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Operational marine environmental modelling has been considered notoriously difficult; consequently there
are very few operational models of the marine environment. Operational modelling of harmful algal blooms
(HABs) requires the modelling of individual species and is therefore harder still. The separation of algal
species in models requires detailed knowledge of their behaviour (survival strategy through the life cycle),
and physiological ecology.
We present quantitative results of an ensemble approach to HAB forecasting in the Baltic, and discuss the
applicability of the forecasting method to bioheochemical modelling. Ensembles were produced by running
a biogeochemical model several times and forcing it on every run with different set of seasonal weather
parameters fromEuropean Centre forMedium-RangeWeather Forecasts' (ECMWF)mathematically perturbed
ensemble prediction forecasts. The ensembles were then analyzed by statistical methods and the median,
quartiles, minimum and maximum values were calculated for estimating the probable amounts of algae. To
evaluate the forecast method final results were compared against available and valid in-situ HAB data in a case
study. It turns out that quantitative HAB forecasts are possible. Further verification will require expanded
observational networks.
ll rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Modelling of non-linear variables always includes uncertainties
from different sources. The initial conditions might be inaccurate, the
model input has errors and the modelling of ocean conditions is not
exact because of truncation errors and inaccuracies in the modelling
of subscale phenomena (Leutbecher and Palmer, 2008). Therefore the
solution deteriorates in time.

The deterioration of model forecasts with time is a well-known
issue inweather forecasting, where the reliable forecast range is about
a week. In oceans the predictability of some phenomena is typically
longer. For example, the internalweather of the sea, the oceanicmeso-
scale, includes mainly phenomena which are occurring in temporal
scales from days to months and spatial scales from kilometres to
hundreds of kilometres (Lermusiaux, 2006). However, ocean predict-
ability is rarely exploited to its useful limits. Most operational ocean
forecasting is limited to ten day forecasts in the maximum, or to
coupled atmosphere–ocean seasonal forecasts where the focus is nev-
ertheless on the atmospheric forecast.

Physical ocean models are principally built on the same well-
known and relied upon equations as atmospheric models, and have
similar inherent limitations to their predictive skills. Biogeochemical
models, on the other hand do not enjoy a firm basis provided by e.g.
the primitive equations of ocean motions. Furthermore, the initial
condition for a biogeochemical forecast is often not well observed, and
the uncertainties are large. While there are significant constraints to
how biogeochemical models are to be constructed (Redfield, 1958),
the uncertainties involved in using biogeochemical models for fore-
casting appear to deserve an explicit treatment. This is particularly
true with models intended to predict not only the overall biogeo-
chemical processes, but also the behaviour of individual species.

In harmful algal bloom (HAB) forecasts a relationship between
phosphorus concentration and cyanobacterial blooms has been recog-
nized for decades (Niemi, 1979; Niemistö et al., 1989; Kahru et al.,
2000). This relationship has been utilized for practical and even oper-
ational purposes. These operational estimates of cyanobacterial bloom
probability and severeness have, however, been based mostly on the
wintertime (January–February) nutrient concentration fields and best
and worst case scenarios for summer weather conditions, without
accounting for the actual weather development and forecasts.

Janssen et al. (2004) demonstrated with model experiments that a
relationship between winter nutrients and summer cyanobacterial
blooms, in agreement with the inferences of Kahru et al. (2000, 2007),
is replicated with biogeochemical 3-dimensional numerical model.

Biogeochemical ensemble forecastss offer a quantitative tool for
the assessment of HAB related environmental risks for a wide range of
applications. Ensembles have been an essential tool in meteorology
for many years. In comparison with a single deterministic forecast,
ensembles offer the benefit of estimates of bias, deviation and range
of the modelled variables from real life situation. It is also possible to
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analyze the ensembles and recognize forecasts with low skill (Buizza,
1997).

There are several ways to dissect the ensemble. Variables can be
studied by e.g. calculating the ensemble mean, which provides an
estimate of the probabilistic expectation forecast. The ensemble can
also be divided into smaller sub-ensembles to make alternative fore-
casts (Brankovic and Palmer, 1997) and even individual members can
be used for prediction purposes. Ensembles can be used as a quan-
titative tool for risk assessment. The potential economic value can be
much higher in many applications than the value of deterministic
forecast (Richardson, 2000).

In this work we explore the predictability of ensemble HAB model-
ling and demonstrate the usefulness of such forecasts in environmental
policymaking and risk assessment. The operational oceanmodel used in
this study has been examined closely by Kiiltomäki (2008) and accuracy
of the deterministic model has been evaluated against observations.
Previously it has been used for bloom forecasting as a part of ad hoc
ensembles with the help of expert insight, cf. FIMR and SYKE (2006).
Our systemwidens this approach by formalizing the forecasting process
in a computationally sound manner. Our approach brings greater con-
sistency of the forecasting process with actual weather forecasts. Causes
for the phenomena seen in the results can be traced more easily, giving
more information for forming the final forecast.

2. Materials and methods

2.1. Model configuration

For forecasting we used FMI (Finnish Meteorological Institute)
operational 3-dimensional biogeochemical model, Baleco. The model
consists of a general circulationmodel (Marshall et al., 1997a,b) and an
ecological module. The model is discretized on a spherical polar grid.
The grid size is 0.1° in longitudinal and 0.2° in latitudinal direction
(around 11.1 km, or 6 nautical miles) and the model domain reaches
120 grid cells in latitudinal, 108 grid cells in longitudinal and 21 grid
cells in vertical direction. The model domain's most south-western
corner is located at (53.85° N, 8.7° E). The vertical resolution of the
model is concentrated to the euphotic zone so that the topmost layer is
3 m, reduced to 2 m in the cells hugging the coast (Kiiltomäki, 2008).
The bottom topography (Fig. 1) is from Seifert and Kayser (1995). The
spatial discretization is made with minimum filter at 6 nm intervals.

The ecological model is based on ecosystem dynamics formalized
by Aksnes et al. (1995) and Tyrrell (1999). Themodel consists of three
phytoplankton groups: diatoms, flagellates and cyanobacteria. These
groups have constant mortality rates and they use phosphate, silicate
and dissolved inorganic nitrogen. Diatoms are potentially limited by
availability of silicate. Cyanobacteria can fix molecular nitrogen and
therefore they are not limited by availability on DIN. The flagellates
group represents autotrophic flagellates. Altogether the ecosystem
model describes the essence of new production in the presence of
three functional groups. The growth rates depend on nutrient con-
centrations, irradiation and temperature (Stipa et al., 2003). Formodel
equations see Appendix A.

Model runs obtained their initial state from FMI's deterministic
Baltic Sea forecast for the start date of the run. The deterministic
forecast's initial conditions, both physical and chemical, were obtained
from winter monitoring data of the HELCOM COMBINE program for
the winter 2007–2008. The observations were interpolated in three
dimensions with a robust nearest neighbour interpolation and then
supplemented by climatological values for the North Sea from the
World Ocean Atlas (Boyer et al., 2006).

2.2. Ensemble forecasts

The ensemble prediction system (EPS) is a technique to predict
the probability distribution of forecast states, given a probability dis-
tribution of random error in inputs and model error. Ensemble fore-
casts are formed by several slightly perturbed ensemble members.

Ensemble forecasts include more information than a single deter-
ministic forecast and therefore the analysis can give us a deeper
insight to many phenomena. Every ensemble member represents one
possible evolution of the system state in time and space. Therefore the
variety of applicable analysis approaches is very wide, when com-
pared to deterministic forecasts.

One of the oldest and simplest analysis methods is to calculate
ensemble mean to define the mean trajectory. It is also possible to
calculate some statistical values for analysis. These values can be, for
example, minimum andmaximumvalues, which indicate the extreme
values, and 25% and 75% quartiles of the ensemble spread. Another
useful approach is to compute the percentage of ensemble members
for which a given variable exceeds some limiting value, which can
then be interpreted as a probability of the event.

Ensembles in our study were created from an unperturbed initial
condition by running the model several times with different sets of
weather boundary conditions. The weather ensembles were made by
ECMWF using singular vector method (Molteni et al., 1996). Weather
parameters used as external forcing for ocean model were 6 hourly
10 mwinds and 2 m dew point temperature and 2 m temperature, 12
hourly surface solar radiation and surface thermal radiation. These
weather ensembles include 50 perturbed ensemble members and an
additional deterministic unperturbed control run. These were used to
generate a 28-day ensemble runs for the Baltic Sea for June, July and
August of 2008. ECMWF makes new monthly forecasts available once
a week, so for this three month period this meant altogether 13
ensemble runs, of which some were chosen for further analysis.

The ensemble forecast produced in this work gives the probability
of cyanobacteria concentrations. The forecast shows where the harmful
algal concentrations are high and thus the appearance of blooms ismore
likely.

2.3. Chlorophyll-a conversion

As themodel gives the amount of cyanobacteria inmolar amount of
nitrogen (N) we have used a special C:N ratio, the molar mass number
of carbon (12.01) and C:Chla ratio to calculate the chlorophyll-a con-
centrations in mg m−3. Since this work concentrates on the Baltic Sea,
we have used C:N=6.3, which is based on studies made in the area:
Walve and Larsson (2007) found out that C:N ratio in the cyanobac-
teria in Western Gotland basin was 6.2–6.4±0.3, the highest ratio
being 7.3. Another study made by Nausch et al. (2009) supports these
values as they found that the mean C:N ratio was 6.2 in the Eastern
Gotland basin.

The Carbon:Chlorophyll-a ratio η is also variable, and depends on
properties of the study area, the state of the bloom and most of all on
the algal species studied, e.g. it is known that C:Chla ratio is usually
larger in cyanobacteria than in other algae as they have also other
pigments that can be used in light harvesting (Geider et al., 1997).
Geider et al. found the minimum C:Chla to be approximately 38–67
for different kinds of cyanobacteria, although the study was not done
in the Baltic Sea. Eker-Develi et al. (2008) found the mean C:Chla ratio
for cyanobacteria to be 33 in Southern Baltic Sea, although there
was significant variability, standard deviation being 35. In addition to
these findings Engström-Öst et al. (2002) reported a high POC:Chla
(b10 μm) ratio, 427±185, during cyanobacterial bloom decay, al-
though POC does not equal C exactly. Based on these results the C:Chla
ratio is a significant source of uncertainty. This is further discussed in
Section 4.3.

With these configurations the chlorophyll-a (Chla) concentration
in mg m−3 was calculated from the model results with the formula

Chla =
Nc⋅6:3⋅12:01

η
≈Nc

η ⋅76; ð1Þ



Fig. 1. Bottom topography (m) of the Baleco model. Also indicated on the map are the following geographic references used in the article: a) Gulf of Finland, b) Sea of Archipelago,
c) Bothnian Sea, d) Sea of Åland, e) Baltic Proper and f) Gotland.
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where Nc is the molar mass of cyanobacteria produced by the model.
The C:Chla ratio, η, is given for specific events separately. As a limit
for the cyanobacterial occurrence we used chlorophyll-a concentra-
tion of 2.0 mg m−3 which is based on studies by Seppälä and Balode
(1999), Nausch et al. (2004) and Kutser et al. (2006).
3. Results

3.1. Case study: harmful algal blooms and upwelling in the Baltic Sea,
June 2008

The summer weather of 2008 was cool and windy and thus large
scale HABswere absent. The overall algal bloom situation can be seen in
Fig. 2. In June and August blooms were milder than usual, in July the
situation was average (HELCOM, 2009). In the beginning of July the sea
water temperature increased a few degrees and the concentration
of cyanobacteria increased in the Gulf of Finland. Cyanobacteria were
mainly mixed in the water column. The Sea of Åland had some blooms.
From the middle July to end of July the algal blooms increased first in
southern Sea of Archipelago, Sea of Åland, eastern Gulf of Finland
and southern Bothnian Sea. In the end of July the blooms were more
frequent and small bloomswere present all along of the Gulf of Finland.
The summer bloom culminated in the end of July, when the maximum
extent (approximately 180,000 km2) of algae blooms was observed.
However the normalized bloom indices for bloom extent (6575 km2),
duration (4.9 days) and intensity (32,651 km2 days) were lower than
the mean for the period 1997–2007.

In our case study we saw an upwelling on the east coast of
Gotland on the 24th of June. We show here how different weather
scenarios affect ocean conditions and how ensemble forecasts see
different biogeochemical phenomena.

Upwelling is very often strong enough for the sea-surface tem-
perature to be affected, and thus low temperatures in a thin strip near
the coasts are a signature of upwelling. Upwelling can also be seen in
the colour of the water and in the abundance of sea life (Gill, 1982).
Temperature and nutrient ensembles (Fig. 3a, c and d) and
cyanobacterial concentrations (Fig. 4) show an upwelling event in the
area. It can be seen that some weather scenarios cause upwelling
while other possible scenarios do not. The cyanobacteria ensemble
(Fig. 3b) and biomass observations (Fig. 5) from Algaline's automated
ferrybox sampling (Ruokanen et al., 2003) show evidence of up-
welling. The lower cyanobacteria biomass concentrations observed
near the coast are captured by a large number of ensemble forecast
members.

3.2. Comparison between observations and forecast

It is desirable to evaluate the quality of a probabilistic prediction
system not only in terms of the intrinsic quality of the results it
produces but also in terms of cost efficiency (Talagrand et al., 1999).
In HAB validation the available observational data is very sparse
and often qualitative in nature. Therefore the validation is especially
challenging.

Fig. 6 shows the observed situation in the end of July 2008, when
the HAB was at its peak. The observations are done by volunteers,
environmental authorities and Finnish border guards. Several kinds
of observations are combined in this figure. Observations are mainly
visual especially near the Finnish coast and there is no data about
biogeochemical variables during the phenomenon.

Contrast this with Fig. 7, showing HAB probability maps produced
from an ensemble forecast for the same time. Unlike the observations,
these maps are based on probabilities of quantitative values of
cyanobacteria chlorophyll-a as predicted by the model. Therefore, it is
not predicting directly the concentration of chlorophyll-a but rather
the possibility of the blooms. This is further illustrated in Fig. 8
showing single members of the ensemble.

From Figs. 6 and 7 it can be seen that in the Gulf of Finland there are
several observations of HABs in the areas where they were predicted.
We can also see that in the Northern Baltic Proper the predicted bloom
area is considerably to the East of the observed blooms, although with
lower values of η the edge does move westward. Furthermore, there



Fig. 2. Number of days with cyanobacteria observations by NOAA-AVHRR satellite imagery during 2008 (HELCOM, 2009).
Courtesy: SMHI.
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are no blooms forecasted for the Sea of Archipelago, yet there are
several observations of blooms.

4. Discussion

Large parts of Baltic Proper and Gulf of Finland are nitrogen-
limited, resulting in excess phosphorus in the surface layer in late
summer. This excess DIP pool has the potential to stimulate blooms of
nitrogen-fixing cyanobacteria. That is, the potential of late summer
bloom is determined as early as February by the excessive DIP con-
centration in the surface layer. This correspondence has been studied
by Kahru et al. (2000). In later studies Janssen et al. (2004) have
reached the same conclusion with the computational models and
Lilover and Stips (2008) based on analysis of observations.

Our ensembles demonstrate the sensitivity of HABs to nutrient
fields, especially phosphate. Similarities can be seen in the distribu-
tion of the computational initial phosphate field after the spring
bloom at the end of May (Fig. 9b) and probability based forecast
(Fig. 7a). The observed initial phosphate field (Fig. 9a) has similar high
DIP concentrations in the Baltic Proper and western parts of Gulf of
Finland, but concentrations in the Bothnian Sea are higher only in the
initial winter DIP field.

The initial nutrient field plays an important role in algae growth
and it appears at first that spatially the nutrient field is a more
dominant factor in algal blooms than the weather conditions. How-
ever, during the summer the meteorological variables have a great
impact on timing, duration and intensity of the blooms as can be seen
in Fig. 3. For example Fig. 3b shows that unfavourable weather
conditions can delay the cyanobacteria growth for weeks. It is also
seen that the concentration of cyanobacteria chlorophyll is strongly
dependent on weather conditions.
This dependance on weather conditions led Kahru et al. (2007) to
suggest that only basin wide forecasts of frequency of cyanobacterial
accumulations are useful. As this work deals with forecasting prob-
ability of blooms instead of bloom frequency and we use a circulation
model with actual weather forecasts as inputs, it is possible that our
approach is suitable on sub-basin scales. This notion would require
further investigation, however.

The biological component of the model used in this study is a
simplified yet robust representation of the diverse natural ecosystem,
thus it has only three different algal groups and three different
nutrients related to each otherwith relatively simple equations shown
in Appendix A. However, the verification work of Kiiltomäki (2008)
has showed that the biogeochemical component is fit for this kind of
work. Furthermore, it has been shown in Section 3.1 that the model
responds well to the changing weather conditions and the dynamics
are accurate enough as the decrease in cyanobacterial concentration
during the upwelling event is reproduced by the model. Furthermore,
the benefit of a more complex biological component is not apparent
because of other uncertainties such as the strong effect of the initial
nutrient field. It would also require more computing time which is
not an advantage for an operationalmodel, especiallywhen it comes to
computationally demanding ensemble forecasts. Therefore it stands to
reason for this purpose that it might be more useful to increase the
accuracy of initial nutrient field and nutrient input than to further
develop the relatively accurate biogeochemical component.

As the initial condition data was based on somewhat sparse win-
tertime observations it would be interesting to further investigate
whether perturbating the initial nutrient conditions could enable the
quantification of the resulting uncertainty in the forecasts. However, a
perturbation scheme for marine biogeochemical forecasts remains to
be developed.



Fig. 3. Monthly ensemble forecast plumes of biogeochemical parameters from the beginning of the forecast 20th of June to 7th of July 2008 on the east coast of Gotland (18.80° E 57.25° N).
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Fig. 4. Cyanobacterial ensemblemean forecast (mg m−3) for the 1st of July from the run beginning from20th of June (η=100). Lower concentrations on the coast of Gotland (18.80° E
57.25° N) indicate upwelling.

215P. Roiha et al. / Journal of Marine Systems 83 (2010) 210–220
4.1. Applications

Ensemble forecasts of the marine environment have a variety of
possible applications.

Environmental indicators, derived quantities describing state of
the environment in an understandable manner, provide information
Fig. 5. Algaline fycocyanin (blue–green algal biomass) observations (PC fluorescence) on 1s
Gotland the values are clearly lower.
Courtesy: Finnish Institute of Marine Research
needed for decision makers to mitigate environmental problems. The
range of decision makers varies from individual consumers to
politicians, and the indicators should be helpful in making environ-
mental decisions.

For several years computational models have been used as a
decision support tool for policy makers. End users have found the
t and 2nd of July 2008 on the route from Helsinki to Travemünde. On the east coast of



Fig. 6. Combined harmful algal bloom observations from 22nd to 24th of July 2008. Red
colour is for very abundant blooms, orange is for abundant blooms, greenmeans there is
some algae and blue that there is no algae. This composite picture is based on qualitative
visual observations, there are no concentration data included.
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products to be useful and fit for that purpose. The added value of the
ensemble approach comes from the probabilities, which give insight
to what is likely to happen.

With ensemble forecasts it is also possible to illustrate how
weather conditions affect HABs. It is a well-known fact that cold and
windyweather prevents heavy bloomswhile sunny and calmweather
promotes them. HAB maps can illustrate the probability of blooming
instead of absolute amount of cyanobacterial biomass.

Applications developed byworking with the users and recognizing
their individual needs are essential when adding value for ensemble
forecasts.

4.2. Illustrations of probability based forecasts

Because of the large information content of ensemble forecasts, one
major challenge is to communicate the results and their uncertainties
to users. In deterministic forecasting these kind of problems simply
do not appear because there is less information available on the
uncertainties.

Recreational users need different kinds of information than, for
example, policymakers or professional users. These differences should
be taken into account in communication with user groups. There are
different ways to solve the problem with probability based forecasts
and in this work we have presented some of them. For instance,
professional users may benefit from the more detailed information
provided in Fig. 3, while recreational users might appreciate the more
easily approachable map based presentation like the one in Fig. 7a.
Customization of communicated message to suit end user needs often
works for the benefit of all partners.
4.3. Carbon:nitrogen and Carbon:chlorophyll-a ratios

Carbon:nitrogen:phosphorus stoichiometry is one of the most
discussed topics inmarine biogeochemistry and no final agreement on
this relationship has yet been found. The most widely used ratio is so
called Redfield ratio, C:N:P=106:16:1. There have been many studies
on the subject and it has been pointed out by Arrigo (2005) that
the Redfield ratio is more an average than a universal constant, and a
single measurement, especially if made in a coastal region, can differ
significantly from it. Because cyanobacteria are phosphorus limited in
the Baltic Sea, as they can fix nitrogen, there is no need to take phos-
phorus into account in the chlorophyll-a conversion since the model
treats algae as a nitrogen reservoir. As discussed in Section 2.3, we
used C:N ratio of 6.3 for chlorophyll-a conversions, which is slightly
lower than Redfield's ratio which gives C:N=106:16=6.625.

Although the carbon:nitrogen ratio has its effects on chlorophyll-a
conversion, amore significant source of error is the carbon:chlorophyll-
a ratio η. As illustrated in Fig. 7 the value of this ratio affects the results
considerably. Because this ratio is so poorly constrained in this region it
is hard to arguewhich of the forecasts shownwould be themost proper
one. Achieving a more accurate C:Chla ratio would require information
at least on themean η of cyanobacteria in the Baltic Sea. This could then
be used as a best prior estimate and changed according to the state of
the bloom, although another question is how the state of the bloom can
be determined. Geider et al. (1997) have presented some modelling
approaches that could be used to resolve this variability. However the
determination of η is not on the scope of our article, but we note the
significance and uncertainty related to it.

The uncertainties in the nitrogen to chlorophyll-a conversion has
its effects also on the accuracy of the forecast when verified against
observations. Variation in conversion values adds uncertainties which
could not be reproduced by this model setup. A biased conversion
value will also cause bias to the results irrespective of actual model
skill.

4.4. Limiting value for HABs

In Section 2.3, we determined a chlorophyll-a concentration of
2 mg m−3 as a limit for a possible visible cyanobacterial occurrence
(see Section 2.3) Defining such a limit, however, for cyanobacterial
bloom is difficult due to the lack of standards and especially because
most bloom observations are based on visual approximation. How-
ever there are some studies where measurements have been done
during cyanobacterial blooming in the Baltic Sea area (Seppälä and
Balode, 1999; Nausch et al., 2004; Kutser et al., 2006; Mazur-Marzec
et al., 2006). Kutser et al. (2006) suggested that blooming can be
defined as chlorophyll-a concentration exceeding 4 mg m−3. Mazur-
Marzec et al. (2006) found that chlorophyll-a concentration was
round 10 mg m−3 or more during blooming in Gulf of Gdańsk sum-
mer 2004. Therefore, taking into account the uncertainties in the
nitrogen-chlorophyll conversion, 2 mg m−3 is a conservative limit for
a level of biomass that could be perceived as a harmful or nuisance
bloom.

5. Conclusions

Ensemble forecasting appears to be a promising tool in opera-
tional oceanography. The probability based approach illuminates the
uncertainty of modelled phenomena. Stable conditions create more
unanimous ensembles and vice versa.

Spring-time phosphorus fields are a relatively good predictor for
the spatial, basin-scale distributions of HABs in the summer. The
spatial variation of forecasted blooms is relatively small.

The weather conditions, however, clearly have an impact on
timing, duration and intensity of HABs. This variation can be observed
from and quantified with the ensemble forecasts in a manner that



Fig. 7. Harmful algal concentration ensemble forecast with limiting value of 2 mg m−3 for blooming, with different values of C:Chla ratio (from 100 in 6 to 40 in 6). This two week
harmful algal probability forecast was formed from an ensemble run starting from 10th of July (cf. Fig. 8). Red colour indicates high probability of blooms (N75%) at the end of the
forecast, yellow considerable probability (50%–75%), green moderate probability (25%–50%) and blue low probability (b25%). This harmful algal forecast depends among other
things on the value chosen for C:Chla ratio η as shown in Eq. (1). The forecast map changes notably with different values of η ranging from 100 to 40.
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supports pre-emptive actions, at least against exposure to adverse
health effects.

When developing tools for marine policy making, the quality of
the modelled results should be well known and the quantification
of errors should be considered. Quantitative verification of the HAB
ensemble forecasts, however, is very challenging because of the
limited amount of observational data, and the difficulties in matching
the observed variables with the predicted variables.
Both themodel's sensitivity to initial conditions and the challenges
faced with verification suggest that HAB modelling would greatly
benefit from an increased amount of relevant observations. Verifica-
tion would become much easier if quantitative information about
biomass concentrations in the Baltic Sea during the summer was
available. Gaps in the winter time phosphate monitoring measure-
ments can lead to notable shortcomings in summer's bloom forecasts,
and would need either more observations or a highly sophisticated



Fig. 8. Probabilistic ensemble harmful algal forecasts, such as those in Fig. 7, are formed from multiple ensemble members. Percentage of ensemble members that exceed chosen limiting concentration are interpreted to have potential for
bloom formation during the forecast interval. This figure shows a selection of forecasts from an ensemble of 50, showing in yellow areas where concentration exceeds the chosen limit of 2 mg m−3. These ensemble members (Fig. 8a, b, c, d and
e) have been selected to represent the typically observed variance within ensembles. It can be seen how the extent of possible bloom areas depends on weather conditions. For instance, some ensemble members predict no bloom potential in
the Gulf of Finland (Fig. 8c), while others show almost all of the basins having potential for blooms during the forecast period (Fig. 8d, for example).
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Fig. 9. Fig. 9a shows initial excess phosphate field (DIP-DIN/16) interpolated and estimated from nitrate and phosphate observations made by R/V Aranda in winter 2008. Fig. 9b
shows phosphate after spring bloom in the end of May 2008. Field is computed from observed initial fields by deterministic model. Fig. 9c is as Fig. 9b but for nitrate. We can see that
spring bloom has depleted nitrate field in areas where cyanobacterial blooms typically occur. Therefore Fig. 9b can in this context be interpreted as amore complex, model generated
estimate of the simple calculation shown in Fig. 9a.

219P. Roiha et al. / Journal of Marine Systems 83 (2010) 210–220
assimilation scheme to fill. Should these kind of measurements and
better assimilation schemes become available, we expect the benefits
of the ensemble approach to become even more pronounced.
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Appendix A. Ecological equations

The equations in the ecological model are

∂cd
∂t = cdðμd−ed−mdcdÞ ðA:1Þ

∂cf
∂t = cf ðμf−ef−mf cf Þ ðA:2Þ
∂cc
∂t = ccðμc−ec−mcccÞ ðA:3Þ

∂cN
∂t = −cdðμd−edÞ−cf ðμf−ef Þ−ccð−ecÞ ðA:4Þ

∂cP
∂t = rPNð−cdðμd−edÞ−cf ðμf−ef Þ−ccðμc−ecÞÞ ðA:5Þ

∂cS
∂t = rSNð−cdðμd−edÞÞ; ðA:6Þ

where cd, cf and cc are the biomasses of diatoms, flagellate and
cyanobacteria, respectively. Concentrations of nitrogen, phosphate
and silicate are cN, cP and cS. The constant ratios for cyanobacteria
nutrient intake are rPN and rSN. Mortality rates are md, mf and mc. The
specific rates of exudations are dependent exponentially on temper-
ature by equation ed,f,c=e0

a
2
T.

The phytoplankton growth rates µd,f,c depend on nutrient con-
centrations, irradiation and temperature:

μfmax
= μ f0a

dT ðA:7Þ
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μ f = μ fmax

I
I + kfI

cP
cP + kfP

cN
cN + kfN

 !
; ðA:8Þ

where I= I(z) is the illumination, µf0 is the maximum growth rate at
0 °C. kfP,fN=µfmax

/αfN,fP are the half saturation functions as used by
Aksnes et al. (1995) with constant but species and limitation depen-
dent affinities α. I(z) depends on the amount of biomass between the
depth z and the surface (shelf-shading).
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