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 2 

Abstract 1 

 Harmful algal blooms are now recognized as a significant threat to the 2 

Chesapeake Bay as they can severely compromise the economic viability of important 3 

recreational and commercial fisheries in United State’s largest estuary.  This study 4 

describes the development of an empirical model for the domoic acid-producing 5 

Pseudo-nitzschia species complex that will provides a first attempt at predicting the 6 

probability of potentially toxigenic blooms in the Chesapeake Bay using long term 7 

observations of cell abundance and concurrent measurements of hydrographic and 8 

chemical properties. Using a logistic Generalized Linear Model approach, it is shown 9 

that the Pseudo-nitzschia bloom threshold response defined as 100 cells mL-1 is best 10 

explained by surface values of phosphate, salinity, temperature, dissolved organic 11 

carbon, silicic acid, time of year, and the N:P ratio, where N represents nitrate plus 12 

nitrite and P is orthophosphate.  These predictors are similar to other models for 13 

Pseudo-nitzschia blooms on the west coast, suggesting commonalities across 14 

ecosystems, including the possibility of nutrient limitation as a factor for bloom initiation.  15 

While salinity tolerance limits for this group restrict the extent of blooms in freshwater 16 

reaches of tributaries where nutrient enrichment may be greatest, the implication of 17 

possible Baywide eutrophication effects on Pseudo-nitzschia blooms are discussed.  18 

Hindcasts of modeled probabilities for past bloom and non-bloom events illustrate the 19 

effects of the overall model skill that is optimized at a 10% probability threshold 20 

according to a Heidke Skill Score of 30%, a Probability of Detection ~ 69%, a False 21 

Alarm Ratio of ~76%, and a Probability of False Detection ~ 10%.   22 

 23 
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1. Introduction 1 

A subset of species in the cosmopolitan diatom genus Pseudo-nitzschia has 2 

emerged as a major player in the global theatre of harmful algal blooms (HABs), 3 

occurring on both east and west coasts of the United States (Trainer et al., 2000; 4 

Thessen & Stoecker, 2008), the Gulf of Mexico (Dortch et al., 2000; Pan et al., 2001), 5 

and throughout Europe and parts of Asia (Bates & Trainer, 2006).  In response to a 6 

coarsely understood set of environmental conditions, toxigenic Pseudo-nitzschia 7 

species are known to produce domoic acid, a potent neurotoxin that can be devastating 8 

to aquatic life (Fritz et al., 1992; Scholin et al., 2000) via trophic transfer in the food web.  9 

In humans, domoic acid (DA) exposure manifests as amnesic shellfish poisoning (ASP) 10 

following the consumption of DA-contaminated filter-feeding mollusks.  Samples of 11 

Pseudo-nitzschia spp. taken from tributaries of the largest estuary in the USA, the 12 

Chesapeake Bay, have recently been shown capable of DA production (Thessen & 13 

Stoecker, 2008 ;Thessen et al., 2009) yet to date there has been no reported incidence 14 

of major bird or marine mammal strandings nor ASP in the Bay.  However, emerging 15 

toxicological and epidemiological research suggests that chronic, sub-acute doses of 16 

domoic acid that do not cause any outward signs of intoxication may cause neuropathic injury to 17 

vertebrates (Levin, 2006; Ramsdell & Zabka, 2008) but that neuropathic injury may result 18 

from subacute doses (Lefebvre et al., 2007).  For humans, this implies the potential for 19 

serious neurological health risks associated with repeated exposure to low levels of 20 

domoic acid in coastal communities with an established culture of shellfish consumption 21 

(Grattan et al., 2007).  Furthermore, the accumulation of domoic acid in sediments after 22 

the demise of a surface bloom may reverberate throughout the ecosystem via 23 

accumulation of toxins in benthic food webs and turbulent re-mixing events (Thessen et 24 
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al., 2009).  Clearly, there are significant benefits to extending HAB predictions from 1 

ecosystem models into the public health arena (Dyble et al., 2008). 2 

Human-driven nutrient enrichment, or cultural eutrophication, is a contentious 3 

factor driving the apparent global increase in HAB frequency and intensity (Hallegraeff, 4 

1993; VanDolah, 2000; Anderson et al., 2002; Glibert et al., 2005; Heisler et al., 2008; 5 

Anderson et al., 2008).  A number of questions are relevant to systems where 6 

eutrophication has been shown to be a major influence on HABs.  These include the 7 

expected effects of nutrient stoichiometry (reviewed in Anderson et al. 2002; Glibert et 8 

al., this issue), potential changes in ratios of dissolved organic carbon to dissolved 9 

organic nitrogen (DOC: DON; Paerl, 1988; Anderson et al., 2002) and resultant 10 

increases in the probability of toxin production by certain species, such as those within 11 

the Pseudo-nitzschia genus (Davidson and Fehling, 2006; Pan et al., 1996).  With 12 

increased nutrient inputs from runoff come reduced Si:N and Si:P ratios (reviewed in 13 

Anderson et al. 2002), a factor shown to contribute to and/or be associated with 14 

increases of Pseudo-nitzschia abundance and domoic acid production (Pan et al., 1996; 15 

Fehling et al., 2004; Parsons &  Dortch, 2002; Anderson et al., 2006).  Whereas most 16 

diatoms only thrive under Si-replete conditions, some Pseudo-nitzschia species appear 17 

to be favored by Si-limitation and certainly tend towards toxicity under the most extreme 18 

Si-limitation (Pan et al., 1996, 1998).   19 

In the Chesapeake Bay, where HABs are common, diverse, and may be 20 

increasing in frequency, Glibert et al. (2001) documented a direct relationship between 21 

nitrogenous fertilizer use in the Bay watershed in spring and the onset of potentially 22 

toxic Prorocentrum minimum blooms.  Pseudo-nitzschia spp. on the west coast 23 
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generally bloom in response to surface macronutrient increases after natural, coastal 1 

upwelling events (Trainer et al., 2000; Anderson et al., 2006; Kudela et al., 2005; 2 

Garcia-Mendoza et al., 2009; Lane et al., accepted) and could respond to similar pulses 3 

from spring runoff in the Chesapeake Bay (Heisler et al., 2008).  Furthermore, recent 4 

laboratory and field experiments link organic forms of nitrogen, such as glutamine and 5 

urea, to sustained bloom events in an upwelling region and even enhanced production 6 

of DA by toxigenic species of Pseudo-nitzschia (Howard et al., 2007; Kudela et al., 7 

2008).  In the Gulf of Mexico, time series of Pseudo-nitzschia spp. from sediment cores 8 

document increasing cell abundance in association with increased nutrient input from 9 

Mississippi River runoff (Parsons et al. 2006).  Nonetheless it remains unclear if highly 10 

eutrophied bays and estuaries experience significantly more Pseudo-nitzschia blooms 11 

or DA events than coastal upwelling systems (Dortch et al., 1997; Cochlan et al., 2008).  12 

Long-term hindcasts and forecasts from predictive models of HABs will be extremely 13 

useful for understanding climate and land-use change effects on the frequency and 14 

magnitude of potentially deleterious algal blooms in the eutrophied Chesapeake Bay 15 

region (Kemp et al., 2005). 16 

 We present here our efforts to develop a threshold-based, empirical model that 17 

aims to reliably predict the probability of Pseudo-nitzchia spp. bloom occurrence (and by 18 

extension the potential for domoic acid production) from a long-term monitoring dataset 19 

for the Chesapeake Bay.  Currently, no such model exists for Pseudo-nitzschia on the 20 

east coast, despite the obvious importance of having such predictive capabilities in 21 

place.  While the methods used to develop statistical models for estimating the 22 

distribution of harmful algae and pathogens are not new in scientific application, they 23 
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are now more widely employed and accepted in ecological forecasting. A fully 1 

operational alert system that combines satellite imagery, numerical models, and a rules-2 

based biological model is running in the Gulf of Mexico for the aerosolized toxin-3 

producing, toxic Karenia brevis blooms (Stumpf et al., 2003; Tomlinson et al., 2004).  4 

Accompanying this trend are rapid advances in the development of dynamically-5 

downscaled regional products for forecasting the physical and biogeochemical states of 6 

coastal ecosystems (e.g. Moore et al., 2002; Chai et al., 2002; Fennel et al., 2006; Chao 7 

et al., 2008; Allen et al., 2008; Xu & Hood, 2006).  A system has been implemented that 8 

predicts the likely distribution of sea nettles (Chrysaora quinquecirrha), the toxic 9 

dinoflagellate Karlodinium veneficum, and Vibrio cholerae in the Chesapeake Bay 10 

based on habitat suitability and hydrodynamic models (Decker et al., 2007; Constantin 11 

de Magny, 2009).   On the west coast, investigators are building upon earlier statistical 12 

models (Blum et al., 2006) for predicting the likelihood and toxicity of Pseudo-nitzschia 13 

blooms from a suite of hydrographic and nutrient inputs in the Monterey Bay (Lane et 14 

al., 2009) and the Santa Barbara Channel (Anderson et al., 2009).  The goal of the 15 

present study is to 1) identify the physico-chemical predictors of regional Pseudo-16 

nitzschia spp. blooms, 2) develop and validate a predictive habitat model based on 17 

these environmental predictors that can be employed to predict the probability of 18 

occurrence of these blooms in the Chesapeake Bay, and 3) present hindcasts of past 19 

Pseudo-nitzschia blooms generated from coupling the habitat model with a regional 20 

hydrodynamic and nested ecosystem model. 21 

 22 

 23 
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2. Materials and Methods 1 

 Long- term data on surface phytoplankton abundance and surface water quality 2 

were acquired from the Maryland Department of Natural Resources (MD DNR) and US 3 

EPA Chesapeake Bay Program (US EPA-CBP) from the tidal waters of Chesapeake 4 

Bay and its tributaries.  There were historical data for 30 stations within the mainstem 5 

Bay and 12 tidal estuarine tributaries covering the period 1985-2007 (N=6,989; Fig. 1), 6 

though somewhat patchy both spatially and temporally due to the often event-response 7 

nature of data collection and the requirement of daily matchups between water quality 8 

and cell count data.  Because these data are derived from a monitoring program and 9 

were not collected with the purpose of creating predictive models, biases in space and 10 

time make it a less than ideal dataset despite the long time period and effort 11 

represented.  The data subset used for model development included the monthly suite 12 

of water quality parameters collected within one day of generic Pseudo-nitzschia spp. 13 

cell abundance records at 30 sites across the broad range of salinities represented 14 

within the Chesapeake Bay.  The poly- and oligo- haline regions are the most 15 

comprehensively represented salinity regimes in the pre-selected dataset, with fewer 16 

observations available for the mesohaline, or middle portion of the Bay due to difficulties 17 

in acquiring a high-confidence dataset with (Fig. 1).  While Virginia and Maryland 18 

taxonomists both used the Utermöhl method for the inverted light microscope (Hasle, 19 

1978), they also used different counting methodologies prior to 2005 (US EPA 20 

Chesapeake Bay Program, 2007).  However, we do not expect this to significantly affect 21 

abundance counts of large cells (~10 µm), such as Pseudo-nitzschia spp.  Additionally, 22 

due to changes in taxonomic status for the Pseudo-nitzschia group over the study 23 
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period and difficulties with species identification using classic light microscopy, model 1 

development (Section 3.1) is focused on Pseudo-nitzschia spp. with no distinction 2 

between the various individual toxigenic and non-toxic species recorded for the 3 

Chesapeake Bay (Marshall et al., 2005); (Thessen & Stoecker, 2008).   4 

Monthly freshwater discharge data (ft3 sec-1) were acquired from USGS River 5 

Input Monitoring Program (http://va.water.usgs.gov/chesbay/RIMP/index.html) and geo-6 

referenced with the phytoplankton monitoring stations for accurate match-ups.  Note 7 

that there are no discharge data for 1984, only 1985 forward. For some stations, 8 

negative discharge values are reported, in which case, we eliminated those 9 

observations. Discharge data for stations CB6.4 and CB7.3E were not available, but 10 

due to their proximity to the Mattaponni River, those discharge data have been 11 

substituted for those observation matchups.  12 

 13 

3.  Modeling Approach 14 

3.1  Model Development 15 

A suite of 21 physical and chemical variables made publically available by the 16 

MD DNR and US EPA-CBP long-term water quality monitoring programs was chosen to 17 

examine conditions associated with regional variability in Pseudo-nitzschia spp. 18 

abundance (Table 1).  Past studies for the Pseudo- nitzschia genus used Ordinary 19 

Least Squares (OLS) regression to model cell abundance and toxin concentration (Blum 20 

et al., 2006; Anderson et al., 2009) or logistic regression to model cell abundance (Lane 21 

et al., 2009) as a function of physico-chemical and other environmental properties.  In 22 

this case, as in Lane et al. (2009), we are interested in only the presence or absence of 23 

http://va.water.usgs.gov/chesbay/RIMP/index.html
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‘bloom’ levels of Pseudo-nitzschia spp. (hereafter referred to only as Pseudo-nitzschia).  1 

The response variable for cell abundance was transformed to a binary variable using an 2 

operational ‘bloom’ threshold value of 100 cells mL-1 for Pseudo-nitzschia, a value that 3 

is likely associated with increases in ecosystem effects on the west coast and which 4 

allows us to avoid further difficulties when attempting to predict absolute cell abundance 5 

(Westberry & Siegel, 2005; Anderson et al., 2009; Lane et al., 2009).   6 

Bloom occurrence is a binary variable which rarely follows a Gaussian (Normal) 7 

distribution and renders OLS linear regression an unsuitable model.  Instead, we used 8 

the Generalized Linear Model (GLM; McCullagh & Nelder, 1989; Fox, 2002; Agresti, 9 

2007), a regression-based approach that allows for several non-Gaussian distributions 10 

in addition to the OLS linear regression.  The GLM for binary data is often referred to as 11 

logistic regression and assumes that the binary response follows a Bernoulli distribution 12 

or the closely-related binomial distribution.  The GLM relates a transformation of the 13 

response (‘bloom’ occurrence) to a linear combination of the explanatory variables.  The 14 

transformation is referred to as the logit link function for binary variables and transforms 15 

the expectation of the response to the linear predictor as: 16 

                                              loge [p/(1-p)] =0 + 1xi1 + …. + kxik,                                             (1) 17 

 18 

 where the term p/(1-p) represents the odds of a ‘bloom’ event,0 is the intercept, and i 19 

represents the regression coefficient for each explanatory variable xi.  Thus, the binary 20 

GLM simply models the log odds of an event as a linear combination of the explanatory 21 

variables.  Solving for p, the expected value or probability of a bloom is then described 22 

by: 23 
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 1 

                                         p = Pbloom = e(logit)/[e(logit) + 1].                                     (2) 2 

 3 

A forward stepwise approach was used to determine the final model with 4 

reduction in deviance used to assess the relative importance of parameters in the 5 

model.  Explanatory variables were added to the model individually, with the parameter 6 

leading to the largest statistically significant (at the 5% level,  = 0.05) reduction in 7 

deviance being added at each successive step.  To assess the influence of the annual 8 

cycle on environmental variables, hypothesis testing was performed twice, once with 9 

raw data values, and again with anomalies of all variables whereby monthly 10 

climatological means for each station are removed from the observations.  Explanatory 11 

variables were also lagged from one to three months relative to the response variable in 12 

the GLM to test for significant lead/lag relationships.   13 

3.2  Model Validation 14 

The resulting logistic GLM was tested using cross-validation.  For each year, 15 

predictions were made from the model fitted to all years excluding the one for which 16 

data were predicted.  This process was repeated for each year of data to produce 17 

cross-validation model predictions.  Predictions from the model come in the form of 18 

probabilities, such that a probability threshold is required for determining bloom from 19 

non-bloom conditions. Rather than setting this probability (or “prediction point” as 20 

expressed in Lane et al., 2009) to an arbitrary value of 50%, it is appropriate here for 21 

extreme, episodic blooms to optimize the threshold in order to determine a relevant 22 

probability for defining a possible bloom event.  Specifically, we optimized this value 23 
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relative to the probability of detection (POD), the false alarm ratio (FAR), the probability 1 

of false detection (POFD) and the Heidke Skill Score (HSS; Heidke, 1926; Sohn & Park, 2 

2008).  These are defined as follows: 3 

 4 

                          POD = (correct hits)/(correct hits + false negatives),                             5 

(3) 6 

 7 

where correct hits are the equivalent of correct bloom predictions and false negatives 8 

where bloom observations were predicted by the model to be non-blooms.  POD is a 9 

component of the widely-used Relative Operating Characteristic (ROC; e.g. Lane et al., 10 

2009) :  11 

 12 

                          FAR = (false positives)/(correct hits + false positives),                          13 

(4) 14 

 15 

where false positives are non-bloom observations over-predicted as blooms by the 16 

GLM; and 17 

 18 

                         POFD = (false positives)/(correct negatives + false positives).               19 

(5) 20 

 21 
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where correct negatives are correctly predicted non-bloom observations.  POFD is also 1 

an important aspect of the ROC and describes the proportion of non-bloom events that 2 

were falsely predicted to be blooms. 3 

HSS is a generalized skill score that takes into account artificial predictability 4 

based on chance statistical relationships between parameters in the model and is an 5 

alternative to the more general ‘true skill’ for describing model performance but more 6 

stringent in terms of not giving credit for predicting climatological values (Davis, 1976; 7 

Siegel & Dickey, 1986; Song & Haidvogel, 1994; Anderson et al., 2009).  HSS values 8 

are functionally equivalent to Cohen’s , range from –∞ to 1, and can be represented by 9 

the formula: 10 

 11 

HSS = [(correct hits + correct negatives) – (expected correct)random]/ 12 

                                                                                    [N – (expected correct) random]               13 

(6) 14 

 15 

where the expected number of correct predictions is expressed as: 16 

 17 

(expected correct)random = 1/N [(correct hits + false negatives)(correct hits + false 18 

positives) + (correct negatives + false negatives)(correct negatives + false positives)]                                19 

(7). 20 

 21 



 14 

For each year in the cross-validation, the probability threshold is optimized for the POD, 1 

FAR, POFD, and HSS (R, version 2.7.0).  Overall model performance is expressed as 2 

the mean of these iterated results.     3 

 4 

4. RESULTS 5 

           4.1 Observations 6 

 Over the 22-year period for which we acquired Pseudo-nitzschia abundance 7 

data, very large bloom events are highly episodic in the region (Fig. 2).  Mean 8 

abundance was 53 cells mL-1 over the range 0 - 1.9 x 104 cells mL-1 for all 30 stations.  9 

This maximum is consistent with other Pseudo-nitzschia observations (Thessen & 10 

Stoecker, 2008) and the recently noted increases in diatom abundance observed for the 11 

Bay (Marshall et al., 2005).  The largest bloom on record for the three stations shown in 12 

Figure 3 occurred in 1998 and reached over 5.0 x 103 cells mL-1 and 1.8 x 104 cells mL-1 13 

at stations CB5.1 and CB6.4, respectively (Fig. 2, Table 2), far exceeding the ‘bloom’ 14 

threshold of 100 cells mL-1 employed in the predictive logistic model. These 15 

concentrations of 103 to 104 cells mL-1 are comparable to the largest blooms observed 16 

on the west coast where domoic acid poisoning is a recurring threat to living resources 17 

and human health.  When transformed to a binary bloom variable, the Pseudo-nitzschia 18 

abundance data set contains 6,522 non-bloom and 733 bloom samples (Table 2).  The 19 

majority of blooms in the record occur in the middle and lower bay- mouth region 20 

(stations CB5.1, CB6.1, CB6.4, CB7.3E, CB7.4) with notable hotspots for bloom 21 

development in tidal estuarine zones (EE3.0, EE3.3, LE1.1, LE3.1, LE2.2, RET1.1; Fig. 22 

1, Table 2).  Locations with the largest variability in bloom occurrence are the middle 23 
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and lower bay stations as well as the downstream Patuxent River sites (LE1.1, LE1.3, 1 

RET1.1), the downstream Potomac River sites (LE2.2, RET2.1, RET2.2, RET2.4), the 2 

eastern bay estuarine stations EE3.0 and EE3.3, and the Patapsco River mouth in the 3 

north of the Bay (WT5.1; Table 2).   4 

Although several large blooms were recorded for the lower Bay during the 1980s 5 

and 1990s, blooms at the mouths of major tributaries such as the Potomac (LE2.2), 6 

Choptank (ET5.2), and Patuxent Rivers (LE1.3) are relatively small and infrequent prior 7 

to 1997 at which point the lower bay and tidal estuaries appear to become synchronized 8 

in terms of bloom timing, but not necessarily intensity (Fig. 2).  This potential lag 9 

between the lower bay stations (CB6.1, CB6.4, CB7.3E, CB7.4) and the middle/upper 10 

bay over the study period could signify the introduction of oceanic seeding populations 11 

transported through the mouth of the Chesapeake Bay northward into the estuary 12 

proper (Marshall et al., 2005; McGillicuddy Jr. et al., 2005) where they may persist at 13 

depth until an upwelling or mixing event occurs and brings them to the surface (Mengelt, 14 

2006).  Alternatively, the observed relationship could suggest an evolution of conditions 15 

desirable for Pseudo-nitzschia blooms, such as eutrophication, in the mesohaline 16 

middle reaches of the bay beginning in the late 1990s (Glibert et al., 2001; Marshall et 17 

al., 2005).  Any likely relation to the persistent cold conditions observed since 1997 in 18 

the tropical Pacific will need further exploration (Wang et al., 2009.)   19 

Data collected at stations along a broad salinity gradient from the North Bay near 20 

the Susquehanna River to the South Bay mouth to the Atlantic Ocean demonstrate a 21 

positive trend of increasing bloom frequency and intensity with increasing salinity (Fig. 22 

3).  No Pseudo-nitzschia cells were recorded at the most oligohaline station (Fig. 3) just 23 



 16 

south of the Susquehanna River delta (0.5-5 ppt; CB2.1), whereas the typically 1 

mesohaline (5-18 ppt; CB5.1) and polyhaline (>18 ppt; CB6.4) stations experienced 2 

seasonal blooms with large interannual variability and a greater frequency and intensity 3 

of blooms at the most saline station (Fig. 3).  These patterns are consistent with 4 

expected salinity requirements for a marine diatom (Hasle & Syvertsen, 1996; Thessen 5 

et al., 2005) and corroborate observational data on the low temperature and high 6 

salinities associated with the presence of Pseudo-nitzschia populations in the 7 

Chesapeake Bay (Thessen & Stoecker, 2008). 8 

 9 

4.2  Pseudo-nitzschia Bloom Likelihood Model 10 

Correlations between environmental variables and the response variable 11 

Pseudo-nitzschia cell abundance indicate a weakly significant relationship between 12 

temperature (r = -0.10), salinity (r = 0.12), orthophosphate (PO4; r = -0.10), nitrate (NO3; 13 

r = -0.07), and silicic acid (Si(OH)4; r = -0.08; α = 0.05 level; Table 1, Table 3, Fig. 4).  14 

The correlation between Pseudo-nitzchia cell abundance and river discharge is not 15 

significant (r = -0.03).  However, it is expected that nutrient concentrations and salinity 16 

are biologically-relevant proxies for the effects of freshwater runoff into the Bay that 17 

incorporate the effects of precipitation and discharge.  Cell abundance is generally 18 

highest from 5-27°C with an apparent temperature optimum near 10°C, 5-28 psu with 19 

an apparent salinity optimum near 15 psu, and at low nutrient concentrations (Fig. 4).  20 

However, it should be noted that the nutrient concentration range (Fig. 4) indicates a 21 

highly-eutrophied system where concentrations are rarely limiting to phytoplankton.  22 

These correlation values are generally consistent with the results of the logistic GLM 23 
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that significantly associates ‘blooms’ of Pseudo-nitzschia (threshold = 100 cells mL-1) 1 

with PO4, salinity, temperature,  dissolved organic carbon (DOC), Si(OH)4, month of the 2 

year, and the NO3 + NO2 to PO4 molar ratio (abbreviated N:P; Table 1, Fig. 4, Table 4).  3 

Despite the fact that climatological anomalies of all variables were tested during model 4 

development to account for seasonality in the parametric effects, the final model that 5 

best captures the environmental thresholds that drive Pseudo-nitzschia blooms is the 6 

model built from the raw data, retaining a seasonal signal within the parameters and 7 

including month as a significant predictor.  Likewise, lag effects were not found to be 8 

significant for any of the explanatory variables tested. 9 

In agreement with a previous study (Thessen & Stoecker, 2008) and explaining 10 

the negative relationship between blooms and month of the year, the majority of bloom 11 

events occurred in winter and spring months (76% for Jan-May) when surface nutrient 12 

enrichment from storm-induced mixing and runoff should be greatest.  The nutrient 13 

parameter PO4 is the most significant predictor in the model and is negatively 14 

associated with the Pseudo-nitzschia bloom index, indicating a connection between 15 

Pseudo-nitzschia blooms and P-limitation or simply the biological drawdown of PO4 in 16 

the presence of blooms.  A significant positive relationship with salinity and negative 17 

relationship with temperature (Table 4) again implies physical tolerance limits and 18 

seasonality that are expected for this diatom group and have been observed for 19 

Pseudo-nitzschia in the Chesapeake Bay (Pan et al., 1993; Thessen & Stoecker, 2008).  20 

The inclusion of DOC as a significant predictor in the GLM is particularly interesting 21 

given its connection to riverine inputs (e.g. Doering et al., 1994; McKenna, 2004) and 22 

the previously observed associations between Pseudo-nitzschia blooms and river 23 
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discharge or potential proxies of runoff on the west coast (Kudela et al., 2004; Anderson 1 

et al., 2009; Lane et al., 2009).  For Si(OH)4, there is an inverse relationship with 2 

blooms as was seen with PO4, resembling the previously observed association between 3 

Pseudo-nitzschia blooms and the onset of Si-depletion in other regions and experiments 4 

(Sommer, 1994; Marchetti et al., 2004; Anderson et al., 2006; Lane et al., 2009).  The 5 

least significant explanatory variable is the N:P ratio that is included in the model only 6 

when nitrite (NO2) is accounted for in the nitrogen pool, because variability in nitrate 7 

alone is not significantly associated with Pseudo-nitzschia blooms in the GLM.  A 8 

negative relationship with NO3+NO2 availability relative to PO4 may point to N-limitation 9 

as a weak bloom driver or could indicate that N-uptake by surface blooms leads to 10 

depletion of both the NO3 and NO2 pools, rather than to NO2 regeneration, which is 11 

expected during more N-replete conditions (Bode et al., 2002; Lomas et al., 2000). 12 

 13 

  4.3  Model Performance 14 

 The boxplot in Figure 5 shows the probability of a bloom as predicted by the 15 

logistic GLM split into bloom (median = 16%) and non-bloom (median = 0.08%) events, 16 

again defined by transforming raw cell abundance to a binary bloom variable using the 17 

100 cells mL-1 threshold.  The low predicted probability of blooms reflects the rarity of a 18 

bloom event (the observed probability of a bloom event is 6.7%) and the relatively weak 19 

relationship between the explanatory variables as well as the choice of threshold.  20 

Points falling outside of the 95th percentile whiskers in the boxplot denote outlier points, 21 

or in the case of the non-bloom observations, the false positive predictions (i.e. model-22 

predicted blooms where no blooms were observed).  Model fits for a logistic regression 23 
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cannot be assessed using a coefficient of determination (R2) as is often done in the 1 

case of OLS linear regression, however ‘pseudo R2’ measures are available such as the 2 

one suggested by Nagelkerke (1991) that can be applied to the logistic GLM and very 3 

roughly translates to the proportion of variability explained by the model.  The pseudo-4 

R2 for the Pseudo-nitzschia GLM is 9.7%.  5 

If the GLM were applied in a nowcast or forecast mode, it would be necessary to 6 

further define a bloom based on the probabilities generated by incorporating real-time, 7 

near real-time, or forecasted environmental parameters.  If a default ‘bloom’ probability 8 

threshold of 0.50 is employed to define a Pseudo-nitzschia bloom, then the POFD 9 

(Table 5) is very low (0.003) but the POD is also low (0.01).  While a low POFD is 10 

desirable, a low POD is highly undesirable, and it is clear from this scenario that a 11 

bloom threshold probability of 0.5 is far too high and leads to a severe under-estimation 12 

of bloom events.  Since our goal is to maximize the model predictive skill (in this case, 13 

HSS) and consequently maximize the POD while minimizing the FAR and the POFD, 14 

we have optimized the probability threshold according to these metrics (Fig. 6).  By 15 

doing this, we balance the need to predict potentially harmful blooms with the 16 

inconvenience of incorrectly predicting a bloom.  Using this method, we chose the 17 

maximum POD and minimum FAR that correspond to the top 10% of HSS values, 18 

resulting in an optimized bloom probability threshold of 0.10 to achieve an HSS of 19 

~0.30,  POD of ~ 0.69, FAR at ~0.76, and POFD at ~0.10 (Fig. 6, Table 5).   20 

 21 

 22 

4.4  Model Cross-Validation 23 
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In order to maximize skill in the GLM, the model presented above was developed 1 

using all available data (n=5,121) rather than split into training and validation groups as 2 

is often done in the absence of an independent validation data set.  Cross-validation of 3 

the GLM was then performed by excluding a single year of data for the model fitting and 4 

making predictions for the excluded year from this model.  This process was iterated for 5 

each year in the time series and model performance for each iteration was calculated 6 

according to the optimization method described earlier for a 0.10 bloom probability 7 

threshold.  Cross-validation of the GLM yields the following performance metrics: HSS 8 

~0.31, POD ~ 0.69, FAR ~0.76, and POFD ~0.10, and Nagelkerke’s R2 ~0.10 (Table 5).  9 

These cross-validation results are consistent with the performance metrics given above, 10 

indicating consistency in the hindcasts across years, where the most variability 11 

explained by the model is ~10%, with an approximately 69% chance of correctly 12 

predicting a bloom. 13 

 14 

4.5  Pseudo-nitzschia Bloom Prediction Maps 15 

Hindcast maps of Baywide bloom probabilities were created using spatial 16 

interpolation of physico-chemical observations relevant to the logistic GLM for Pseudo-17 

nitzschia blooms for the period 1990-2007 (Prasad et al., 2009).   The maps illustrate 18 

bloom probabilities interpolated according to the Chesapeake Bay Regional Ocean 19 

Model System (ChesROMS) grid over that time period (Fig. 7).  Ideally, modeled 20 

hindcasts of surface PO4, salinity, temperature, DOC, and Si(OH)4, are paired with 21 

month index to calculate bloom probabilities at 4.5-km2 horizontal resolution according 22 

to the empirical GLM algorithm: 23 
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 1 

logit =  -1.84 – 69.5*PO4 + 0.101*Sal – 0.063*Temp + 0.306*DOC – 2 

            0.373*Si(OH)4 – 0.078*Month – 0.753*N:P,                                                      (8) 3 

 4 

where the probability of a bloom (Pbloom) follows eq. (2).  Unfortunately, DOC 5 

measurements are not available for many of the tributary monitoring sites, precluding 6 

computation of the full GLM from eq. (8) for most months.  To illustrate the difference in 7 

outcomes between hindcasts that incorporate DOC (and thus have limited tributary 8 

coverage) verses hindcasts that employ a GLM with the DOC parameter removed, both 9 

hindcast scenarios for a data-replete month (November 1993) are presented in Figure 7 10 

using eq. (8) and the alternative logit algorithm, 11 

 12 

logit = 0.016 – 106*PO4 + 0.083*Sal - 0.058*Temp – 0.106*Si(OH)4 – 0.082*Mo  13 

            – 1.05*N:P.                                                                                                               14 

(9) 15 

 16 

It appears that the inclusion of DOC is important for predictive skill based on differences 17 

in the probability range generated by the logit with and without DOC (Fig. 7a) but may 18 

not have profound impacts on the overall patterns of bloom prediction.  The month of 19 

November falls within a non-bloom period, as is shown for November 1993 by by both 20 

models, which assign low probabilities (i.e. at or below the optimized 10% probability 21 

threshold) to the oligohaline and polyhaline regions where observations are in the 0-50 22 

cells mL-1 range.  For the mesohaline region, on the other hand, both GLM’s predict the 23 

potential for blooms by assigning bloom probabilities of 10-16% and 10-14% when 24 
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using the GLM with DOC (eq. 8) and the GLM without DOC (eq. 9), respectively.   1 

Predicted bloom likelihood for this region, however, cannot be adequately evaluated 2 

using the available suite of observations for November 1993.  An alternative may be the 3 

use of river discharge data as a proxy for DOC since it emerged as a significant 4 

predictor in GLM development but was outcompeted by DOC in the final model.   5 

For the entire 17-year period, we compared gridded hindcast maps generated 6 

from the alternative GLM from eq. (9) with the distribution of Pseudo-nitzschia 7 

abundance observations.  Figures 7b, c present two of these hindcasts: a large bloom 8 

event in March 1998 (see also Fig. 2) and a non-bloom event in August 2005 when 9 

there were no Pseudo-nitzschia recorded in the phytoplankton dataset.  The distribution 10 

of observations above the 100 cells mL-1 bloom threshold is generally well-captured by 11 

the alternative GLM which assigns probabilities between 10-20% to the cluster of 12 

observations at or above 1,000 cells mL-1 in the lower bay (Fig. 7b).  For one bloom-13 

level observation in the middle mesohaline region of the Bay, the GLM assigned a 14 

probability just below the optimized 10% probability threshold (Fig. 7b), thus 15 

underestimating the potential for a bloom in this zone where few observational data 16 

were available for GLM construction.   Conversely, very low probabilities were predicted 17 

throughout the Bay during the non-bloom event of August 2005, reflecting the absence 18 

of Pseudo-nitzschia in the cell abundance records for that month (Fig. 7c).  What is 19 

most evident for all hindcasts (not shown) in the study period is the general ability for 20 

the GLM to capture the seasonal and interannual variability in bloom presence and 21 

intensity.  However, the GLM also tends to underestimate bloom presence in portions of 22 

the Bay typified by the lower end of the mesohaline salinity range (5-10 psu), 23 
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particularly where the salinity gradient is strong near the mouths of the Potomac, 1 

Choptank, and Patuxent Rivers during the spring bloom months.  This is expected given 2 

the fairly high FAR presented in the cross-validation results and the fact that the GLM is 3 

strongly driven by a positive relationship between salinity and blooms.  In other words, 4 

the GLM may not be sensitive enough to predict all blooms in the fresher, tidal 5 

tributaries, a factor that is certainly contingent on placement of the probability threshold 6 

(Fig. 6).  Since the GLM does better at capturing major bloom events in the lower and 7 

eastern Bay by assigning higher bloom probabilities (> 10%) to those areas in the 8 

meso- and polyhaline portions of the Bay most often affected by episodic Pseudo-9 

nitzschia blooms (Thessen & Stoecker, 2008), the 10% probability threshold may be 10 

most appropriate for this region.  While development of separate models for the upper 11 

and lower portions of the Bay may help reduce false positives, the best, publically-12 

available dataset for Pseudo-nitzschia is limited (and biased) by a disproportionate 13 

number of stations in the meso- and oligo-haline portions of the Bay. 14 

 15 

5. Discussion 16 

Model results presented here for Pseudo-nitzschia blooms in the Chesapeake 17 

Bay join the growing effort to create and validate empirical habitat suitability models for 18 

species or groups of biogeochemically important or potentially deleterious pathogens, 19 

microbes, zoonotic diseases, and planktonic organisms (e.g. Patz et al., 2008; Decker 20 

et al., 2007; Constantin de Magny et al., 2008; Iglesias-Rodriguez et al., 2002; Blauw et 21 

al., 2006).  An inherent constraint of these ecological forecasting models is the 22 

explanatory power of the available predictor variables, which in this study were limited 23 
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to a standard array of hydrographic data and chemical constituents from long-term 1 

water quality monitoring programs in an ecologically complex estuarine system.  This 2 

complexity presents challenges for forecasting biological processes in the absence of 3 

strong physiological data to support mechanistic modeling.  Great strides have been 4 

made in this direction for at least one group of HABs in the mid-Atlantic region 5 

(McGillicuddy Jr. et al., 2003; McGillicuddy Jr. et al., 2005).  However, pressing human 6 

health issues drive the need for statistical forecasting methods that take advantage of 7 

data currently in existence to glean process and predictive understanding and build 8 

models for a variety of HABs and toxic agents (Moore et al., 2008).  To that end, the 9 

approach described herein marks the first such attempt for the Pseudo-nitzschia genus 10 

on the U.S. eastern seaboard, utilizing one of the few long-term HAB datasets in the 11 

world.   12 

 13 

5.1  Performance of the Pseudo-nitzschia Bloom GLM 14 

Predictive success for the GLM depends in part on our chosen threshold for 15 

defining a ‘bloom,’ both in creating the binary variable for the logistic regression and 16 

determining a relevant probability threshold for forecasting blooms from model output.  17 

The optimization method for choosing a probability threshold (Fig. 5) allows the user to 18 

adjust the operational probability according to the relative weightings of the various 19 

performance metrics.  A variety of metrics aided in the evaluation of GLM performance: 20 

HSS, POD, FAR, and POFD.  Optimizing according to the skill score results in a 69% 21 

success rate (POD), a 76% false positive rate (FAR), and 10% false negative rate 22 

(POFD) for the cross-validated results (Fig. 6, Table 5).  A Nagelkerke’s R2 of 9.7% 23 
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reflects the overall weak relationship between the environmental variables and bloom 1 

events seen in Table 3 and indicates the limitations that this model may present without 2 

future tuning and validation.  It further points to the potential influence of driving factors 3 

that are from this analysis, in particular the inclusion of organic nutrients and trace 4 

metals. 5 

Relative to Pseudo-nitzschia-specific predictive models for the west coast, this 6 

GLM slightly underperforms in its ability to correctly predict blooms for the Chesapeake 7 

Bay with a 69% probability of correct bloom prediction (cf. 75-89%; Anderson et al., 8 

2009; “sensitivity” in Lane et al., 2009) and a high FAR of 76%.  In terms of error types, 9 

minimizing POFD over FAR is arguably more desirable in the context of protecting 10 

human health since the perceived or actual damage from missing a potential health 11 

threat would be worse than a false alarm scenario.  In that sense, this model does 12 

perform well at the optimized bloom probability threshold of 10%.  However, 13 

management use of such threshold models ultimately requires a keen understanding of 14 

this conditionality (see Fig. 6) along with an adaptive strategy for implementation that 15 

takes into account model and threshold sensitivity within different zones of the Bay as 16 

well as emerging data on the risks of both acute and chronic exposure to domoic acid 17 

toxins (Erdner et al., 2008).  In any case, it is expected the predictions would be paired, 18 

at least initially, with microscopic examination of water sampled from the predicted 19 

bloom site for confirmation. 20 

In addition to the explanatory content of model predictors, developing the GLM 21 

for Pseudo-nitzschia blooms requires several key assumptions about the data that may 22 

reduce predictive success.  The first is the taxonomic fidelity of the microscopic 23 
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identifications in the available monitoring observations that can skew results of a 1 

predictive model should incorrect assignments exist.  To minimize this problem, we 2 

limited the majority of observations to those collected by a single taxonomist whenever 3 

possible (W. Butler, pers. comm.); this excludes data from the four lower bay sites that 4 

were required for full bay coverage.  A second assumption is that all species of Pseudo-5 

nitzschia bloom in response to similar ecological conditions or occupy the same niche 6 

space.  There are nine species capable of producing domoic acid in the Pseudo-7 

nitzschia genus, and of the eight species present in the Chesapeake Bay (Marshall, 8 

1980, 1994; Marshall et al., 2005), six are known toxin-producers (Thessen & Stoecker, 9 

2008).  Since such a large proportion of resident species are potentially toxigenic and 10 

were only included in analysis when collected from surface samples, it is reasonable to 11 

assume they are similarly adapted or that a given sample is dominated by only one or 12 

two Pseudo-nitzschia species most adapted to the present conditions (Bidigare et al., 13 

1990; Smayda, 1963; Margalef, 1978).  This further implies wider utility in a model that 14 

predicts generic Pseudo-nitzschia blooms since the likelihood of domoic acid production 15 

may be high when members of the indigenous Pseudo-nitzschia assemblage are 16 

present at high densities.  However, the important caveat remains that genetic diversity 17 

at the species and strain level can strongly regulate toxicity and cannot be accounted 18 

for in the GLM (Orsini et al., 2004; Erdner et al., 2008; Evans et al., 2005; Thessen et 19 

al., 2009) and that the niche-space flexibility offered by such diversity introduces further 20 

complications for predicting Pseudo-nitzschia distributions based on habitat suitability 21 

models.  22 

 23 



 27 

5.2 Forecasting Pseudo-nitzschia Blooms 1 

The habitat suitability model for Pseudo-nitzschia spp. was accomplished in 2 

conjunction with and for two on-going projects: (1) a NOAA-sponsored project to predict 3 

the probability of key harmful species for the region, and (2) the Chesapeake Bay 4 

Forecasting System (CBFS) pilot project for dynamically-downscaling seasonal to 5 

interannual climate forecasts and IPCC projections (Mehl et al., 2007) with a regional 6 

Earth System model consisting of atmospheric, watershed, and estuarine components 7 

at present (Murtugudde, 2009).  The CBFS creates a 14-day outlook every three days 8 

for the Regional Earth System for the Chesapeake Bay and its watershed 9 

(http://www.climateneeds.umd.edu/).  Dynamically downscaling with the Weather 10 

Research and Forecast Model (WRF; http://www.wrf-11 

model.org/wrfadmin/publications.php) provides high resolution forcing for the Regional 12 

Ocean Model System (ChesROMS) ocean model and Soil and Water Assessment Tool 13 

(SWAT) river basin-scale model.  The forecast is generated using a six to eight member 14 

ensemble forced with the Global Ensemble System (GENS) every three days.  The 15 

ChesROMS model currently includes a nested Nitrogen-Phytoplankton-Zooplankton-16 

Detritus (NPZD) ecosystem model for generating forecasts of macronutrient and 17 

chlorophyll concentrations, among other parameters (Fennel et al 2006). 18 

Implementing a Pseudo-nitzschia bloom nowcast-forecast system will require 19 

assimilation of environmental data from these predictive models into the diagnostic GLM 20 

computed for raw data values.  Ideally, the ChesROMS and NPZD models would 21 

predict all seven explanatory variables, however, values for Si(OH)4 and DOC are not 22 

predicted from the ecosystem model currently coupled to ChesROMS.  In the case of 23 
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DOC, Figure 7 illustrates the ramifications of removing this parameter from the GLM, 1 

and additional removal of Si(OH)4 would reduce predictive skill even further, particularly 2 

since this nutrient is critical to diatom growth.  Present research involves diagnostic 3 

coupling of alternative ecosystem models to ChesROMS that include Si(OH)4 in their 4 

parameterization (e.g. Moore et al., 2002; Chai et al. 2002).  Unfortunately, it may not 5 

be possible to generate accurate DOC predictions from existing ecosystem models 6 

which at best include a “small detritus” carbon fraction (Christian et al., 2001; Moore et 7 

al., 2002), in which case, the alternative logit (8) would be employed for making 8 

Pseudo-nitzschia bloom nowcasts and forecasts.   9 

In any operational or routine monitoring context, probability maps of Pseudo-10 

nitzschia blooms should be presented with annotated instructions for interpretation of 11 

these uncertainties.  With the optimized bloom threshold of 10%, there is a higher 12 

likelihood of bloom overprediction in the more oligohaline regions (Fig. 7) suggesting 13 

that forecasts for the meso- and poly- haline domains are more trustworthy at this 14 

operational threshold.  We expect these forecasts to serve more as cautious warnings 15 

of the potential for bloom development rather than as absolute predictions of bloom 16 

intensity while forecast validation and predictive skill continue to be assessed, much in 17 

the way that predictions of stinging sea nettles and the toxic dinoflagellate Karlodinium 18 

veneficum are currently presented for the Chesapeake Bay (Brown et al., 2002; Decker 19 

et al. 2007, http://155.206.18.162/seanettles/). 20 

5.3 Eutrophication and Pseudo-nitzschia Blooms 21 

Much deserved attention has been given in recent decades to studying the 22 

potential influences of cultural eutrophication on HAB ecology (e.g. reviews by 23 
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Anderson et al., 2002; Anderson et al., 2008; Heisler et al., 2008; Glibert et al, this 1 

issue).  While most HAB species fall within various flagellate and cyanobacterial 2 

phylogenies, Pseudo-nitzschia is unique in being a toxin-forming diatom, the group 3 

classically used as the default counterpoint in descriptions of HAB/flagellate 4 

ecophysiology (Smayda, 1997).  Due to fundamental differences in adaptive strategies 5 

and life histories between diatoms and flagellates, our understanding of how Pseudo-6 

nitzschia would respond to eutrophication is in its nascent stage.  In an evaluation of 7 

Chesapeake Bay phytoplankton community composition, Marshall et al. (2005) 8 

emphasize a post-European settlement shift from diatom assemblages dominated by 9 

benthic, pennate diatoms to more planktonic, centric species (Cooper & Brush, 1991), a 10 

general decrease in diatoms associated with increased anoxia and P loading (Brush & 11 

Davis, 1984), and a shift towards more lightly silicified diatom species.  However, the 12 

most modern surveys also document a dramatic increase in the magnitude of surface 13 

diatom abundance that coincides with an overall biomass enhancement and seasonal 14 

fluctuations of potentially toxic phytoplankton in the Bay and its tributaries (Marshall et 15 

al., 2005).   16 

In the present study, while freshwater discharge was not selected as one of the 17 

most significant predictors of Pseudo-nitzschia blooms in the GLM, it did retain 18 

significance on a par with DOC until finally being outcompeted by those potentially 19 

covarying factors, DOC and N:P. Moreover, there seems to be an increase in both the 20 

abundance and frequency of Pseudo-nitzschia blooms over the time series, particularly 21 

since the 1990s (Fig. 2), though sampling at many stations also increased during that 22 

decade. Perhaps in part due to their lightly silicified frustule, Pseudo-nitzschia cells 23 
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seem better adapted to low-Si environments than many other diatoms, often 1 

outcompeting other groups towards the end stages of a spring diatom bloom when 2 

surface waters have been fairly depleted of Si (Anderson et al., 2006; Kudela et al., 3 

2004; Marchetti et al., 2004).  As with other Pseudo-nitzschia habitat models for the 4 

west coast (Anderson et al 2009; Lane et al., 2009), this pattern is supported by the 5 

Chesapeake Bay GLM results where a significant negative relationship between 6 

Pseudo-nitzschia blooms and Si(OH)4 concentrations could indicate a lower Si-7 

requirement for this diatom group and may further suggest a link between runoff-8 

induced reductions to Si:N and Si:P ratios (Smayda, 1990; Smayda, 1997) and the 9 

occurrence of these blooms.  However, like all diatoms, Pseudo-nitzschia still require Si, 10 

N, and P for maximal growth and will bloom in response to these inputs, particularly 11 

during winter and spring months when turbulence and reduced light levels  in the water 12 

column favors diatoms over flagellates.   13 

The positive association between DOC and Pseudo-nitzschia can be interpreted 14 

as a link between runoff and blooms through the delivery of organic carbon to the Bay 15 

and possible direct effects on the phytoplankton population.  Glibert et al (2001) found 16 

strong correlations between DOC and DOC:DON in relation to Prorocentrum minimum 17 

populations in the Bay and underscore the difficulty in ascribing direct or indirect effects 18 

to this relationship.  One possible indirect effect is the potential for covariation between 19 

DOC and DON if Pseudo-nitzschia are directly taking up organic nitrogen species 20 

during blooms. There is some evidence for the uptake of organic substrates by Pseudo-21 

nitzschia after dark adaptation (Mengelt, 2006), but the possibility of interference by 22 

extra-cellular or epiphytic bacteria remains (Bates et al., 2004; (Stewart, 2008).  Studies 23 
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on the west coast also implicate some kind of allochthonous component to Pseudo-1 

nitzschia blooms from either direct observation between blooms and rain events 2 

(Trainer et al., 2000) or via the inclusion of chromophoric dissolved organic matter and 3 

precipitation/nitrate relationships in their habitat models (Anderson et al., 2009; Lane et 4 

al., 2009).  Providing there is a causal relationship here, a positive influence of DOC on 5 

Pseudo-nitzschia blooms implies the potential for future problems as precipitation 6 

events over the Bay increase in frequency and/or intensity according to current IPCC 7 

projections (Meehl et al., 2007). 8 

The same inverse relationship with nutrients is again manifest in the association 9 

with PO4 and N:P in the Pseudo-nitzschia GLM.  It is important to note that these 10 

relationships to nutrient concentrations are not any more robust when lagged relative to 11 

bloom occurrence.  However, a meaningful lag correlation for phytoplankton responses 12 

to nutrient supply is expected to be less than the average monthly sampling frequency 13 

available here because of the relatively short timescales for nutrient uptake.  Thus, in 14 

the GLM, the inverse relationships between nutrient parameters and the Pseudo-15 

nitzschia bloom index invoke both concurrent surface nutrient uptake and the potential 16 

onset of nutrient limitation.  In spring, when the majority of these blooms occur, the 17 

Chesapeake Bay is indeed more limited by PO4 relative to nitrogen (Prasad et al., 18 

2009).  However, in the absence of direct measurements using nutrient limitation 19 

assays, it is not possible to assess the physiological status of the phytoplankton 20 

community at the time of sampling.  P-limitation has not been linked to the onset or 21 

magnitude of natural Pseudo-nitzschia blooms per se but has been shown to stimulate 22 

domoic acid production in laboratory cultures (Pan et al., 1998).   23 
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The N:P parameter in the GLM points to rapid NO3 and NO2 utilization and 1 

possibly even an N-limitation which is somewhat inconsistent with evidence of a positive 2 

association between nitrate, possibly from runoff, and fall Pseudo-nitzschia blooms in 3 

the Monterey Bay, CA (Lane et al., 2009).  However, the same caveat remains that a 4 

negative relationship between a nutrient parameter and the bloom index may only 5 

reflect the effects of nutrient drawdown by actively growing phytoplankton or could also 6 

suggest the possible onset of limiting conditions that may favor one phytoplankton 7 

group over another or alter a toxigenic group’s ability to produce toxin.  Several studies 8 

have now effectively demonstrated the uptake of eutrophic or regenerated forms of 9 

nitrogen -- ammonium (NH4), and urea -- by Pseudo-nitzschia species (Howard et al., 10 

2007; Kudela et al., 2008; Cochlan et al., 2008; Thessen et al., 2009), and an increase 11 

in the potential for domoic acid production when incorporating organic N or NH4 in place 12 

of nitrate (Howard et al., 2007; Thessen et al., 2009).  While NH4 is not a significant 13 

explanatory variable for blooms in the Chesapeake Bay GLM, it is significantly 14 

associated with Pseudo-nitzschia abundance in this dataset (Table 3) and could be a 15 

concern for the future odds of toxic events.  Because of the salinity tolerance limits for 16 

Pseudo-nitzschia shown in this study and elsewhere (Thessen et al., 2005; Thessen 17 

and Stoecker, 2008), blooms are not expected to migrate or occur in the upper, fresh 18 

reaches of tributaries where nutrient enrichment from runoff is high.  However, this 19 

enrichment is manifest in the meso-haline and poly-haline portions of the Bay as well 20 

(Prasad et al., 2009).  Given that total N from the Susquehanna River, a major tributary 21 

of the Chesapeake Bay, increased 2.5-fold from 1945 to 1990 (Kemp et al., 2005) and 22 

that urea usage in agriculture and industry is increasing worldwide (Glibert et al 2006), 23 
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the potential role of NO3 and urban forms of nitrogen runoff in driving Pseudo-nitzschia 1 

blooms and even toxin production should not be ignored, particularly in light of the 2 

projected increases in precipitation and population indices for the region (Meehl et al., 3 

2007).   4 

Eutrophication is not only manifest in the bottom-up direction with respect to 5 

HABs but is expected to influence the entire ecosystem with the net result being more 6 

favorable conditions for HAB development.  The timing of nutrient enrichment, for 7 

instance, may be de-coupled from predator population increases, resulting in the 8 

release of grazing pressure which can be further enhanced by a build-up in anoxia as 9 

the bloom decomposes (e.g. Buskey et al., 1997).  The present study, however, found 10 

no significant relationship between chlorophyll and Pseudo-nitzschia abundance for the 11 

Chesapeake Bay, suggesting a de-coupling of these blooms from the overall rise and 12 

fall of phytoplankton biomass and again suggesting a late-succession role for Pseudo-13 

nitzschia species in the spring bloom time period.  Top down controls such as grazing 14 

could, in part, be regulating the demise of Pseudo-nitzschia blooms and the extent to 15 

which they develop into toxic blooms.   16 

 17 

6.  Concluding Remarks 18 

A predictive model for potentially toxigenic Pseudo-nitzschia blooms in the 19 

Chesapeake Bay serves two major purposes: 1) to identify possible drivers of initiation 20 

and presence of these blooms in both the temporal and spatial domains, and 2) to 21 

establish statistical relationships that could be used for real-time, ecological forecasting 22 

of this species in a critical U.S. ecosystem.  The GLM developed in this study identifies 23 
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several environmental variables associated with these blooms – PO4, salinity, 1 

temperature, DOC, Si(OH)4, time of year, and the N:P ratio – from a unique, coincident 2 

long-term water quality and phytoplankton monitoring dataset.   Unfortunately, it cannot 3 

reveal environmental indicators of the presence of its associated toxic agent, domoic 4 

acid.  Indeed, defining the distinction between factors that initiate bloom development 5 

and those that trigger cellular toxin production is a recurring theme in HAB ecology, 6 

particularly for Pseudo-nitzschia, and is highly relevant in a region such as the 7 

Chesapeake Bay which to date has experienced no known outbreaks of domoic acid 8 

poisoning but whose populations may still be affected by chronic exposure to moderate 9 

toxin levels (Thessen and Stoecker, 2008; Grattan et al., 2007).  Forecasting endeavors 10 

that follow should not only relate these uncertainties to end-users but also continually 11 

re-define bloom thresholds with the addition of new validation data and input from 12 

resource managers and shellfish harvesters alike.  Lastly, future efforts to model HABs 13 

must look closely at the combined effects of inorganic and organic nutrient uptake, trace 14 

metal utilization (e.g. Maldonado et al., 2002; Rue and Bruland, 2001; Wells et al., 15 

2005), allelopathic competition (e.g. Adolf et al., 2008), and grazing (e.g. Bargu et al., 16 

2003) to move beyond statistics-based habitat models and incorporate a mechanistic 17 

understanding of the complex processes regulating HAB development and toxicity.  18 
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Table and Figure Captions 1 

Table 1. A list of the available environmental parameters tested in model development 2 

of the response variable Pseudo-nitzschia spp. abundance (in bold).   3 

Parameter Relevant
Abbreviations

Units

Latitude Lat deg
Longitude Long deg

Month ***
Chlorophyll-a Chla mg L-1

Temperature Temp deg C

Salinity Sal psu

Freshwater Discharge Dis ft3 sec-1

Nitrate NO3
mg L-1

Nitrite NO2 mg L-1

Ammonium NH4 mg L-1

Orthophosphate PO4 mg L-1

Silicic Acid Si(OH)4 mg L-1

Nitrate+Nitrite:Phosphate N:P mg L-1 / mg L-1

Silicid Acid: Nitrate Si:N mg L-1 / mg L-1

Silicic Acid: Phosphate Si:P mg L-1 / mg L-1

Dissolved Oxygen O2 mg L-1

Dissolved Organic Carbon DOC
mg L-1

Particulate Carbon
mg L-1

Total Organic Carbon mg L-1

Total Phosphorous mg L-1

Total Suspended Solids mg L-1

Secchi Depth m

Pseudo-nitzschia spp. Abundance
Pseudo-nitzschia

Abundance
cells L-1

 4 

 5 
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Table 2.  Pseudo-nitzschia bloom statistics for each monitoring station shown in Fig. 1. 1 

 2 

 3 
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Table 3.  Correlation coefficients (r) for select variables; correlations were calculated for 1 

raw values before detrending.  Significant correlations at the  = 0.05 level are shown in 2 

bold for DF > 6,000. 3 

P-n 
Abund Chl-a Temp Sal NO3 NH4 PO4 Si(OH)4 N:P Si:P Si:N DOC Discharge

P-n Abund. **** -0.001 -0.10 0.12 -0.07 -0.05 -0.10 -0.08 -0.04 0.06 -0.02 0.01 -0.03

Chl-a **** 0.17 -0.10 -0.20 -0.17 -0.06 -0.10 0.004 -0.04 0.04 0.21 -0.02

Temp **** -0.05 -0.20 -0.24 0.21 -0.05 -0.25 -0.07 0.25 0.22 -0.17

Sal **** -0.71 -0.26 -0.31 -0.18 -0.36 0.22 0.21 -0.28 -0.24

NO3 **** 0.42 0.11 0.40 0.43 -0.04 -0.28 -0.15 0.25

NH4 **** 0.20 0.22 0.08 -0.11 -0.17 -0.10 0.14

PO4 **** 0.24 -0.20 -0.25 -0.05 0.15 0.002

Si(OH)4 **** -0.03 0.37 0.16 -0.01 0.08

N:P
****

0.03 -0.18 -0.08 0.19

Si:P **** 0.16 -0.13 -0.03

Si:N
****

0.06 -0.03

DOC *** -0.08

Discharge ***

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 
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Table 4.  Model Coefficients and Analysis of Deviance/Likelihood Ratio Test with 1 

raw data (N = 5,121) after hypothesis testing;  chi-square distribution ANOVA. 2 

Predictor Coefficients Standard 
Error

p-val (Chi)

Intercept -1.84 0.643

PO4 -69.5 13.6 <<0.001

Salinity 0.101 0.015 <<0.001

Temp -0.063 0.011 <<0.001

DOC 0.306 0.054 <<0.001

Si(OH)4 -0.373 0.096 <<0.001

Month -0.079 0.025 0.002

N:P -0.753 0.301 0.008

 3 

4 
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Table 5.  Contingency table for the outcomes shown in Fig. 5 based on a default bloom 1 

threshold of 50% verses an optimized bloom probability threshold of 10%. Chosen 2 

performance metrics are the Heidke Skill Score (HSS), Probability of Detection (POD), 3 

False Alarm Ratio (FAR), and the Probability of False Detection (POFD); see text for 4 

definitions.  Cross-validation performance metrics represent total model performance 5 

after resampling.            6 

HSS POD FAR POFD Nagelkerke’s 
R2

Absent if 
Pbloom <  0.50

0.01 0.01 0.83 0.003 0.10

Absent if 
Pbloom <  0.10

0.30 0.69 0.76 0.10 0.10

Cross-
Validation

Pbloom =  0.10

0.31 0.69 0.76 0.10 0.10

 7 

8 
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List of Figures: 1 

Figure 1.  Map of the Chesapeake Bay and its tributaries; dark circles denote the 30 2 

stations for which data was retrieved from the MD DNR and EPA Chesapeake Bay 3 

Program monitoring projects from 1985-2007 (n= 6,988).   4 

Figure 2.   Time series of Pseudo-nitzschia spp. abundance (cells mL-1) for the stations 5 

shown in Fig. 1.  Note the large baywide bloom in 1998. 6 

Figure 3.  Pseudo-nitzschia abundance at select stations across a strong salinity 7 

gradient (oligohaline = 0.5-5 ppt; mesohaline = 5-18 ppt; oligohaline > 18 ppt) in the 8 

mainstem Chesapeake Bay, demonstrating the general increase in bloom magnitude 9 

with salinity.  10 

Figure 4.  Plots of the relationship between Pseudo-nitzschia abundance and the most 11 

significantly correlated physical and chemical variables from Table 3: temperature (C), 12 

salinity (ppt), NO3 (mg L-1), PO4 (mg L-1), and Si(OH)4 (mg L-1).  Cell abundance is 13 

generally highest from 5-27 °C, 5-28 ppt, and at relatively low nutrient concentrations. 14 

Nutrient scales indicate a highly-eutrophied system. 15 

Figure 5.  Model performance using all bloom and non-bloom observations plotted 16 

against modeled bloom probabilities, where the threshold for a “bloom” is 100 cells mL-17 

1. Horizontal lines are median probabilities; boxes are 25th and 75th percentiles and 18 

whiskers are 5th and 95th percentiles.  Individual open circles beyond the whiskers 19 

represent probabilities outside that range, i.e. outliers.  20 

Figure 6.  Optimization of the probability threshold for determining a “bloom” forecast 21 

where the Heidke Skill Score (HSS) is optimized with respect to the Probability of 22 
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Detection (POD), False Alarm Ratio (FAR), and the Probability of False Detection 1 

(POFD).   The vertical line indicates the optimized threshold of 10% (see Table 5). 2 

Figure 7.  Monthly means of model-predicted probabilities (colorbar) and observations 3 

(open circles) of Pseudo-nitzscha blooms and Pseudo-nitzschia abundance, 4 

respectively, for three different time points in the Chesapeake Bay over the study 5 

period: a) November 1993, b) March 1998, and c) August 2005.   For (a) the left panel 6 

represents model predictions using the full GLM that incorporates DOC (7) an the right 7 

panel illustrates the difference in predictive outcome when the non-DOC GLM (8) is 8 

employed. 9 

 10 

 11 

12 
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