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ARTICLE INFO ABSTRACT

Article history:

Harmful algal blooms are now recognized as a significant threat to the Chesapeake Bay as they can severely
compromise the economic viability of important recreational and commercial fisheries in the largest estuary
of the United States. This study describes the development of empirical models for the potentially domoic
acid-producing Pseudo-nitzschia species complex present in the Bay, developed from a 22-year time series of
cell abundance and concurrent measurements of hydrographic and chemical properties. Using a logistic
Generalized Linear Model (GLM) approach, model parameters and performance were compared over a range
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ﬁfgﬁ%ﬁims of Pseudo-nitzschia bloom thresholds relevant to toxin production by different species. Small-threshold
Domoic acid blooms (>10cellsmL™!) are explained by time of year, location, and variability in surface values of
Amnesic shellfish poisoning phosphate, temperature, nitrate plus nitrite, and freshwater discharge. Medium- (100 cells mL™") to large-
Diatoms threshold (1000 cells mL™') blooms are further explained by salinity, silicic acid, dissolved organic carbon,
Prediction and light attenuation (Secchi) depth. These predictors are similar to other models for Pseudo-nitzschia

Regression analysis

blooms on the west coast, suggesting commonalities across ecosystems. Hindcasts of bloom probabilities at a
Chesapeake Bay

19% bloom prediction point yield a Heidke Skill Score of ~53%, a Probability of Detection ~75%, a False Alarm
Ratio of ~52%, and a Probability of False Detection ~9%. The implication of possible future changes in

Baywide nutrient stoichiometry on Pseudo-nitzschia blooms is discussed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The cosmopolitan diatom genus Pseudo-nitzschia has emerged as a
major player in the global theatre of harmful algal blooms (HABs),
occurring on both east and west coasts of the United States (Trainer
et al., 2000; Thessen and Stoecker, 2008), the Gulf of Mexico (Dortch et
al., 2000; Pan et al., 2001), and throughout Europe and parts of Asia
(Bates and Trainer, 2006). In response to a coarsely understood set of
environmental conditions, toxigenic Pseudo-nitzschia species are
known to produce domoic acid (DA), a potent neurotoxin that can be
devastating to aquatic life via trophic transfer in the food web (Fritz et
al., 1992; Bates et al., 1998; Scholin et al, 2000). In humans, DA
exposure manifests itself as amnesic shellfish poisoning (ASP)
following the consumption of contaminated filter-feeding mollusks
(e.g. Bates et al., 1998; Trainer et al., 2007). Samples of Pseudo-nitzschia
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spp. collected from the largest estuary in the USA, the Chesapeake Bay,
have recently tested positive for DA (Thessen and Stoecker, 2008;
Thessen et al., 2009), yet, to date, there has been no reported incidence
of major bird or marine mammal strandings nor ASP in the Bay.
However, emerging toxicological and epidemiological research sug-
gests that chronic, sub-acute doses of DA that do not cause any outward
signs of intoxication may cause neuropathic injury to vertebrates (Levin
et al, 2006; Lefebvre et al, 2007; Ramsdell and Zabka, 2008). For
humans, this implies the potential for serious neurological health risks
associated with repeated exposure to low levels of DA, for example in
coastal communities with an established culture of shellfish consump-
tion (Grattan et al., 2007). Furthermore, the accumulation of DA in
sediments after the demise of a surface bloom may reverberate
throughout the ecosystem via accumulation of toxins in benthic food
webs and turbulent mixing events (Thessen et al., 2009). Clearly, there
are significant benefits to extending HAB predictions from ecosystem
models into the public health arena (Dyble et al., 2008).
Human-driven nutrient enrichment, or cultural eutrophication, is
now considered an important factor driving the global increase in HAB
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frequency and intensity (Hallegraeff, 1993; VanDolah, 2000; Ander-
son et al., 2002; Glibert et al., 2005; Heisler et al., 2008; Anderson
et al., 2008). Some of the issues that are relevant to systems where
eutrophication may exert an influence on HAB development include
the expected effects of nutrient stoichiometry (reviewed in Anderson
etal, 2002; Glibert et al., 2010—this issue), potential changes in ratios
of dissolved organic carbon to dissolved organic nitrogen (DOC: DON;
Paerl, 1988; Anderson et al., 2002), and resultant increases in the
probability of toxin production by certain species, such as those
within the Pseudo-nitzschia genus (Pan et al., 1996; Davidson and
Fehling, 2006). With increased nutrient inputs from runoff come
reduced Si:N and Si:P ratios (reviewed in Anderson et al., 2002), a
factor shown to contribute to and/or be associated with increases of
Pseudo-nitzschia abundance and DA production (Pan et al., 1996;
Fehling et al., 2004; Parsons and Dortch, 2002; Anderson et al., 2006).
Whereas most diatoms only thrive under Si-replete conditions, some
Pseudo-nitzschia species appear to be favored by Si-limitation and
certainly tend towards toxicity under extreme Si-limitation (Pan et al.,
1996, 1998; Bates et al., 1998).

In the Chesapeake Bay, where HABs are common, diverse, and may
be increasing in frequency, Glibert et al. (2001) documented a direct
relationship between nitrogenous fertilizer use in the Bay watershed
in spring and the onset of potentially toxic Prorocentrum minimum
blooms. Pseudo-nitzschia spp. on the west coast generally bloom in
response to surface macronutrient increases after natural, coastal
upwelling events (Trainer et al., 2000; Kudela et al., 2005; Anderson
et al., 2006; Garcia-Mendoza et al., 2009; Lane et al., 2009) and could
respond to similar pulses from spring runoff in the Chesapeake Bay
(Heisler et al., 2008). Furthermore, recent laboratory and field
experiments link organic forms of nitrogen, such as glutamine and
urea, to sustained bloom events in an upwelling region and even
enhanced production of DA by toxigenic species of Pseudo-nitzschia
(Howard et al., 2007; Kudela et al., 2008). In the Gulf of Mexico, time
series of Pseudo-nitzschia spp. from sediment cores document
increasing cell abundance in association with increased nutrient
input from Mississippi River runoff (Parsons and Dortch, 2002).
Nonetheless it remains unclear if highly eutrophied bays and estuaries
experience significantly more Pseudo-nitzschia blooms or DA events
than coastal upwelling systems and whether blooms in the Chesa-
peake Bay may be associated with anthropogenic nutrient enrichment
(Dortch et al,, 1997; Cochlan et al., 2008). Long-term hindcasts and
forecasts from predictive models of HABs would be useful for
understanding climate and land-use change effects on the frequency
and magnitude of potentially deleterious algal blooms in the
eutrophied Chesapeake Bay region (Kemp et al., 2005).

We present here our efforts to develop a threshold-based,
empirical model for predicting the probability of Pseudo-nitzchia
spp. bloom occurrence (and by extension, the potential for DA
production) from a long-term monitoring dataset for the Chesapeake
Bay. Currently, no such model exists for Pseudo-nitzschia on the east
coast, despite the obvious importance of having such predictive
capabilities in place. While the methods used to develop statistical
models for estimating the distribution of harmful algae and pathogens
are not new in scientific application, they are now more widely
employed and accepted in ecological forecasting. A fully operational
alert system that combines satellite imagery, an ensemble of
numerical models, and a rules-based biological model is running in
the Gulf of Mexico for blooms of the aerosolized toxin-producing,
Karenia brevis (Stumpf et al., 2003; Tomlinson et al., 2004, 2009).
Accompanying this trend are rapid advances in the development of
dynamically-downscaled regional products for forecasting the phys-
ical and biogeochemical states of coastal ecosystems (e.g. Moore et al.,
2002; Chai et al.,, 2002; Fennel et al., 2006; Xu and Hood, 2006; Chao
et al.,, 2008; Allen et al., 2008). A system has been implemented that
predicts the likely distribution of sea nettles (Chrysaora quinquecir-
rha), the toxic dinoflagellate Karlodinium veneficum, and Vibrio

cholerae in the Chesapeake Bay based on habitat suitability and
hydrodynamic models (Decker et al., 2007; Constantin de Magny
etal., in press; Brown et al., 2010). On the west coast, investigators are
building upon earlier statistical models (Blum et al., 2006) for
predicting the likelihood and toxicity of Pseudo-nitzschia blooms
from a suite of hydrographic and nutrient inputs in the Monterey Bay
(Lane et al., 2009) and the Santa Barbara Channel (Anderson et al.,
2009). The goals of the present study are to 1) identify the physico-
chemical predictors of regional Pseudo-nitzschia spp. blooms, 2)
develop and validate a predictive habitat model based on these
environmental predictors that could be employed to help predict the
probability of occurrence of these blooms in the Chesapeake Bay, and
3) present spatially-explicit hindcasts of past Pseudo-nitzschia bloom
events.

2. Materials and methods

Long-term data on surface phytoplankton abundance and surface
water quality were acquired from the Maryland Department of Natural
Resources (MD DNR) and US EPA Chesapeake Bay Program (US EPA-
CBP) for 30 stations within the mainstem Bay and 12 tidal estuarine
tributaries covering the period 1985-2007 (N=6989; Fig. 1). The data
subset used for model development included the monthly suite of water
quality parameters collected within one day of Pseudo-nitzschia spp. cell
abundance records at 30 sites across the broad range of salinities
represented within the Chesapeake Bay (oligohaline = 0.5-5; mesoha-
line =5-18; polyhaline =>18; all salinity values in psu). The majority
of observations fall in the salinity range<18 (Npon-blooms=5957;
Npiooms =278). Fewer observations are available for salinities >18
(Nnon-blooms = 562, Npiooms = 199) which are typically found at the four
stations in the lower Bay but can also occur seasonally in the mainstem
middle Bay and in the lower reaches of tributaries (Fig. 1). Because these
monitoring data were not collected with the purpose of creating
predictive models, sampling biases make it a less than ideal dataset
despite the long time period and sampling effort represented. Observa-
tions are heterogeneously distributed in space and time due to the often
event-response nature of data collection and our requirement of daily
matchups between water quality and cell count data. To help ensure
taxonomic fidelity of the microscopic identifications in the available
monitoring observations, we limited the majority of observations to
those collected by a single taxonomist whenever possible (W. Butler,
pers. comm.); this excludes data from the four lower bay sites (CB6.1,
CB6.4, CB7.3E, CB7.4) that were required for full Bay coverage.
Additionally, due to changes in taxonomic status for the Pseudo-
nitzschia group over the study period and difficulties with species
identification using classic light microscopy, model development
(Section 3.1) is focused on Pseudo-nitzschia spp. with no distinction
between the various individual toxigenic and non-toxigenic species
recorded for the Chesapeake Bay (Marshall et al., 2005; Thessen and
Stoecker, 2008).

Monthly freshwater discharge data (ft> s~') were acquired from
seven of the nine sites in the USGS River Input Monitoring (RIM)
Program (USGS RIMP Report, 1999) that collects water samples in the
non-tidal region of major streams in the Chesapeake Bay watershed.
Phytoplankton monitoring stations were grouped with the nearest,
relevant RIM site for discharge matchups (Fig. 1). Negative discharge
values that are reported from October 1987 to August 1988 for the
Mattaponi River were eliminated from this study.

3. Modeling approach
3.1. Model development
A suite of 19 physical and chemical variables publically available

through the MD DNR and US EPA-CBP long-term water quality
monitoring programs was chosen to examine conditions associated
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Table 1
A list of the available environmental parameters tested in model development for the
response variable Pseudo-nitzschia spp. abundance (in bold).
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Fig. 1. Map of the Chesapeake Bay and its tributaries: dark circles represent the 30
stations for which data were retrieved from the MD DNR and EPA Chesapeake Bay
Program monitoring projects from 1985-2007 (N =6,989). Colored, shaded regions
denote monitoring station groupings for monthly freshwater discharge data collected
from seven USGS River Input Monitoring (RIM) Program sites (numbers in bold
correspond with listed river sites).

with regional variability in Pseudo-nitzschia spp. abundance (Table 1).
Past studies that focused on Pseudo-nitzschia bloom prediction use
Ordinary Least Squares (OLS) regression to model cell abundance and
toxin concentration (Blum et al., 2006; Anderson et al., 2009) or logistic
regression to model cell abundance (Lane et al., 2009) as a function of
physico-chemical and other environmental properties. In this case, as in
Lane et al. (2009), we are interested in only the presence or absence of
‘bloom’ levels of Pseudo-nitzschia spp. (hereafter referred to only as
Pseudo-nitzschia). The response variable for cell abundance was
transformed to a binary variable using several bloom values that fall
within the range of threshold levels expected to trigger toxin production
on the west coast for those Pseudo-nitzschia populations identified as
frequently present in the Chesapeake Bay (Thessen and Stoecker, 2008):
P. fraudulenta (~10 cells mL™1), P. multiseries/pungens (100 cells mL™"),
and P. cuspidata/calliantha (P. pseudodelicatissima complex;
1000cells mL™") (Trainer and Suddleson, 2005). Model results for the
three bloom thresholds are presented in Section 4.2.

Bloom occurrence is a binary variable which rarely follows a
Gaussian (Normal) distribution and renders OLS linear regression an

Parameter Relevant abbreviations Units
Latitude Lat deg
Longitude Lon deg
Month Month n/a
Chlorophyll-a Chl-a pgL™!
Temperature Temp °C
Salinity Sal psu
Freshwater discharge Dis i s
Nitrate NO; mg-N L!
Nitrite NO, mg-NL!
Ammonium NH, mg-NL!
Orthophosphate PO, mg-P L'
Silicic acid Si(OH)4 mg-Si L!
Nitrate + Nitrite:Phosphate N:P n/a
Silicid Acid: Nitrate Si:N n/a
Silicic Acid: Phosphate Si:P n/a
Dissolved oxygen 0, mg L!
Dissolved organic carbon DOC mg-CL!
Secchi depth Secchi m
Pseudo-nitzschia spp. abundance Pseudo-nitzschia abundance cells mL™!

unsuitable model. Instead, we used the Generalized Linear Model
(GLM; McCullagh and Nelder, 1989; Fox, 2002; Agresti, 2007), a
regression-based approach that allows for several non-Gaussian
distributions in addition to OLS linear regression. The GLM for binary
data is often referred to as logistic regression and assumes that the
binary response follows a Bernoulli distribution or the closely-related
binomial distribution. The GLM relates a transformation of the
response (bloom occurrence) to a linear combination of the
explanatory variables. The transformation is referred to as the logit
link function for binary variables and transforms the expectation of
the response to the linear predictor as:

log.[p/ (1—p)] = Bo + BiXix + - + BiXig, (1)

where the term p/(1 — p) represents the odds of a ‘bloom’ event, 3y is
the intercept, and f3; represents the regression coefficient for the k
variables x. Thus, the binary GLM simply models the log probability of
an event as a linear combination of the explanatory variables. Solving
for p, the probability of a bloom is then described by:

P = Poioom = €' / e + 1. )

For each bloom threshold, models were fitted by maximum
likelihood using a forward stepwise approach whereby deviance
residuals were tested against a Chi-square distribution for assessing
the relative significance of parameters in the model (R statistical
software, v. 2.7.0). Explanatory variables were added to the model
individually, with the parameter leading to the largest statistically
significant (a¢=0.05) reduction in deviance being added at each
successive step. The final degrees of freedom (DF) for a given model is
a function of the particular predictors retained in the GLM since there
is spatial and temporal heterogeneity in observation matchups
between water quality and cell abundance data. To assess the
influence of the annual cycle on environmental variables, hypothesis
testing was performed twice, once with raw data values, and again
with anomalies of all variables whereby monthly climatological
means for each station were removed from the observations.
Explanatory variables were also lagged from one to three months
relative to the response variable in the GLM to test for significant lead/
lag relationships.



130 CR. Anderson et al. / Journal of Marine Systems 83 (2010) 127-140

3.2. Model validation

The resulting logistic GLM was tested using cross-validation. For
each year, predictions were made from the model fitted to all years
excluding the one for which data were predicted. Predictions from the
model come in the form of probabilities, such that a probability
threshold is required for determining bloom from non-bloom
conditions. Rather than setting this probability (or prediction point
as expressed in Lane et al., 2009) to an arbitrary value of 0.5 (i.e. 50%),
it may be useful for extreme, episodic blooms to optimize the
threshold in order to determine a relevant probability for defining a
possible bloom event. Specifically, we optimized this value relative to
the probability of detection (POD), the false alarm ratio (FAR), the
probability of false detection (POFD), and the Heidke Skill Score (HSS;
Heidke, 1926; Sohn and Park, 2008). These are defined as follows:

POD = (correct hits) / (correcthits + falsenegatives), (3)

where correct hits are the equivalent of correct bloom predictions,
and false negatives are those instances where bloom observations
were predicted by the model to be non-blooms. POD is a component
of the widely-used Receiver Operating Characteristic (ROC) curve
which represents the relationship between specificity and sensitivity
(as in Lane et al., 2009).

FAR = (falsepositives) / (hits + false positives), (4)

where false positives are non-bloom observations that have been
overpredicted as blooms by the GLM; and

POFD = (falsepositives) / (correctnegatives + false positives). (5)

where correct negatives are correctly predicted non-bloom observations.
POFD is also an important aspect of the ROC curve and describes the
proportion of non-bloom events that were falsely predicted to be blooms.

HSS is a generalized skill score that takes into account artificial
predictability based on chance statistical relationships between
parameters in the model. It is an alternative to the more general
‘true skill’ for describing model performance but more stringent in
terms of not giving credit for predicting climatological values (Davis,
1976; Siegel and Dickey, 1986; Song and Haidvogel, 1994; Anderson
et al., 2009). HSS values are functionally equivalent to Cohen's «,
range from —e to 1, and can be represented by the formula:

HSS = [(correcthits 4 correctnegatives) (6)
— (expected correct) ,ndom) / [IN—(expected correct) ,nqom)

where the expected number of correct predictions is expressed as:
(expected correct) ,ngom = 1/ N[(correcthits + falsenegatives)  (7)
x(correcthits + false positives)
+ (correctnegatives + false negatives)
x(correctnegatives + falsepositives))

For each year in the cross-validation, the prediction point is
optimized for the POD, FAR, POFD, and HSS. Overall model performance
is expressed as the mean of these iterated results in Section 4.2.1.

4. Results

4.1. Observations

Over the 22-year record of Pseudo-nitzschia abundance data,
very large bloom events were highly episodic in the region (Fig. 2).

Mean abundance was 53 cells mL™ over the range 0-1.9 x 10% cells mL™!
for all 30 stations. This maximum is consistent with other Pseudo-
nitzschia observations (Thessen and Stoecker, 2008) and is comparable
to the largest blooms observed on the west coast where DA poisoning is a
recurring threat to living resources and human health. The majority of
blooms that exceed 100 cells mL™" in the record occur in the more meso-
and poly-haline middle to lower mainstem Bay (stations CB5.1, CB6.1,
CB6.4, CB7.3E, CB7.4). Notable hotspots for bloom development are
located in lower tidal tributary estuarine zones (EE3.0, EE3.3, LE1.1,
LE1.3, LE2.2, RET1.1; Fig. 1, Table 2). Midbay station CB5.1 experienced a
period from 1993 to spring 1998 when Pseudo-nitzschia were absent
according to this dataset (Fig. 2). Salinities over 18 can occur in these tidal
estuarine zones of major rivers entering the Bay, and those intrusions are
often associated with high Pseudo-nitzschia cell abundance. These
patterns are consistent with expected salinity requirements for a marine
diatom (Hasle and Syvertsen, 1996; Thessen et al,, 2005) and corroborate
observations associating salinities >5 with the presence of Pseudo-
nitzschia in the Chesapeake Bay (Thessen and Stoecker, 2008). Locations
with the largest variability in bloom occurrence are the middle and lower
Bay stations as well as the downstream Patuxent River sites (LE1.1,LE1.3,
RET1.1), the downstream Potomac River sites (LE2.2, RET2.1, RET2.2,
RET2.4), the eastern Bay estuarine stations (EE3.0 and EE3.3), and the
Patapsco River mouth in the north of the Bay (WT5.1; Table 2).

4.2. Pseudo-nitzschia bloom likelihood models

The correlation analysis of environmental variables and the
response variable, Pseudo-nitzschia cell abundance, indicates a weakly
significant relationship between previously noted correlates of
Pseudo-nitzschia blooms: temperature (r= —0.10), salinity
(r=0.12), orthophosphate (PO4; r=—0.10), nitrate (NOs; r=
—0.07), and silicic acid (Si(OH),4; r= —0.08; av=0.05 level; Tables 1
and 3, Fig. 3). The correlation between Pseudo-nitzchia cell abundance
and freshwater discharge is not significant (r= —0.03). However, it is
expected that inorganic nutrients and salinity are biologically-
relevant proxies for the effects of freshwater runoff into the Bay
that incorporate the influence of precipitation, tidal fluxes, and
discharge. Cell abundance is generally highest from 5 to 27 °C with an
apparent temperature optimum near 10 °C and salinities from 5 to 28
with an apparent salinity optimum near 15. Cell abundance also tends
to increase with a decrease in nutrient concentrations (Fig. 3).
However, it should be noted that the observed range of nutrient
concentrations (Fig. 3) indicate an enriched system where concentra-
tions are only rarely limiting to phytoplankton.

These correlation values are generally consistent with the
logistic GLMs that significantly associate ‘blooms’ of Pseudo-
nitzschia, tested over a range of bloom thresholds, with POy,
temperature, salinity, and variability in either NOs + NO; or NO,
alone (Table 4). Blooms starting at 100 cellsmL™! are further
controlled or significantly associated with variability in the
dissolved organic carbon (DOC) pool and availability of Si(OH),4,
while the largest blooms additionally are associated with reduc-
tions in light penetration in the water column (Secchi depth).
Despite the low correlation between freshwater discharge and
Pseudo-nitzschia abundance, discharge also emerges as significant
for blooms below 1000 cells mL~' according to the hypothesis
testing. The significant role of latitude and/or longitude (Table 4)
suggests a spatially dependent factor that is not explained by any of
the chemical or physical variables tested but that is clearly
important for bloom formation at different thresholds. Despite
the fact that climatological anomalies of all variables were tested
during model development to account for seasonality in the
parametric effects, the final models that best capture the environ-
mental thresholds driving Pseudo-nitzschia blooms are the models
built from raw data. The seasonal signal is retained with the
inclusion of month of the year as a significant predictor of blooms
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Fig. 2. Time-series plots of Pseudo-nitzschia spp. abundance (cells mL~") for stations where Pseudo-nitzschia were recorded over the study period. Maximum cell abundance is
masked by the uniform x-axis range of 0-1500 cells mL™'; see Table 2 for more bloom statistics. The lower Bay, polyhaline stations are CB6.1, CB6.4, CB7.3E, and CB7.4; the
mesohaline mainstem station is CB5.1. Stations ET5.2, ET6.2, ET8.1, EE3.0, EE3.3, LE1.1, LE2.2, and RET2.4 fall within the meso- to oligo-haline transition zone. Stations ET7.1, RET1.1,

RET2.2, and WT5.1 are more typically oligohaline.

<1000 cells mL~! (Table 4), and lag effects were not found to be
significant for any of the explanatory variables tested. In agreement
with a previous study (Thessen and Stoecker, 2008) and explaining
the negative relationship with month of the year, the majority of
bloom events above 100 cells mL™! (Table 2) occurred in winter
and spring months.

4.2.1. Model selection and performance

Model fits for a logistic regression cannot be assessed using a
coefficient of determination (R?) as is often done in the case of OLS linear
regression. However, ‘pseudo R measures are available such as the one
suggested by Nagelkerke (1991) that can be applied to the logistic GLM
and very roughly translates to the proportion of deviance explained by the
model. The effect of bloom threshold on GLM performance is illustrated in
Table 4 where the GLM for blooms >10 cells mL™"! results in the highest
maximum skill (HSS = 0.53) and Nagelkerke's R* (R*=0.22), in part due
to the increased predictability of the more common bloom events. While
low, this threshold is currently being employed on the west coast for
defining and predicting mixed-assemblage blooms of Pseudo-nitzschia
(Lane et al., 2009; Moore et al,, 2009) and may be the most likely to
capture the onset of potentially deleterious blooms covering the full suite
of Pseudo-nitzschia species present in the Chesapeake Bay. Therefore the
remainder of our analyses will focus on the evaluation of the small-
threshold GLM using the variety of metrics described in the Materials and
methods. However, due to this model's inclusion of discharge as the final,
least significant parameter (Table 4) and our current inability to grid

discharge data for spatially-explicit predictions of bloom probabilities in
the Bay (Section 4.2.3), the final model will be evaluated as it is presented
in Table 5, with discharge excluded, according to the algorithm:
logit = 128—1.60*Lat—68.1*PO,—0.06"Temp

—1.02*(NO; + NO,) + 0.878*Lon—0.064*Month

(8)

where the probability of a bloom (Ppjoom) follows Eq. (2) (see Table 1
for variables). The Nagelkerke's R? remains effectively the same at
0.226, as does overall model performance (Table 6). Fig. 4 shows the
probability of bloom occurrence as predicted by the logit in Eq. (8),
split into bloom (n=668; median prob=36%) and non-bloom
(n=6,106; median prob=1%) events. Points falling outside the
95th percentile whiskers in the boxplot denote outlier points
(n=614), or in the case of the non-bloom observations, the false
positive predictions (i.e. model-predicted blooms where no blooms
were observed).

Use of this logistic model to predict blooms requires definition of a
threshold (i.e. prediction point) based on the probabilities generated
from the GLM. If a default prediction point of 0.50 were employed to
define a Pseudo-nitzschia bloom, the POFD would be quite low at 0.03,
but the POD would also be low at 0.34 (Table 6). While a low POFD is
desirable, a low POD is highly undesirable, and it is clear from this
scenario that a prediction point of 0.5 would lead to an underestima-
tion of bloom events. Since our goal is to maximize model predictive
skill (in this case, HSS) and consequently maximize the POD while
minimizing the FAR and the POFD, we have optimized the prediction
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Table 2
Pseudo-nitzschia bloom statistics for each monitoring station shown in Fig. 1.
Station Latitude Longitude Mean St dev Max N #Non-blooms #Blooms
(cells mL™") (<100 cells mL™1) (>100 cells mL™")
CB2.1 39.44 —76.03 0 0 0 278 278 0
CB5.1 38.32 —76.29 93 489 5691 386 332 54
CB6.1 37.59 —76.16 440 1882 19,000 125 80 45
CB6.4 37.24 —76.21 207 644 6670 229 167 62
CB7.3E 37.23 —76.05 178 536 4330 240 176 64
CB7.4 36.99 —76.02 176 746 10,576 523 191 332
EE3.0 38.28 —76.01 364 877 4373 49 32 17
EE3.3 38.2 —76 474 1148 6254 49 33 16
ET3.1 38.58 —76.06 0 0 0 73 73 0
ET5.2 38.52 —76.06 11 102 1749 361 351 10
ET6.2 383 —75.89 24 117 795 48 45 3
ET7.1 38.27 —75.79 6 41 265 42 41 1
ET8.1 38.14 —75.81 286 1060 7155 49 37 12
LE1.1 39.42 —76.60 62 540 9699 426 402 24
LE1.3 38.34 —76.49 70 487 7950 426 387 39
LE2.2 38.16 —76.6 33 461 9699 394 368 26
RET1.1 38.49 —76.66 27 202 3127 419 404 15
RET2.1 38.40 —77.27 3 34 542 317 314 3
RET2.2 38.35 —77.20 1 19 318 320 322 2
RET2.4 38.36 —76.99 7 73 1217 314 309 5
TF1.5 38.71 —76.70 0 0 0 395 395 0
TF2.1 38.71 —77.05 0 0 0 319 319 0
TF2.2 38.69 —77.11 0 0 0 318 318 0
TF2.3 38.61 —77.17 0 0 0 328 328 0
TF2.4 38.53 —77.26 0 0 0 324 324 0
WT3.1 39.30 —76.40 0 0 0 42 42 0
WT5.1 39.21 —76.52 3 34 530 374 371 3
WTG6.1 39.08 —76.51 0 0 0 28 28 0
WT7.1 39.01 —76.55 0 0 0 28 28 0
WT8.1 38.95 —76.55 0 0 0 27 27 0

point according to these metrics (Fig. 5), similar to the method of
Lane et al. (2009). By doing this, we balance the need to predict
potentially harmful blooms with the inconvenience of incorrectly
predicting a bloom. Using this method, the maximum POD and
minimum FAR were chosen that correspond to the top 10% of HSS
values, resulting in an optimized bloom probability threshold of 0.19
(i.e., 19%) to achieve an HSS of ~0.53, POD of ~0.75, FAR at ~0.52, and
POFD at ~0.09 (Fig. 5, Table 6).

4.2.2. Model cross-validation

In order to maximize skill, the GLMs were developed using all available
data (Nyoe=6,989) rather than split into training and validation groups
as is often done in the absence of an independent validation data set.
Cross-validation of the GLM was then performed by excluding a single
year of data for the model fitting and making predictions for the excluded

year from this model. This process was iterated for each year in the time
series, and model performance for each iteration was calculated. The
mean performance metrics for the ensemble of 22 cross-validation
experiments are: HSS ~0.53, POD ~0.75, FAR ~0.52, and POFD ~0.09, and
Nagelkerke's R> ~0.22 (Table 6). These cross-validation results are
consistent with the performance metrics given in the previous section,
indicating consistency in the hindcasts across years with an approxi-
mately 75% chance of correctly predicting a bloom and a 52% false positive
rate.

4.2.3. Pseudo-nitzschia bloom prediction maps

Hindcast maps of baywide bloom probabilities were created using
spatial interpolation of physico-chemical observations relevant to the
logistic GLM (Table 5) for Pseudo-nitzschia blooms for the period 1990-
2006 (Prasad et al., in press). The maps illustrate bloom probabilities

Table 3

Correlation coefficients (r) for select variables; correlations were calculated for raw values before detrending. Significant correlations at the = 0.05 level are shown in bold for

DF>6000.

P-n  Chl-a Temp  Sal NO5;+NO, NO3 NO, NH4 PO, Si(OH); N:P Si:P Si:N DOC Secchi  Dis
P-n ek —0.001  —0.10 012 —0.08 —0.07 —0.06 —0.05 —-0.10 —0.08 —0.04 006 —0.02 0.01 008 —0.03
Chl-a e 017 —-0.10 —0.15 —0.20 -0.02 —-017 —-0.06 —0.10 0.004 —0.04 0.04 021 —-020 —0.02
Temp o —0.05 —0.28 —0.20 019 —0.24 021 —0.05 —0.25 —0.07 0.25 022 —0.08 -0.17
Sal e —0.67 —0.71 —023 —-026 —031 —0.18 —0.36 0.22 021 —0.28 075 —0.24
NOs5 + NO, o 0.999 0.29 0.42 0.18 0.29 0.47 -012 —-029 —-005 —043 0.26
NO3 o 0.25 0.42 0.11 0.40 043 —0.04 —028 —0.15 —038 0.25
NO, o 0.22 0.24 0.05 0.06 —-0.16 —-019 —-001 —0.10 0.01
NH,4 o 0.20 0.22 0.08 -011 -017 -0.10 —0.19 0.14
PO, e 0.24 —0.20 —-025 —0.05 0.15 —0.33 0.002
Si(OH)4 e —0.03 0.37 016 —0.01 —0.22 0.08
N:P e 003 —0.18 —0.08 —0.19 0.19
Si:P o 0.16 —0.13 019 —0.03
Si:N o 0.06 0.07 —0.03
DOC o 0.01 —0.08
o —0.16

Secchi
Dis

Fkk
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Fig. 3. Plots of the relationship between Pseudo-nitzschia abundance (cells mL™") and several relevant physical and chemical variables from Table 3: temperature (C), salinity, NO3

(mgL™"), PO4 (mgL™"), and Si(OH)4 (mg L™1).

interpolated according to the same grid that is used in the Chesapeake Bay
Regional Ocean Modeling System (ChesROMS) model (see Section 5.2.1)
over that time period (Fig. 6). Modeled hindcasts of monthly averaged
surface PO,4, temperature, and NOs+ NO, were paired with latitude,
longitude, and month index to calculate bloom probabilities at 4.5-km?
horizontal resolution according to Egs. (8) and (2). Fig. 6 shows two of
these bloom hindcast maps: a large bloom event in March 1998 (see also
Figs. 2 and 3) and a non-bloom event in August 2005 when there were no
Pseudo-nitzschia cells recorded in the phytoplankton dataset.

Although the hindcasts are generated from monthly means of the
environmental parameters, the distribution of observations above the
10 cells mL™! bloom threshold in March 1998 is reasonably well-
captured by the GLM which assigns probabilities between 70 and 80%
to the cluster of observations at or above 1000cells mL™" in the lower
Bay (Fig. 6A). For one bloom observation in the middle mainstem
region of the Bay (CB5.1=4770cellmL™"), the GLM assigned a
probability just above the optimized 19% prediction point for
designating a potentially harmful bloom (Fig. 6A), thus correctly
flagging this zone yet underestimating bloom magnitude by assigning
fairly low probabilities. Conversely, generally low probabilities were
predicted throughout the Bay during the non-bloom event of August
2005, reflecting the absence of Pseudo-nitzschia in the cell abundance

Table 4

records for that month (Fig. 6B). The 19% prediction point appears to
cause bloom overprediction in this instance given that much of the
lower Bay would have been flagged for a bloom using this threshold.
However, in the absence of observations near the mouths of the James
and York Rivers, it is not possible to validate the higher probabili-
ties ~50% in that zone.

Future validation will require skill scores computed from concom-
itant observation-prediction matchups rather than monthly means
which cannot capture the high-frequency, temporal variability of bloom
dynamics. For a subset of stations, model hindcasted probabilities are
compared with monthly averaged observations for the period 1990 to
2006 (Fig. 7) to roughly ascertain differences in model performance
across zones. At a consistently freshwater site such as CB2.1 at the
mouth of the Susquehanna River (Fig. 1) where no Pseudo-nitzschia are
on record (Nmatchups = 187), the model always correctly predicts low
probabilities, far less than the 19% bloom prediction point (Fig. 7A). At a
Choptank River tributary station (ET5.2) where blooms do occur but are
rare, the model exhibited a tendency to underestimate blooms in this
zone by assigning probabilities above the 19% prediction point to only
36% of bloom cases (>10 cells mL~") but did assign low probabilities to
89% of non-blooms (Fig. 7B). This false negative rate is consistent with
the 9% POFD calculated for the GLM (Table 6). Conversely, the model

Best-fit logistic (logit) algorithms developed over a range of bloom thresholds relevant for toxin production by different Pseudo-nitzschia species (see Section 3.1). Variability in
model performance is given by the maximum Heidke Skill Score (HSS) and model fit by the Nagelkerke's R?; bloom probability (Ppieom) is a function of the GLM logit.

Bloom threshold Best-fit logistic GLM DF Maximum Nagelkerke's
2

(cells mL—") Pyloom = {1810 /[el1o80) 1] HSS R

10 logit =125 — 1.65[Lat] - 70.4[PO,4] - 0.059[Temp ]-0.927[(NO5 + NO,)] + 0.822[Lon ]-0.065[Month]-0.00002[Dis] 6682 0.53 0.22

100 logit = —2.08 -59.7[PO,4] + 0.112[Sal] - 0.091[Temp] + 0.339]DOC] - 0.724[Si(OH), ]-0.00002[Dis] - 0.088[Month]-32.8[NO,] 5111 0.40 0.10

1000 logit =75.4-130[P0O4] - 0.659[Si(OH)4] - 0.107[ Temp] - 2.78[ (NO5 + NO,)] - 0.738[Secchi]-1.93[Lat ]-0.133[Sal | 6694 0.25 0.04
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Table 5

Chi-square distribution ANOVA: model coefficients and analysis of deviance/likelihood
ratio test for the 10 cells mL™! threshold GLM (Table 4, DF=6) after removal of the
discharge parameter (Nagelkerke's R? = 0.23). Additional performance metrics for this
model are illustrated in Table 5 and Figs.4-7.

Predictor Coefficients Standard error p-val (Chi)
Intercept 128 15.6

Lat —1.60 0.100 <<0.001
PO4 —68.1 923 <<0.001
Temp —0.06 0.007 <<0.001
NOs + NO, —1.08 0.200 <<0.001
Lon 0.878 0.223 <<0.001
Month —0.064 0.018 <0.001

tended to overestimate blooms at the mainstem lower Bay station
CB6.1: for those observations below 1000cells mL™!, the FAR is 33%
with respect to the 19% prediction point (Fig. 7C). It is important to note,
however, that this false positive rate is significantly lower than the
overall model FAR of 52% (Table 6), reflecting the model's tendency to
assign high probabilities to the largest blooms in the meso- to poly-
haline transition zone.

5. Discussion

Much deserved attention has been given in recent decades to
studying the potential influences of cultural nutrient enrichment
(eutrophication) on HAB ecology (e.g. reviews by Anderson et al.,
2002, 2008; Heisler et al., 2008; Glibert et al., 2010—this issue). While
most HAB species fall within various flagellate and cyanobacterial
phylogenies, the pennate diatom genus, Pseudo-nitzschia, is unique in
being the only toxigenic genus of diatoms, the group classically used as
the counterpoint in descriptions of HAB/flagellate ecophysiology
(Smayda, 1997). As a result, our understanding of how a HAB-forming
diatom like Pseudo-nitzschia will respond to land-use change and fluxes
of both organic and inorganic nutrients in a complex estuarine setting is
in its nascent stage. In an evaluation of Chesapeake Bay phytoplankton
community composition, Marshall et al. (2005) referenced a post-
European settlement shift from diatom assemblages dominated by
benthic, pennate diatoms to more planktonic, centric species (Cooper
and Brush, 1991), a general decrease in diatoms associated with
increased anoxia and P loading (Brush and Davis, 1984), and a shift
towards more lightly silicified diatom species. In contrast, the most
modern surveys also document a dramatic increase in the magnitude of
surface diatom abundance that coincides with an overall biomass
enhancement and seasonal fluctuations of potentially toxic phytoplank-
ton in the Bay and its tributaries (Marshall et al., 2005).

According to the time series analyzed in this study, there seems to be
an increase in both the abundance and frequency of Pseudo-nitzschia
blooms, particularly since the 1990s (Fig. 2), though sampling at many
stations also increased during that decade. Although several large
blooms were recorded in the lower Bay during the 1980s and 1990s,
blooms at the mouths of major tributaries such as the Potomac (LE2.2),
Choptank (ET5.2), and Patuxent Rivers (LE1.3) are relatively small and
infrequent prior to 1997. After that time, the lower Bay and tidal

Table 6

Contingency table for the outcomes shown in Fig. 5 for the GLM in Table 5 based on a
default bloom prediction point of 0.50 versus an optimized prediction point of 0.19. The
Probability of Detection (POD), False Alarm Ratio (FAR), and the Probability of False
Detection (POFD) are optimized relative to the upper 10% of Heidke Skill Score (HSS)
values; see Section 3.2 for definitions. Performance metrics represent the mean for the
ensemble of 22 cross-validation experiments.

HSS POD FAR POFD
Absent if Ppjoom<0.50 0.38 0.34 0.44 0.03
Absent if Pyjoom<0.19 0.53 0.75 0.52 0.09
Cross-validation Ppjoom =0.19 0.53 0.75 0.52 0.09
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Fig. 4. Performance of the final GLM (Table 5 Eq. (8)) presented as a boxplot comparing
all bloom (n=668,) and non-bloom observations (n=6,106) with modeled probabil-
ities, where the threshold for a “bloom” is 10 cells mL™". Horizontal lines are median
probabilities (probpon-bioom =0.01, probpeom =0.36); boxes are 25th and 75th
percentiles and whiskers are 5th and 95th percentiles. Individual open circles beyond
the whiskers represent probabilities outside that range, i.e. outliers (n=614).

estuaries appear to become synchronized in terms of bloom timing, but
not necessarily intensity (Fig. 2). This potential lag between the lower
Bay stations (CB6.1, CB6.4, CB7.3E, CB7.4) and the middle/upper Bay
over the study period could signify the introduction of oceanic seeding
populations transported through the mouth of the Bay northward into
the estuary proper (Marshall et al., 2005) where they may persist at
depth until an upwelling or mixing event occurs and brings them to the
surface (Garrison, 1981; Mengelt, 2006). Alternatively, the observed
relationship could suggest an evolution of conditions desirable for
Pseudo-nitzschia blooms, such as eutrophication, in the mesohaline
midstem portion of the Bay beginning in the late 1990s (Glibert et al.,
2001; Marshall et al., 2005). Unfortunately, the discontinuous data at
many stations and often event-response nature of sampling precludes a
reliable trend analysis. On-going time-series analyses using spatio-
temporal kriging of the Pseudo-nitzschia abundance data should allow
for future identification of such trends and comparison with larger-scale
climate indices. While further analysis of existing data is clearly required
to statistically establish any increasing trend in Pseudo-nitzschia
abundance, it is possible with the models presented in the current
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Fig. 5. Optimization of the prediction point (expressed as a decimal fraction) for
determining a “bloom” forecast. The Heidke Skill Score (HSS) is optimized with respect
to the Probability of Detection (POD), False Alarm Ratio (FAR), and the Probability of
False Detection (POFD). The vertical line indicates the optimized prediction
point=0.19, (see Tables 5 and 6).



C.R. Anderson et al. / Journal of Marine Systems 83 (2010) 127-140 135

40 : T - ; - 40 T . T T = 0.8
A 7~ ~
395} 8s5r 0.7
3sf sl
2
(]
o
385} 85t g
05 o
3
38t 38} 3
-
04 3
S
a7s| 751 =
2
0.3
37t a7k
o 0-10 cellsfiml o 0-10 cells/mi
3.5} 4 g5t | 0.2
=" O =10cslls/ml 2O =10 csllsiml
5 % L
I
36 L . 36 . . . 0.1
-775 -77 -76.5 -76 -755 -75-775 -77 -76.5 -76 -75.5 -75

Fig. 6. Hindcast maps represent monthly means of model-predicted probabilities (colorbar) and observations (open circles) of Pseudo-nitzscha blooms defined by the 10 cells mL™"
threshold and 19% prediction point (dark line on colorbar) for two time points in the Chesapeake Bay over the study period: A) March 1998 and B) August 2005. Predictions of bloom
probabilities are generated by forcing the final GLM (Eq. (8)) with spatially interpolated estimates of observed environmental variables for the period 1990-2006 (Section 4.2.3).

study (Table 4) to identify some of the potential physico-chemical
drivers of Pseudo-nitzschia blooms in the Bay.

5.1. Potential drivers of Pseudo-nitzschia blooms in the bay

In all three logistic GLMs, there exist inverse relationships between
nutrient parameters and the Pseudo-nitzschia bloom index, invoking
both concurrent surface nutrient uptake and even the potential onset
of nutrient limitation as Pseudo-nitzschia cell abundance increases. It
is important to note that these relationships to nutrient concentra-
tions are not any more robust when lagged relative to bloom
occurrence. Moreover, a meaningful lag time for correlation of the
phytoplankton response to nutrient supply is expected to be less than
the average monthly sampling frequency available here because of the
relatively short timescales for nutrient uptake. Inorganic PO, is the
most significant nutrient predictor in all GLMs (Table 4). In spring,
when the majority of these blooms occur, the Chesapeake Bay is
indeed more limited by PO, relative to NOs (Prasad et al., in press).
However, in the absence of direct measurements using nutrient
limitation assays, it is not possible to assess the physiological status of
the phytoplankton community at the time of sampling. While P-
limitation is certainly not an initiator of bloom formation, which of
course requires sufficient P availability for cell division, low
concentrations in tandem with high cell abundances are captured
by the models, indicating surface depletion of PO, at the very least.
We note that the onset of P-limitation has been shown to stimulate DA
production in laboratory cultures (Pan et al., 1998). Unfortunately, the
models in the current study cannot address the effects of nutrient
drawdown on DA production in the Bay.

As with other Pseudo-nitzschia habitat models for the west coast of the
US.A. (Blum et al,, 2006; Anderson et al., 2009; Lane et al., 2009), this

nutrient limitation pattern is supported by the GLM results where a
significant negative relationship between Pseudo-nitzschia blooms
and Si(OH)4 concentrations could indicate a lower Si-requirement for this
diatom group. This may suggest a link between runoff-induced reductions
in Si:N and Si:P ratios (Smayda, 1990, 1997) and the occurrence of these
blooms. The inverse relationship between blooms > 100 cells mL™" and Si
(OH)4 in the medium-threshold GLM (Table 4) may be related to the mere
drawdown of Si(OH),. Alternatively, it may reflect the previously
observed association between Pseudo-nitzschia blooms (P. multiseries
and P. australis) and the onset of Si-limitation in other regions and
experiments where Pseudo-nitzschia may be a strong competitor in
relatively Si-depleted waters following a large diatom bloom (Sommer,
1994; Marchetti et al., 2004; Anderson et al., 2006; Lane et al., 2009).
Perhaps in part due to their (relatively) lightly silicified frustules, Psetdo-
nitzschia cells seem better adapted to low-Si environments than many
other diatoms, often outcompeting other groups during the late stages of a
spring diatom bloom when surface waters have been fairly depleted of Si
(Anderson et al., 2006; Kudela et al, 2004; Marchetti et al, 2004).
However, like all diatoms, Pseudo-nitzschia still requires Si, N, and P for
maximal growth and will bloom in response to these inputs, particularly
during winter and spring months when turbulence and reduced light
levels in the water column tend to favor diatoms over flagellates
(Margalef, 1978; Smayda, 1997).

A negative relationship with NO3 + NO, availability for the small
and large bloom thresholds suggests that N-uptake by surface blooms
leads to depletion of both the NO3 and NO, pools, rather than to the
NO, regeneration that is expected during more N-replete conditions
(Lomas et al., 2000; Bode et al., 2002). This association with a reduced
NO, pool is also seen in the inclusion of the NO, parameter in the GLM
for blooms >100 cells mL™'. Rapid NO5 and NO, utilization may be
somewhat inconsistent with evidence of a positive association
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between NOs, possibly from runoff, and fall Pseudo-nitzschia blooms in
the Monterey Bay, CA (Lane et al., 2009). However, the same caveat
remains that a negative relationship between a nutrient parameter
and the bloom index may reflect more the effects of nutrient
drawdown by actively growing phytoplankton rather than suggesting
the possible onset of conditions that favor one phytoplankton group
over another.

Several studies have now effectively demonstrated the uptake of
regenerated forms of nitrogen — ammonium (NH,4), and urea — by
Pseudo-nitzschia species (Howard et al., 2007; Kudela et al., 2008;
Cochlan et al., 2008; Thessen et al., 2009). An increase in the potential
for DA production has been noted when the organism incorporates
organic N or NHy instead of NO; (Howard et al., 2007; Thessen et al.,
2009). While NHy is not a significant explanatory variable for blooms

in the Chesapeake Bay GLMs, it is significantly associated with Pseudo-
nitzschia abundance in this dataset (Table 3) and could useful for
predicting the future probabilities of toxic events. Because of the
salinity tolerance limits for Pseudo-nitzschia shown in this study
(Fig. 3) and elsewhere (Thessen et al., 2005; Thessen and Stoecker,
2008), blooms are expected to be extremely rare and forced
predominantly by salinity anomalies (see Section 5.2) in the upper,
fresh reaches (salinity<5) of tributaries where nutrient enrichment
from runoff is high. However, this enrichment is manifest in the meso-
and polyhaline mainstem portions of the Bay as well (Prasad et al.,
in press). Given that total N from the Susquehanna River, a major
tributary of the Chesapeake Bay, increased 2.5-fold from 1945 to 1990
(Kemp et al., 2005) and that urea usage in agriculture and industry is
increasing worldwide (Glibert et al., 2005), the potential role of NO3
and urban forms of N runoff in driving Pseudo-nitzschia blooms and
perhaps even toxin production should not be ignored, particularly in
light of the projected increases in precipitation and population indices
for the region (Meehl et al., 2007).

The inclusion of DOC as a significant predictor in the medium-
threshold GLM is particularly interesting given its connection to
riverine inputs (e.g. Doering et al., 1994; McKenna, 2004) and the
previously observed association between Pseudo-nitzschia blooms
and river discharge or potential proxies of runoff on the west coast
(Kudela et al., 2004; Anderson et al., 2009; Lane et al., 2009) where
P. multiseries is a dominant bloom former. Glibert et al. (2001) found
strong correlations between DOC and DOC:DON in relation to harmful
P. minimum populations in the Bay and underscored the difficulty in
ascribing direct or indirect effects to this relationship. One possible
indirect effect is the potential for covariation between DOC and DON if
Pseudo-nitzschia cells are directly taking up organic N species during
blooms as described above. There is some evidence for the uptake of
organic substrates by Pseudo-nitzschia after dark adaptation (Mengelt,
2006), but the possibility of interference by extra-cellular or epiphytic
bacteria remains (Bates et al., 2004; Stewart, 2008). Studies on the
west coast also implicate some kind of allochthonous component to
Pseudo-nitzschia blooms from either direct correlation between
blooms and rain events (Trainer et al., 2000) or via the inclusion of
chromophoric dissolved organic matter and precipitation/NOs rela-
tionships in their habitat models (Anderson et al., 2009; Lane et al.,
2009). Provided there is a causal relationship here, a positive
influence of DOC on Pseudo-nitzschia blooms implies the potential
for future changes as precipitation events over the Bay increase in
frequency and/or intensity according to current IPCC projections
(Meehl et al., 2007). However, the weak correlation between DOC and
freshwater discharge (r= —0.08, Table 3) and the negative association
with discharge in the small- and medium-threshold GLMs (Table 4) may
indicate a more autocthonous source of DOC and/or an association
between Pseudo-nitzschia blooms and low runoff periods or drier years.
Understanding this relationship between DOC, discharge, and Pseudo-
nitzschia blooms clearly requires more targeted studies.

The complex nature of environmental change may have opposing
effects on Pseudo-nitzschia bloom distributions. Eutrophication is not
only manifest in the bottom-up direction with respect to HABs, but is
also expected to influence the entire ecosystem with the net result
being more favorable conditions for HAB development in general. The
timing of nutrient enrichment, for instance, may be de-coupled from
predator population increases, resulting in the release of grazing
pressure which can be further enhanced by a build-up in anoxia as the
bloom decomposes (e.g. Buskey et al., 1997). The present study,
however, found no significant relationship between chlorophyll and
Pseudo-nitzschia abundance for the Chesapeake Bay (Table 3),
suggesting a possible de-coupling of these blooms from the overall
rise and fall of phytoplankton biomass. The significant positive
relationship with salinity and negative relationship with temperature
in the GLMs developed for small- and medium- thresholds implies
physical tolerance limits and seasonality that are expected for this
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diatom group and have been observed for Pseudo-nitzschia in the
Chesapeake Bay where high cell abundances occur with colder,
relatively salty waters (Table 4) (Pan et al., 1993; Thessen and Stoecker,
2008). In contrast, the weakly significant negative association with
salinity in the GLM for the largest, rarest blooms is not easily explained
but may be due to the fact that the majority of very large blooms fall
within the 10-15 salinity range (Fig. 3). Another possibility is that since
some large blooms do occur at lower salinities in the lower tidal
tributary estuarine zones, two modes of bloom formation might exist in
the Bay: one stemming from vertical mixing where high salinities, low
temperatures, and high nutrient concentrations are in phase, and a
second mode where river runoff is associated with lower salinities and
high nutrients. Given the sum of these relationships, expected increases
in precipitation for the region could restrict Pseudo-nitzschia blooms to
a smaller portion of the Bay if the size of the meso- and polyhaline
zones were to contract, although subsurface blooms are still probable,
particularly in the lower Bay.

5.2. Performance of the Pseudo-nitzschia bloom GLM

Model results presented here for Pseudo-nitzschia blooms in the
Chesapeake Bay join the growing effort to create and validate
empirical habitat suitability models for species or groups of
biogeochemically important or potentially deleterious pathogens,
microbes, zoonotic diseases, and planktonic organisms (e.g. Iglesias-
Rodriguez et al., 2002; Blauw et al., 2006; Decker et al., 2007; Patz
et al., 2008; Constantin de Magny et al., 2008). An inherent constraint
of these ecological forecasting models is the explanatory power of the
available predictor variables, which in this study were limited to a
standard array of hydrographic properties and chemical constituents
from long-term water quality monitoring programs in an ecologically
complex estuarine system. This complexity presents challenges for
forecasting biological processes in the absence of strong physiological
data to support mechanistic modeling. Great strides have been made
in this direction for at least one group of HABs in the Gulf of Maine
(McGillicuddy et al., 2003, 2005). However, pressing human health
issues drive the need for statistical methods that take advantage of
data currently available to glean process and predictive understand-
ing as well as build models for a variety of HABs and toxic agents
(Moore et al., 2008). To that end, the approach described in this paper
marks the first such attempt for the Pseudo-nitzschia genus on the U.S.
eastern seaboard.

Predictive success for the GLM is dependent on (1) the chosen
threshold for defining a ‘bloom,” and in creating the binary variable for
the logistic regression (Table 4); (2) determining a relevant prediction
point for forecasting blooms from model output (Fig. 5); and (3) the
location along the Bay's salinity gradient (Fig. 7). As the bloom threshold
increases, bloom events decrease in frequency and model skill is
reduced, as can be seen when the bloom threshold increases from 10 to
1000 cells mL™! (Table 4). Use of a single threshold for the final model
(10 cells mL™! GLM; Tables 5 and 6; Figs. 5-7) then assumes that all
resident species of Pseudo-nitzschia will bloom in response to similar
ecological conditions or occupy the same niche space (Smayda, 1963;
Margalef, 1978; Bidigare et al, 1990). However, since such a large
proportion of resident species are potentially toxigenic and were only
included in the analysis when collected from surface samples, it is
reasonable to assume they are similarly adapted or that a given sample
is dominated by only one or two Pseudo-nitzschia species most adapted
to the ambient conditions (Smayda, 1963; Margalef, 1978; Bidigare
et al,, 1990). This implies wider utility in a model that predicts Pseudo-
nitzschia blooms from a relatively low threshold (10 cells mL™!). We
note that the likelihood of DA production at or just above this density
begins to increase (on the U.S. west coast) for the toxigenic P. fraudulenta
group and for other members of the indigenous toxigenic Pseudo-
nitzschia assemblage (P. pungens, P. calliantha, P. cuspidata, P. multiseries;
Thessen and Stoecker, 2008) at even higher densities (Trainer and

Suddleson, 2005). The important caveat still remains that genetic
diversity at the species and strain level can strongly regulate toxicity and
cannot be accounted for in the generic GLM (Orsini et al., 2004; Evan
et al., 2005; Erdner et al., 2008; Thessen et al., 2009). Any niche-space
flexibility offered by such diversity introduces further complications for
predicting Pseudo-nitzschia distributions based on habitat suitability
models.

The optimization method for choosing a prediction point (Fig. 5)
allows the user to adjust the operational probability according to the
relative weightings of the various performance metrics. In any
operational or routine monitoring context, probability maps of Pseudo-
nitzschia blooms must be presented with annotated instructions for
interpretation of these contingencies. The applicability of our optimized
prediction point of 19% varies with location and date in the Bay according
to our hindcasts, and without future validation and tuning, may prove to
overestimate blooms in the mesohaline mainstem and underestimate
the rare bloom events that tend to occur in tidal tributary zones (Figs. 6
and 7). These differences in predictability in different portions of the Bay
might then be influenced by the uneven distribution of observations in
the dataset with respect to salinity since much of the data used for model
development fall in zones fresher than the salinity tolerance for Pseudo-
nitzschia.

To account for any bias in model performance caused by increased
skill in oligohaline regions where few blooms occur (see Fig. 7A), we
tested separate models for the three different salinity zones. The
results (not shown) do not display improvement in model skill for any
individual zone but do, in fact, exhibit an expected decrease in skill
(max HSS = 0.48) compared with our final GLM when salinities <5 are
excluded from model development. It turns out to be difficult to
correctly predict blooms in the oligohaline zone alone (max
HSS=0.18) because of the low frequency of bloom observations
below a salinity of 5 (i.e. rare events). Salinity is indeed an important
factor selecting for Pseudo-nitzschia blooms in the Bay, and this is
accounted for in development of the final GLM (Eq. (8)) which
considers salinity and location (but not an interaction term). By using
all available observations, we have tuned model sensitivity at various
thresholds (Table 4) to those conditions suitable for blooms as well as
for the infrequent salinity anomalies in fresher zones that lead to rare
bloom events in tributaries. However, future validation efforts may
support the use of separate models for the different thresholds and
salinity zones based on location or time of year.

Relative to Pseudo-nitzschia-specific predictive models for the west
coast, our final 10 cells mL™' GLM in Table 5 performs comparably in
its ability to correctly predict blooms for the Chesapeake Bay with a
75% probability of detection (cf. 75-89%) and a 52% false positive rate
(cf. 25-62%) (Anderson et al., 2009; Lane et al., 2009). In terms of error
type, minimizing the POFD over FAR is arguably more desirable in the
context of protecting human health since the perceived or actual
damage from missing a potential health threat may be deemed worse
than a false alarm scenario. In that sense, this model performs quite
well at the optimized bloom prediction point. The relatively low value
of Nagelkerke's R?> ~0.23 (Table 5) brings into question the influence
of environmental variables absent from this analysis, in particular,
measures of organic nutrients and trace metals. Use of these models
by resource managers will ultimately require a keen understanding of
model uncertainty (see Fig. 5) along with an adaptive strategy for
implementation that takes into account any model and threshold
sensitivity within different zones of the Bay as well as emerging data
on the risks of both acute and chronic exposure to DA toxins (Erdner
et al., 2008).

5.2.1. Forecasting Pseudo-nitzschia blooms

Producing nowcasts or forecasts of Pseudo-nitzschia blooms in the
Bay would be facilitated by assimilation of environmental predictions
from numerical models into the diagnostic GLM. This is possible in
conjunction with the Chesapeake Bay Forecast System (CBFS) which
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currently uses dynamical downscaling with the Weather Research
and Forecasting Model (WRF, 2010) to provide high resolution forcing
of the ChesROMS ocean model and Soil and Water Assessment Tool
(SWAT, 2010) river basin-scale model (Murtugudde, 2009). The
forecast is generated every three days using a six to eight member
ensemble forced with the National Center for Environmental
Prediction — Global Ensemble System (NCEP GENS Products, 2008)
and can provide accurate estimates of sea surface temperature and
salinity (used only in higher threshold GLMs). The ChesROMS model
is currently being tuned with an embedded Nitrogen-Phytoplankton-
Zooplankton-Detritus (NPZD) ecosystem model for generating fore-
casts of macronutrient and chlorophyll concentrations, including a
recently implemented DON component (Fennel et al., 2006).
Together, the ChesROMS and NPZD models will be able to predict
the six explanatory variables used in the final GLM (Table 5).
However, use of higher-threshold GLMs (Table 4) will require
estimates of Si(OH), and DOC which are not predicted from the
ecosystem model currently coupled to ChesROMS. Present research
involves diagnostic coupling of alternative ecosystem models to
ChesROMS that include Si(OH)4 in their formulation (e.g. Moore et al.,
2002; Chai et al.,, 2002). Unfortunately, it may not be possible to
generate accurate DOC predictions from existing models which at best
include a “small detritus” carbon fraction (Christian et al., 2002;
Moore et al., 2002), in which case, alternative GLMs may prove more
practical for making Pseudo-nitzschia bloom nowcasts and forecasts.

6. Concluding remarks

This modeling exercise identifies several environmental variables
associated with Pseudo-nitzschia blooms in the Chesapeake Bay but
unfortunately cannot identify environmental indicators of the
presence of its associated toxic agent, DA. Indeed, defining the
distinction between factors that initiate bloom development and
those that trigger toxin production is a recurring theme in HAB
ecology, particularly for Pseudo-nitzschia. The issue of toxigenesis is
highly relevant in a region such as the Chesapeake Bay which, to date,
has experienced no known outbreaks of DA poisoning but whose
populations may still be affected by chronic exposure to moderate
toxin levels (Grattan et al., 2007; Thessen and Stoecker, 2008).
Forecasting endeavors that follow should not only relate these
uncertainties to end-users but also continually revisit bloom thresh-
olds and model formulation with the addition of new validation data
and input from resource managers and shellfish harvesters alike.
Lastly, future efforts to model HABs must look closely at the combined
effects of inorganic and organic nutrient uptake, trace metal
utilization (e.g. Rue and Bruland, 2001; Maldonado et al., 2002;
Wells et al., 2005), allelopathic competition (e.g. Adolf et al., 2008),
and grazing (e.g. Bargu et al., 2003) to move beyond statistics-based
habitat models and incorporate a mechanistic understanding of the
complex processes regulating HAB development and toxicity.
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