b shows that harsh weather con-
ditions can delay the cyanobacteria growth for weeks. It is
also seen that the concentration of cyanobacteria chloro-
phyll is strongly dependent on weather conditions.

As the initial condition data was based on somewhat
sparse wintertime observations, it is quite possible that
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(a) HA observations (b) HA bloom forecast

Figure 6: HA bloom observations and forecast. Figure 6a shows combined HA bloom observations from 22nd to 24th of
July. Red colour is for very abundant blooms, orange is for abundant blooms, green means there is some algae and blue
that there is no algae. This composite picture is based on qualitative sensory observations, there is no concentration
data included. Figure 6b shows an ensemble HA bloom forecast with limiting value of 2 mg m−3 for blooming. This is
a two week HA probability forecast formed from an ensemble run starting from 10th of July. Red colour indicates high
probability of blooms (> 75%), yellow considerable probability (50% – 75%), green moderate probability (25% – 50%)
and green low probability (< 25%).

(a) Initial observation based estimated excess phosphate field
(mg m−3)

(b) Deterministic phosphate field after springbloom (mg m−3)

Figure 7: Figure 7a shows initial exccess phosphate field interpolated and estimated from nitrate and phosphate obser-
vations made by R/V Aranda in winter 2008. Figure 7b shows phosphate field after spring bloom in the end of May
2008. Field is computed from observed initial fields by deterministic model.
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there are significant areas where observations are not reli-
able or lacking altogether and therefore cause unestimated
uncertainties in the model results. It will be interesting to
further investigate whether perturbating the initial condi-
tions could enable the quantification of the resulting un-
certainty in the forecasts. However, a perturbation scheme
for marine biogeochemical forecasts remains to be devel-
oped.

4.1. Applications

Ensemble forecasts of the marine environment have a
variety of possible applications.

Environmental indicators, derived quantities describ-
ing state of the environment in an understandable man-
ner, provide information needed for decision makers to
mitigate environmental problems. The range of decision
makers varies from individual consumers to politicians and
the indicators should be helpful in making environmental
decisions.

With ensemble forecasts it is also possible to illustrate
how weather conditions affect HA blooms. It is a well-
known fact that cold and windy weather prevents heavy
blooms while sunny and calm weather promotes them. HA
bloom maps can illustrate the probability of blooming in-
stead of absolute amount of cyanobacterial biomass.

Applications developed by working with the users and
recognizing their individual needs are essential when adding
value for ensemble forecasts.

4.2. Illustrations of probability based forecasts

Because of the large information content of ensemble
forecasts one major challenge is to communicate the results
and their uncertainties to users. In deterministic forecast-
ing we do not face these kind of problems simply because
we have too little information on the uncertainties.

Recreational users need different kind of information
than for example policy makers or commercial users. These
differences should be taken into account in communication.
There are different ways to solve the problem with proba-
bility based forecasts and in this work we have presented
some of them. For instance, commercial users may bene-
fit from the more detailed information provided by plume
graphs in Fig. 5, while recreational users appreciate the
more easily approachable map based presentation like the
one in Fig. 6b. Customization of communicated message
to suit end user needs often works for the benefit of all
partners.

4.3. Carbon–Nitrogen stoichiometry

As discussed in Section 2.3, we used C : N ratio of 6.3
for chlorophyll-a conversions. Carbon:nitrogen stoichiom-
etry is one of the most discussed topics in marine chem-
istry and no final agreement on this relationship has yet
been found. Most widely used ratio is so called Redfield
ratio, C : N = 106 : 16 = 6.625. There has been many
studies about the subject and it has been pointed out by

Arrigo (2005) that Redfield ratio is more an average than
an universal constant, and a single measurement especially
if made in coastal region can differ significantly from it.

The uncertainties in the nitrogen to chlorophyll-a con-
version has its effects also on the accuracy of the forecast
when verified against observations. Variation in conversion
values adds uncertainties which could not be observed by
this model setup. A biased conversion value will also cause
bias to the results irrespective of actual model skill.

4.4. Warning limit for HABs

In Section 2.3, we determined a chlorophyll-a concen-
tration of 2 mgm−3 as a limit for a possible visible cyanobac-
terial occurrence (see Section 2.3) Defining such a limit,
however, for cyanobacterial bloom is difficult due to the
lack of standards and especially because most bloom ob-
servations are based on visual approximation. However
there are some studies where measurements have been
done during cyanobacterial blooming in the Baltic Sea
area (Seppälä, 1999; Nausch, 2004; Kutser, 2006; Mazur-
Marzec, 2006). Kutser (2006) suggested that blooming can
be defined as chlorophyll-a concentration exceeding 4 mg
m−3. Mazur-Marzec (2006) found that chlorophyll-a con-
centration was round 10 mg m−3 or more during bloom-
ing in Gulf of Gdańsk summer 2004. Therefore, taking
into account the uncertainties in the nitroge-chlorophyll
conversion, 2 mgm−3 is a conservative limit for a level of
biomass that could be perceived as a harmful or nuisance
bloom.

5. Conclusions

Ensemble forecasting appears to be a promising tool
in operational biogeochemical oceanography. The proba-
bility based approach better illuminates the behaviour of
modelled phenomena. Stable conditions create more unan-
imous ensembles and vice versa.

Spring-time phosphorus fields are a relatively good pre-
dictor for the spatial, basin-level distribution of HAB blooms
in the summer. The spatial variation of forecasted blooms
is relatively small.

The weather conditions, however, clearly have an im-
pact on timing, duration and intensity of HA blooms. This
variation can be observed from and quantified with the en-
semble forecasts in a manner that lends itself to supporting
pre-emptive actions, at least against adverse health effects.

When developing tools for marine policy making the
quality of the modelled results should be well known and
the quantification of errors should be considered. Quan-
titative verification of the HA bloom ensemble forecasts,
however, is very challenging because of the limited amount
of observational data, and the difficulties in matching the
observed variables with the predicted variables.

Both the model’s sensitivity to initial conditions and
the challenges faced with verification suggest that HAB
modelling would greatly benefit from an increased amount
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of relevant observations. Verification would become much
easier if quantitative information about biomass concen-
trations in the Baltic Sea during the summer was available.
Gaps in the winter time phosphate monitoring measure-
ments can lead to notable shortcomings in summer’s bloom
forecasts, and would need either more observations or a
highly sophisticated assimilation scheme to fill. Should
these kind of measurements and better assimilation schemes
become available, we expect the benefits of the ensemble
approach to become even more pronounced.
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A. Ecological equations

The equations in the ecological model are

∂cd

∂t
= cd(µd − ed − mdcd) (1)

∂cf

∂t
= cf (µf − ef − mfcf ) (2)

∂cc

∂t
= cc(µc − ec − mccc) (3)

∂cN

∂t
= −cd(µd − ed) − cf (µf − ef ) − cc(−ec) (4)

∂cP

∂t
= rPN (−cd(µd−ed)−cf (µf−ef)−cc(µc−ec))(5)

∂cS

∂t
= rSN (−cd(µd − ed)), (6)

where cd, cf and cc are the biomasses of diatoms, flag-
ellate and cyanobacteria, respectively. Concentrations of
nitrogen, phosphate and silicate are cN , cP and cS . The
constant ratios for cyanobacteria nutrient intake are rPN

and rSN . Mortality rates are md, mf and mc. The spe-
cific rates of exudations are dependent exponentially on
temperature by equation ed,f,c = ea2T

0 .
The phytoplankton growth rates µd,f,c depend on nu-

trient concentrations, irradiation and temperature:

µfmax
= µf0a

dT (7)

µf = µfmax

I

I + kfI

(

cP

cP + kfP

cN

cN + kfN

)

, (8)

where I = I(z) is the illumination, µf0 is the maximum
growth rate at 0◦ C. kfP,fN = µfmax

/αfN,fP are the half
saturation functions as used by Aksnes et al. (1995) with
constant but species and limitation dependent affinities α.
I(z) depends on the amount of biomass between the depth
z and the surface (shelf-shading).

References

M. Leutbecher, T. Palmer, Ensemble Forecasting, Journal of Com-
putational Physics 227 (2008) 3515–3539.

P. F. J. Lermusiaux, Uncertainty Estimation and Prediction for
Interdisciplinary Ocean Dynamics, Journal of Computational
Physics 217 (2006) 176–199.

A. C. Redfield, The Biological Control of Chemical Factors in the
Environment, American Scientist (1958) 205.

M. Kahru, J. M. Leppänen, O. Rud, O. P. Savchuk, Cyanobacteria
blooms in the Gulf of Finland triggered by saltwater inflow into
the Baltic Sea, Marine Ecology Progress Series 207 (2000) 1318.

F. Janssen, T. Neumann, M. Schmidt, Inter-Annual Variability in
Cyanobacterial Blooms in the Baltic Sea Controlled by Winter-
time Hydrographic Conditions, Marine Ecology Progress Series
275 (2004) 59–68.

R. Buizza, Potential Forecast Skill of Ensemble Prediction and
Spread and Skill Distributions of the ECMWF Ensemble Predic-
tion System, Monthly Weather Review 125 (1997) 99 – 119.

C. Brankovic, T. N. Palmer, Atmospheric Seasonal Predictability
and Estimates of Ensemble Size, Monthly Weather Review 125
(1997) 859–874.

D. S. Richardson, Skill and Relative Value of the Ensemble Pre-
diction System, Quarterly Journal of the Royal Meteorological
Society 126 (2000) 649–667.

J. Marshall, A. Adcroft, C. Hill, L. Perelman, C. Heisey, A finite-
volume incompressible Navier Stokes model for studies of the
ocean on parallel computers, Journal of Geophysical Research
102 (C3) (1997a) 5753–5766.

J. Marshall, C. Hill, L. Perelman, A. Adcroft, Hydrostatic, quasi-
hydrostatic, and non-hydrostatic ocean modeling, Journal of Geo-
physical Research 102 (C3) (1997b) 5733–5752.

T. Seifert, B. Kayser, A high resolution spherical grid topography of
the Baltic Sea, Meereswissenschaftliche Berichte 9 (1995) 72–88.
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