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Mixotrophs are significant components of planktonic food webs, are frequently associated with harmful algal
bloom events, and thus warrant inclusion in coastal ecosystem models. There are, however, insufficient
quantitative data to support the construction and testing of simple empirical descriptions of mixotrophs.
Here, a complex mixotroph model based upon phenomenological understanding (Flynn and Mitra, 2009)
was used to generate control “realities” against which to compare contrasting simple descriptions of
mixotrophy using a Turing Test approach. The simplest description, adding together phototrophic and
heterotrophic functions gave the worst output. The best model tested, in keeping with the evolution of these
organisms, used phototrophy as a nutritional supplement mechanism for heterotrophy. However, none of
the simple models described kleptochloroplasty — an important process in some harmful bloom species.
None of the simple models correctly matched the balance of phototrophy and heterotrophy (grazing); while
fits to bulk parameters (biomass, nutrients) could be acceptable, rate processes were often completely in
error. This is of particular concern because of the difficulty in determining rate processes. A generalised
implication is that a fit to bulk data gives no assurance that the model structure is not dangerously
dysfunctional; determining model skill should include locating and removing structural dysfunctionality.
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1. Introduction

1.1. Role of mixotrophy

Organisms that possess the capability of combining phototrophy
and heterotrophy are termed mixotrophs. Depending on light,
nutrient and prey availability, mixotrophs display varying proportions
of phototrophic and heterotrophic activity. Mixotrophs thus occupy a
unique niche affecting trophic levels both below and above themwith
the potential to change the dynamics of the system. Mixotrophy can,
therefore, affect biogeochemical cycling of nutrients.

Mixotrophs do not form a unique group but occur under different
physiological guises, amongst different species ranging over a variety of
taxonomic groups. From an evolutionary point of view phagotrophy in
eukaryote microbes is believed to be the primitive state from whence
pure phototrophic protists evolved (Raven, 1997; Raven et al., 2009).
Within planktonic organisms,mixotrophy is a common phenomenon in
marine as well as freshwater systems (Jones, 1997; Raven, 1997;
Stoecker, 1998; Jones, 2000). Indeed, mixotroph populations can be
responsible for ecologically catastrophic events such as harmful algal
blooms (Kempton et al., 2002; Vaqué et al., 2006; Burkholder et al.,
2008).
In the presence of abundant light, nutrients or prey, strict autotrophs
and/or heterotrophs dominate. Mixotrophy comes into play in mature
systems. In such systems mixotrophs act as conduits for energy and
elements from different parts of the food web. Thus, in post-autumn
bloomwhen there is low light aswell as low food availability,mixotrophs
photosynthesising and engulfing bacteria can channel energy to higher
trophic levels (e.g., Myung et al., 2006). This activity also improves the
C:N:P ratio of the mixotrophs resulting in these becoming nutritionally
replete food for the higher trophic levels (so-called seston upgrading;
Ptacnik et al., 2004;Weithoff andWacker, 2007). In the post spring bloom
period, when autotrophs become increasingly reliant upon regenerated
nutrients, mixotrophs including HAB species are advantaged through
their ability to consume other organisms.

When confronted with unfavourable conditions, mixotrophs possess
an advantageous survival strategy, thriving in conditionswhere food and/
or light limits growth of their non-mixotrophic competitors. Therefore,
one could expect occurrences of “ideal mixotrophs” in nature capable of
balancing autotrophy and phagotrophy to maintain a high growth rate
undervarying environmental conditions.However, there is noevidenceof
occurrence of such organisms in reality. Indeed, mixotrophic organisms
typically have lower growth rates compared to dedicated autotrophs or
heterotrophs (Raven, 1997; Stoecker, 1998). This reflects the compro-
mises required to operate twonutritionalmodeswithin one cell type, and
is suggestive of a complex regulatory interaction between the processes,
rather than them being simply additive. As we shall see, this has impli-
cations for modelling mixotrophic activity.
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1.2. Need for models

Given the established importance of mixotrophy, notably in
certain HAB events, a need to simulate their involvement in the
aquatic ecosystem is clear. However, even with the current trend of
including multiple compartments to represent different groups of
plankton (i.e., plankton functional types, PFTs) the most complex
planktonic food web models often do not include mixotrophs as a
separate entity (e.g., Baird and Suthers, 2007; Follows et al., 2007).
The implicit assumption is that these organisms do not warrant a
“box” of their own within these multi-component ecosystem models.
By default the phototrophic activity of mixotrophs is therefore
typically assigned to the “phytoplankton” group while the heterotro-
phic activity is assigned to the “microzooplankton” component.

Where mixotrophy is considered explicitly usually it is to perform
some specific role, such as providing an additional nutrient source for
a primarily phototrophic form (e.g., through ingestion of bacteria;
Thingstad et al., 1996; Myung et al., 2006), or provision of energy/
carbon through ingestion of phototrophs (e.g., Stickney et al., 2000;
Jost et al., 2004). In such studies inclusion of mixotrophy within
models is simplistic, lacking any mechanistic justification or physio-
logical basis for the control of the mixotrophic act (e.g., Thingstad et
al., 1996; Hammer and Pitchford, 2005; Troost et al., 2005). For
example, the partitioning between autotrophy and phagotrophy may
be apportioned using fixed ratios, various features of cell physiology
may also either be disregarded or grossly simplified — photoacclima-
tion is not typically included in the description of the photosynthetic
component of the mixotroph. Within the description of the hetero-
trophic activity, the kinetics of predation and growth, effects of
nutritional status and availability of food on ingestion, assimilation
and the linkages between these processes are ignored. Furthermore,
these models assign fixed assimilation efficiencies and ignore all
feedback processes which are typical of biological systems. While this
latter point is common of microzooplankton models in general, the
absence of such descriptions in mixotrophs is a key omission in
organisms whose functioning depends on the regulation of the
feedback events.

1.3. The challenge and a compromise

Operation of the mechanistic model of protist mixotrophy
developed by Flynn and Mitra (2009) gives some insight to the
behavioural patterns achievable in models of mixotrophy and how
they relate to our knowledge of these organisms. There are various
datasets available from freshwater as well as marine studies to guide
the construction and testing of such models. Unfortunately, the vast
bulk of these experimental studies, while contributing much to the
phenomenological data base, have limited value for the purpose of
model development and application within steady state as well as
dynamic systems. For example, mixotrophic experimentation typi-
cally focuses on either impacts of light or nutrient limitation on
grazing (Nygaard and Tobiesen, 1993; Stoecker et al., 1997; Li et al.,
2000; Smalley et al., 2003; Adolf et al., 2006). Suitably designed
experiments are required in particular to parameterize the switching
between phototrophic and heterotrophic activities withinmixotrophs
over a range of nutrient and prey concentrations against a background
of variable light availability. It is also necessary to know the fates of
the organics and inorganics in the system in order to check whether
the system balances; such information is usually not documented in
experimental studies.

In short we are left with a challenge. Mixotrophs are known to be
important (Raven, 1997; Stoecker, 1998; Jones, 2000; Dolan and
Perez, 2000; Raven et al., 2009) and we recognise the importance of
modelling them (Zhang et al., 2003; Hood et al., 2006; Flynn and
Mitra, 2009). That is especially so in the context of harmful algal
blooms (Kempton et al., 2002; Burkholder et al., 2008). However, we
lack the parametric data uponwhich to rigorously test different model
formulations, to judge their skill in describing processes (for a
discussion on model skill, see Stow et al., 2009). More than likely it
will be several if not many years yet before such data become
available. The best we can do at present is to construct models using
phenomenological data and use these modelling experiments to help
identify gaps in available data. This was the undertaking made by
Flynn and Mitra (2009) but the outcome is arguably too complex for
easy placement within ecosystem models.

Given the above, there is a need to deploy the simplest models of
mixotrophs that are fit for purpose. In view of a lack of laboratory and
field data upon which to base and test the construction of such
models, a compromise is to use the model of Flynn and Mitra (2009),
hereafter “F&M09”, to generate a series of “realities” against which to
compare simplified formulations. This approach is similar to Turing
tests (testing an output from a computer programme against the
reality of human behaviour to see whether the former demonstrates
artificial intelligence), except here the reality is actually generated by
a model which has itself been tested and deemed acceptable in its
behaviour. While this exercise carries with it some level of risk, we
argue that the risk is far less than making assumptions on mixotroph
physiology with no physiological mechanistic basis at all.

1.4. Aims

With the caveats raised above, in this study, we test the
functionality and fidelity of a range of contrasting models describing
protist mixotrophy. The test models range from the most simplistic
approach, where a proportion of phototrophic activity is assigned to a
phototrophic compartment while the phagotrophic activity is
assigned to a heterotrophic component (i.e., no feedbacks between
the two components), to more complex structures where there is
some level of feedback between the phototrophic and phagotrophic
activities within the mixotrophs. These models are all compared
against the behaviour of the physiological mechanistic model of Flynn
and Mitra (2009) when operating under different scenarios. The aim
is thus to determine the level of complexity necessary to describe
mixotrophs within ecosystem models (such as those used for
studying HABs) using a complex model as the control in Turing
tests. Such an approach enables us to determine the optimal balance
of complexity and fidelity in model constructs for describing this
important PFT.

The conclusions that we reach are that models of mixotrophymust
involve some description of metabolic switching. While simplistic
models may describe the bulk properties such as biomass, nutrient
concentrations adequately, they are incapable of simulating the
underlying rate processes that drive the system dynamics correctly,
which could result in erroneous prediction of HAB events. This
inadequacy of the simple models is especially important due to the
difficulties in measuring rate processes required for modelling HAB
mixotrophy, in the laboratory as well as in the field.

2. Methods

For reasons given in the Introduction (namely the lack of field and
laboratory data suitable for model parameterisation) the fidelity of
simplified models has been determined by their ability to match the
output of a mechanistic description of mixotroph activity that is
capable of describing the different types of mixotrophic behaviour
observed in nature (Flynn and Mitra, 2009) especially during HAB
events.

2.1. Control mixotroph model

The mixotroph model was that of Flynn and Mitra (2009),
hereafter F&M09. This model was operated using the constants as



160 A. Mitra, K.J. Flynn / Journal of Marine Systems 83 (2010) 158–169
described in Flynn and Mitra (2009), describing C:N:P physiology
with photoacclimation, with a release of 10% of C-fixed as DOC
(cf. Flynn et al., 2008). Voided material (excess from phagotrophic
activity) was released as inorganics and semilabile organics.

2.2. Simplified mixotroph models

Five different configurations for simple mixotroph models were
constructed as test models. Schematics for these, and for F&M09, are
given in Fig. 1, with further information given in Table 1. Only the
specific descriptions linking the models of Flynn (2001) and Mitra
(2006) to generate the 5 test models are given here; the reader is
referred to the source papers for the detailed description of the base
models. In brief, the phytoplankton component of the mixotroph
model was the same as used for the algal description in the ecosystem
scenario, as an implementation of that described by Flynn (2001). The
model also displays a repression of nitrate use by ammonium
assimilation within the mixotroph. The zooplankton model of Mitra
(2006) describes the capture of prey (using the ingestion-based prey
selectivity (IS) function of Mitra and Flynn, 2006a), and the
subsequent stoichiometric-related partitioning of ingested material
into biomass and inorganic and organic voided materials. Voided
organics were considered here to be semilabile and hence available
for consumption by bacteria. No stoichiometric modulation of
predation (SMP—Mitra and Flynn, 2005; Mitra, 2006) was described,
and neither was it enacted in F&M09. Here prey were consumed
according to their C-biomass concentration in the water, with the fate
of their C:N:P determined according to the disparity between this and
the fixed C:N:P of the predator. (The same zero, neutral, level of SMP
was applied by the F&M09 model used here.) Depending on the
simulation scenario of interest, grazing by the mixotroph was enabled
(with equal C-specific rate) on algae and/or bacteria.

In all instances (both F&M09 and the test models), the contribu-
tion of the heterotrophic (zooplankton-like) component of the
mixotroph could be enabled all the time, or in response to a specific
nutrient limitation. For the F&M09 model application this was
achieved as described in Flynn and Mitra (2009). For the test models
it was achieved by reference to the value of a quotient, θ. To enable a
potential for grazing all the time θ=0. If the potential for grazing
developed in response to a general lowering of growth rate (e.g.,
nutrient and/or light limitation) then θ = μ

μmax
�

. If the potential for
grazing developed in response to a specific nutrient limitation (e.g.,
P-stress as defined by the quotient PCu in Flynn, 2001) then θ was
defined by that nutrient status (e.g., θ=PCu, where PCu=0 for
maximum stress, and PCu=1 for no stress). The maximum value of
the heterotrophic growth rate component of the mixotroph, μmax

het , was
a function of the absolute maximum possible rate under pure
heterotrophy, μabsmax

het , and θ according to Eq. (1).

μhet
max = μhet

absmax⋅ 1−θð Þ ð1Þ

Schematics of the test model configurations are given in Fig. 1,
with parameters in Table 1. The following describes these configura-
tions in more detail.

Type I: there was no linkage between the phototrophic and
heterotrophic descriptions. Mixotroph biomass was described simply
by summing the individual masses attributed to the photosynthetic
and heterotrophic components; there was no state-variable describ-
ing the total mixotroph biomass.
Fig. 1. Schematics of the different model types, together with that of the control model F&
nutrients and prey into the organisms, together with losses from respiration, regeneration
separate. Types III, IV, V and F&M09 recycle nutrients otherwise voided following assimilat
C-supply and demand; interaction “Int2” refers to a spatial interaction between space for c
information.
Type II: phototrophic and heterotrophic components shared a
common biomass. Here, C, N and P entering from either or both
phototrophic and heterotrophic activities was combined in the
descriptions of state variables for C-biomass, N:C and P:C. Apart from
that, however, there was no linkage between the modes of physiology,
growth being the sum of the two activities. The maximum possible
mixotroph growth rate was described by summing the maximum
phototrophic (μmax

phot) and the maximum heterotrophic (μmax
het ) activities.

Nutrients released (regenerated) by heterotrophic activity entered the
external medium and were recovered (against any competition with
other organisms) by the phototrophic component.

Type III: this was like Type II except any nutrients regenerated by
heterotrophic activity (i.e., via predatory behaviour by the mixotroph)
was retained for direct use by the phototrophic component. ExcessNH4

+

and phosphate over that required to raisemixotroph N:C and P:C to the
maximum values were released. The descriptor of this functionwas the
same as that employed by Flynn and Mitra (2009), their equation 43;
this used a sigmoidal function to progressively increase nutrient release
as the nutrient quota (Q, as N:C or P:C) increased above Qmax (NCmax,
PCmax) towards the absolute maximum Qabs (NCabs, PCabs).

Type IV: developed from Type III; here the mixotroph growth rate
was capped at the maximum possible level µmax. Any shortfall, due to
a lack of prey items, was balanced by phototrophy. The activity of the
phototrophic component was thus down-regulated by the activity
(success) of the heterotrophic component. This down-regulation
employed a sigmoidal curve of the form described in Eq. (2) which
worked on the value of the absolute maximum phototrophic growth
rate, μmax

phot giving an operational maximum (opμmax
phot) which decreased

to zero as the overall mixotroph growth rate (µ) approached the
maximum value µmax. K (typically b1) and H (typically between 2 and
8) are constants affecting the form of this control function.

opμphot
max = μphot

max ⋅
1 + KH

� �
⋅ 1−μ

=μmax

� �H

1−μ=μmax

� �H
+ KH

ð2Þ

Type V: this was like Type IV, except the regulation was reversed,
with priority now to the phototrophic component (Eq. (3)). Hetero-
trophy now acted as the nutritional supplement for when photo-
trophic activity failed to support the potential growth rate.

opμhet
max = μhet

max⋅
1 + KH

� �
⋅ 1−μ

=μmax

� �H

1−μ=μmax

� �H
+ KH

ð3Þ

2.3. Simulation scenarios

The base model scenario used to generate the control data series
was a combination of the algal and bacterial models with the F&M09
mixotroph model as described and used by Flynn and Mitra (2009).
Algae and bacteria were thus potential prey species, or under different
conditions, competitors for nutrients with the mixotroph. The
bacterial model was as described by Flynn (2005), consuming
inorganic forms of N and P, and labile and semilabile organics. Test
model runs were identical, except for the substitution of the F&M09
model with one of the simplified mixotroph descriptions.

The interactions between algae (consuming inorganics as nitrate,
ammonium and phosphate and releasing DOC), bacteria (consuming
M09 described in Flynn and Mitra (2009). See also Table 1. Shown are flows of light,
and voiding. In Type I the processes of phototrophy and heterotrophy are completely
ion of prey material. Interaction “Int1” in F&M09 refers to an interaction at the level of
hloroplasts versus that for feeding vacuoles — see Flynn and Mitra (2009) for further
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Table 2
Descriptions of scenarios. The operation of kleptochloroplasty was as described in Flynn
and Mitra (2009) in which the maximum size of the feeding vacuole was set at a value
of 0.2 rather than 0.05 of the mixotroph core biomass, and digestion was linked to the
supply of C for support of growth.

Scenarios

A B C D E

Mixing depth (m) 20 20 5 5 5
Initial NO3

− concentration (μM) 5 5 20 20 20
Initial PO4

3− concentration (μM) 0.5 0.125 1 0.5 1
Grazing on algae ✓ ✓ ✓ ✓ ✓

Grazing on bacteria ✓ ✓ ✗ ✗ ✗

Kleptochloroplasty ✗ ✗ ✗ ✗ ✓

Limitation stimulating mixotrophy
(none=1; P-stress=2; N- and/or P-stress=3)

1 2 1 3 1

Table 1
Features of the different types of simplified mixotrophmodels tested, and of the control
model, F&M09.

Model type

I II III IV V F&M09

Number of state variables 5 4 4 4 4 8
Separate phototrophic and heterotrophic
systems; variable N:C, P:C and
Chl:C for phototroph, fixed N:C and
P:C for heterotroph

✓

Common state variables describing variable
N:C, P:C and Chl:C

✓ ✓ ✓ ✓ ✓

Separate state variables describing material
and Chl held in the feeding vacuole

✓

Explicit description of kleptochloroplasty ✓

No internal nutrient cycling ✓ ✓

Internal nutrient cycling ✓ ✓ ✓ ✓

μ=μphot+μhet ✓ ✓ ✓

μ≤μmax
het ; μmax

phot down-regulated ✓

μ≤μmax
phot; μmax

het down-regulated ✓

µ a function of integrated interactions ✓

Grazing always enabled, or modulated by
general or specific growth-limiting stress

✓ ✓ ✓ ✓ ✓ ✓

Table 3
Constants in test model subjected to tuning, their units, and the range of values in
which they were tuned.

Constant Role Unit Range

Cra Capture rate on algal prey (C C−1 d−1)·
(C L−1)−1

0.001–0.01

Crb Capture rate on bacterial prey (C C−1 d−1)·
(C L−1)−1

0.001–0.01

AEmax Maximum assimilation efficiency Dimensionless 0.5–0.9
AEmin Minimum assimilation efficiency Dimensionless 0.1–0.45
H Hill constant for switch between

modes of nutrition
Dimensionless 1–8

K Half saturation constant for switch
between modes of nutrition

Dimensionless 0.01–1

KI Half saturation constant for ingestion C C−1 d−1 0.1–0.5
μmax
phot Maximum rate of photosynthesis-driven

growth
C C−1 d−1 0.5–2

μmax
het Maximum rate of heterotrophic-driven

growth
C C−1 d−1 0.5–2
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ammonium, DOC and semilabile organics) andmixotrophs (consuming
nitrate, ammonium, phosphate, algae and/or bacteria, releasing DOC
and semilabile organics) were followedwithin a physical description of
a mixed water column of either 5 or 20 m depth. Mixing between the
mixed and lower water masses was equivalent to a dilution rate of
0.05 d−1, thus removing organisms and residual nutrients and
introducing fresh nutrients. The different scenarios of nutrients, mixed
depth andmixotroph configuration (feeding on bacteria and/or algae, in
response to general growth limitation or to specific nutrient limitation,
and with or without a description of kleptochloroplastic activity) are
summarised in Table 2.

2.4. Model operation and tuning

The control model, with the mixotroph described according to
F&M09 (Fig. 1), was run under different scenarios (Table 2). The test
model configurations were then tuned against the output data from
the control. The data used for tuning were concentrations of nitrate,
ammonium, phosphate, DOC, algal-C, bacterial-C and mixotroph-C.
These are the types of data most likely to be obtained from
experimental studies (but are scant and/or non-existent at present;
see Introduction and Discussion). The data used for tuning were used
with a temporal resolution of 0.125 d.

Tuning was performed using the evolutionary search method
supported by Powersim Solver v2 (Isdalstø, Norway). This method
maximizes the likelihood of obtaining a global rather than a local
minimum (Haefner, 1996). In essence, through what are termed
“evolutionary algorithms” (i.e., multiple simulations carried out with
different combinations of the constant parameters), Solver identifies
values for the chosen constants which produce the fit closest to the
presented data series (e.g., biomass). Thus, Solver runs themodel with
different combinations of parameter values, “crossing” (in a genetic,
evolutionary sense) those combinations that give the best fits and
rejecting those that are poor; Solver eventually identifies a combina-
tion of parameter values that gives the best fit. Typically, some 10,000
or so simulations are run during each model tuning.

The constants in the test models subjected to tuning were only
those associated with the test mixotroph configurations; all other
constants (e.g., algal, bacterial, and physical descriptors) remained the
same as those in the control setup. We also restricted the range of the
mixotroph model parameters tuned. Thus parameters describing the
minimum and maximum N:C and P:C, those associated with
photosynthesis and photoacclimation were kept constant across all
descriptions (with values as given in Flynn and Mitra, 2009). We did
this because the emphasis here was on judging how the coupling
between phototrophic and heterotrophic processes could (in model-
ling terms) be most economically achieved. The test model constants
tuned are listed in Table 3.

To provide some level of objectivity in comparing the output of the
model systems, the mean deviation between the outputs of the
control model using the F&M09 description and the five test models
was calculated for the total carbon biomass of the mixotroph (mC),
the rates of mixotroph carbon fixation (C-fix) and ingestion (IgC) and
the mixotroph growth rate (Cμ). This deviation was calculated by
summing the squared differences between the outputs of the
scenarios operating the test models versus the F&M09 model at that
time, and averaging them for the number of data points considered
(Eq. (4)).

Mean deviation =
�

∑ test model output−F&M09 model outputð Þ2ð4Þ

3. Results

The tuned values of the constants for the five model types for the
five different scenarios are listed in Table 4. Coloured versions of the
plots are available in the online version of this paper. Only the data for
organism biomass and mixotroph rates of photosynthesis, ingestion
and growth are shown. Data for nutrients for all but ammoniumwere
very similar between simulations.



Table 4
Tuned values of constants used by the different mixotroph types; see Table 3 for units
and definitions; na, not applicable for this model type. The values used for the control,
F&M09, model were: Cra=0.005; Crb=0.005 for Scenarios A and B and Crb=0 for
Scenarios C–E; AEmax=0.8; AEmin=0.2; μmax

phot=0.35; μmax
het =0.7.

Model

I II III IV V

Scenario A
Cra 0.008 0.008 0.003 0.004 0.007
Crb 0.003 0.005 0.004 0.003 0.004
AEmax 0.734 0.896 0.723 0.703 0.871
AEmin 0.337 0.242 0.180 0.104 0.214
H na na na 5.306 4.974
K na na na 0.550 0.685
KI 0.499 0.484 0.243 0.349 0.262
μmax
phot 0.948 0.762 0.798 1.396 0.891

μmax
het 0.734 0.136 0.113 0.174 0.218

Scenario B
Cra 0.006 0.008 0.005 0.005 0.010
Crb 0.004 0.006 0.004 0.004 0.006
AEmax 0.612 0.794 0.899 0.895 0.896
AEmin 0.224 0.395 0.404 0.160 0.353
H na na na 4.450 1.192
K na na na 0.734 0.304
KI 0.124 0.128 0.272 0.389 0.221
μmax
phot 1.036 0.658 0.677 1.275 0.679

μmax
het 1.988 0.432 0.546 0.970 0.424

Scenario C
Cra 0.004 0.004 0.002 0.002 0.002
Crb 0.000 0.000 0.000 0.000 0.000
AEmax 0.898 0.733 0.684 0.649 0.777
AEmin 0.235 0.341 0.152 0.308 0.333
H na na na 6.618 3.886
K na na na 0.417 0.589
KI 0.388 0.337 0.195 0.337 0.303
μmax
phot 0.857 0.641 0.705 1.011 0.760

μmax
het 0.867 0.170 0.116 0.140 0.440

Scenario D
Cra 0.004 0.004 0.005 0.004 0.009
Crb 0.000 0.000 0.000 0.000 0.000
AEmax 0.721 0.754 0.749 0.725 0.680
AEmin 0.426 0.373 0.265 0.294 0.350
H na na na 4.156 5.260
K na na na 0.595 0.186
KI 0.210 0.260 0.404 0.281 0.285
μmax
phot 1.006 0.602 0.633 1.039 0.646

μmax
het 2.000 0.611 0.597 0.995 0.484

Scenario E
Cra 0.001 0.0003 0.004 0.002 0.0004
Crb 0.000 0.000 0.000 0.000 0.000
AEmax 0.559 0.747 0.567 0.688 0.769
AEmin 0.258 0.152 0.186 0.239 0.260
H na na na 3.761 4.940
K na na na 0.190 0.812
KI 0.401 0.487 0.151 0.456 0.387
μmax
phot 1.083 0.946 0.820 0.999 0.927

μmax
het 0.460 0.057 0.005 0.007 0.033

Fig. 2. Model outputs for algal, bacterial and mixotroph biomass in Scenario A, with
continuous grazing by the mixotroph on algae and bacteria in a deep mixing layer,
low-nutrient setting. The models containing the alternate mixotroph models, Types
I–V, were tuned against the control model containing the full mixotroph description
(F&M09) described by Flynn and Mitra (2009). The data used for tuning were
concentrations of nitrate, ammonium, phosphate, DOC, algal-C, bacterial-C and
mixotroph-C. See also Table 2. A colour version of this plot is available online.
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3.1. Scenario A: continuous grazing on algae and bacteria

Here grazing on both the algal and bacterial prey was enabled all
the time (Table 2), and the outputs for nutrients (not shown) and
organism populations of the five test models were not substantially
different from the outputs when employing F&M09 (Fig. 2a–c).
Simulations using model Type I showed the least overall deviation for
themixotroph biomass (Table 5). However, fits were attained through
contrasting predator–prey dynamics (Fig. 3a–c). With the control
model F&M09, the initial increase in the mixotroph population was
attained through prey ingestion (Fig. 3b); the decline in prey
populations (Fig. 2a and b) resulted in a decline in mixotroph growth
rate (Fig. 3c) with subsequent growth being sustained through carbon
fixation (Fig. 3a). In the test models, however, the initial increase in
the growth rate of the mixotroph was associated with high
phototrophic activity and low prey ingestion (Fig. 3a versus b). The
growth rate patterns for the mixotroph population in all the five test
models followed that of carbon fixation and were markedly different
from the control model using the F&M09 description. Note in
particular the values ascribed to the maximum potential for growth
under phototrophy (μmax

phot) versus that for heterotrophy (μmax
het ) in the

test models versus F&M09 (Table 4). Of the five test models, Type IV
(which used phototrophy as a nutritional supplement to hetero-
trophy; Table 1) achieved the best fit to those of F&M09 (Table 5).

3.2. Scenario B: grazing on algae and bacteria to compensate for P-stress

Mixotroph grazing was stimulated here by P-stress (Table 2). As in
Scenario A, in general terms there was similar temporal agreement
between the test model outputs and those from the control model
F&M09 for the prey populations (Fig. 4a and b). The initial increase in
the mixotroph population, however, was markedly higher (up to
4-fold) for all the test models, and Type I clearly performed worst;
Type IVwas best (Fig. 4c). Again, however, therewas a clear difference
in the C-acquisition dynamics between the simplified models and
F&M09 (Fig. 5). The high initial growth rates of the mixotroph for the
test models were due to high phototrophic activity compared to that
from F&M09 (Fig. 5a vs. 5c; see also values for μmax

photin Table 4). With
the advent of phosphorus stress (phosphate was nearly exhausted by
day 10 of the simulation, not shown), the F&M09mixotroph switched



Table 5
Deviations of simulations of mixotroph C-biomass (mC), mixotroph C-fixation (C-fix),
ingestion (IgC) and growth rate (Cµ) conducted using different mixotroph model Types
I–V, in comparison with the output of the control model. Deviations were calculated as
according to Eq. (4). Text in bold signifies the lowest deviation.

Model Scenario A

I II III IV V

mC 0.013 0.030 0.035 0.022 0.032
C-fix 0.200 0.172 0.211 0.117 0.273
IgC 0.098 0.110 0.110 0.063 0.140
Cμ 0.027 0.025 0.032 0.008 0.035

Scenario B
mC 0.033 0.013 0.013 0.005 0.014
C-fix 0.241 0.069 0.085 0.035 0.087
IgC 0.150 0.075 0.092 0.052 0.093
Cμ 0.086 0.031 0.035 0.013 0.036

Scenario C
mC 0.620 0.454 0.390 0.345 0.306
C-fix 0.082 0.070 0.119 0.101 0.154
IgC 0.069 0.026 0.039 0.028 0.047
Cμ 0.051 0.012 0.020 0.010 0.020

Scenario D
mC 0.200 0.005 0.006 0.004 0.004
C-fix 0.338 0.056 0.080 0.067 0.088
IgC 0.447 0.082 0.115 0.051 0.129
Cμ 0.107 0.020 0.027 0.018 0.031

Scenario E
mC 0.207 0.114 0.061 0.077 0.081
C-fix 0.411 0.334 0.266 0.353 0.347
IgC 0.072 0.062 0.054 0.065 0.066
Cu 0.077 0.065 0.046 0.062 0.065

Fig. 3. Model outputs for mixotroph C-fixation (C-fix), ingestion (IgC) and growth rates
(Cμ) from thesimulationsdescribed inFig. 2. A colourversionof thisplot is availableonline.

Fig. 4. As for Fig. 2, but for Scenario B, with mixotroph grazing on algae and bacteria to
compensate for P-stress in a deep mixing layer, low-nutrient setting. See also Table 2. A
colour version of this plot is available online.
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over to heterotrophic activity. This resulted in an increase in the
mixotroph growth rate and thence population (Figs. 4c and 5c).
However, while P-stress was used to trigger feeding in the test Types
as well, these did not develop such a level of heterotrophic activity
(low IgC, Fig. 5b; see also values for μmax

het in Table 4) resulting in a
lower growth rate (Fig. 5c) during this phase. Again, the test model
Type IV gave the best fits to the control model F&M09 (Table 5),
though even this did not give a particularly close fit (Fig. 5).

3.3. Scenario C: continuous grazing on algae only

In this scenario (Table 2), the mixing depth was shallower, and
nutrient loading higher (more akin to a coastal area or lagoon, the type
of environment where HABs may develop). Here, while the outputs
from the model with mixotroph Type I was substantially different
compared to the control model F&M09, there was no substantial
temporal difference in populations between the four other test models
and the control model (Fig. 6; Table 5). The mixotroph population,
however, was substantially higher for the control model than for Types
II–V (Fig. 6c). Looking at the dynamics of C-acquisition (Fig. 7; Table 4),
again one can seemarked differences in themodulation of phototrophic
andheterotrophic activities between themixotrophmodel described by
F&M09 and the test Types. Oscillations in C-ingestion (IgC) by F&M09
reflect sequences of feeding anddigestion, asdescribedby thefilling and
emptying of the feeding vacuole (see Flynn and Mitra, 2009). The test
Types were chiefly dependent on carbon fixation for the increase in the
mixotroph population at the start of the simulation, while F&M09
engaged in feeding from the start and down-regulated photosynthesis
(Fig. 7a vs. 7b; Table 4). Unlike Scenarios A and B, the bestfits to the data
from the control model was not given by any particular test model,
thoughType Iwasworst (Table 5). Dynamics for Type Iwere different to



Fig. 5. Model outputs for mixotroph C-fixation (C-fix), ingestion (IgC) and growth rates
(Cμ) from thesimulationsdescribed inFig. 4. A colourversionof thisplot is availableonline.

Fig. 6. As for Fig. 2, but for Scenario C, with continual grazing on algae in a shallowwater
setting. See also Table 2. A colour version of this plot is available online.
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the others; grazing contributed little to a relatively high initial growth
rate, with the combined phototrophic activity of mixotroph and algae
depleting nutrients rapidly after day 5 (not shown). As nutrients were
exhausted there was a rapid increase in grazing that led to a rapid
decline in prey algal biomass by day 10 (Figs. 6 and 7).

3.4. Scenario D: grazing on algae to compensate for nutritional limitation

ScenarioDwas the sameas ScenarioC, except for the involvementofN
or P nutrient stress in inducing grazing (Table 2). Again, behaviour of test
Type I was clearly different to the others in the way in which it described
the overall biomass dynamics (Fig. 8); the otherswere in close agreement
with each other. The C-acquisition dynamics for the mixotroph (Fig. 9;
Table 4) were, also, very different; the greatest difference was between
Type I and F&M09, but the behaviour of Types II–Vwere alsomarkedly at
variance in comparison with F&M09 (Table 5). The increase in the
mixotrophpopulation (Fig. 8c) in the control simulationusingF&M09was
achievedwith a relatively lower initial growth rate (Fig. 9c) resulting from
a low carbon fixation rate (Fig. 9a). P-stress started to build from day 5
onwards, with near exhaustion from day 10 (not shown). Grazing
developed in consequence of this, andwas higher in the simulation using
F&M09 (Fig. 9b). Through different dynamics similar final mixotroph
biomasses were achieved (Fig. 8c).

3.5. Scenario E: continuous grazing on algae, with retention and use of
kleptochloroplasts

For this scenario, the model of F&M09 was configured with a large
feeding vacuole in which algal prey could be held without much
digestion so that their kleptochloroplastic contribution to mixotroph
C-fixation was protracted (Table 2). Kleptochloroplasty is, for example,
important for the HAB species Dinophysis. Like other models in the
literature, the test Type descriptions have no capacity for explicitly
describing such behaviour because there are no state variables
describing kleptochloroplasts and hence their photosynthetic activity.

Unlike any of the above scenarios, the test model outputs for
Scenario E are markedly different from the control model using F&M09
in all instances (Figs. 10 and 11; Table 5). The mixotroph population in
all the test models depend solely on the phototrophic activity for
increasing the population; there is only a low level of grazing activity
(Fig. 11a vs. b; Table 4). The growth rate of the mixotroph portrayed
through F&M09 is chiefly maintained through heterotrophic activity
(Fig. 11b) in conjunctionwith retention of the operational kleptochloro-
plasts in order to maintain a high growth rate (Fig. 11c) resulting in an
increasing mixotroph population under nutrient limiting conditions
(Fig. 10c). Type III comes closest to describing the behaviour of the
F&M09 model (Table 5), though even this fails totally to describe the
C-acquisition dynamics (Fig. 11).

4. Discussion

The target of this work is crucial to the description of many
harmful algal bloom events. While mixotrophs may be, and indeed
have been, ignored in oceanmodels, they cannot be justifiably ignored
in models dedicated to the study of certain HAB events and indeed in
coastal ecosystem models in general. In such situations the activity of
mixotrophs can be central to ecosystem dynamics. That is especially
so where the success of the HAB is related to the increased abundance
of prey species due, for example, to eutrophication and/or removal of
benthic (bivalve) predators of those prey.



Fig. 8. As for Fig. 2, but for Scenario D, with grazing on algae to compensate for nutritional
limitation in a shallow water setting. See also Table 2. A colour version of this plot is
available online.

Fig. 7. Model outputs for mixotroph C-fixation (C-fix), ingestion (IgC) and growth rates
(Cμ) fromthe simulationsdescribed in Fig. 6. A colour versionof this plot is available online.
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4.1. Overview of results

The simulations of population biomass, and of the nutrients (not
shown)producedusing the simple descriptionsofmixotrophs generally
matched those of the multi-nutrient mechanistic description of Flynn
andMitra (2009) againstwhich theywere tuned (Figs. 2, 4, 6, 8, and 10).
This could be considered as giving some cause for optimism for the
deployment of simple models of mixotrophy. However, as ever, the
devil is in the detail.

Outputs generated using the Type I description gave the poorest
descriptions of the events portrayed by the control model. There is an
important differencebetween Type I and all theothers (Table 2). In Type
1 any nutritional advantage gained from consuming prey is not
transferable to the phototrophic component, or vice versa. Thus during
the operation of Type I in Scenario B grazing was slow to develop
(Fig. 5b) because phototrophy over the preceding period had only
developed the phototrophic potential (Fig. 5a), leaving the heterotro-
phic potential as aminor component of thewhole. In reality, energy and
resources fromtheseprocesses interact to support organismgrowth. For
example, the consumption of bacteria into a mixotroph (Myung et al.,
2006), a food source rich in N and P and relatively poor in C, would be
expected to enhance the phototrophic ability (by raisingmixotroph N:C
and P:C) and simultaneously stimulating C-fixation countering respira-
tory losses during prey digestion. Additional carbon is also required to
compensate for the stoichiometric difference between the prey and
mixotroph. At the very least, then, any model of protist mixotrophy
requires the integration of phototrophy and heterotrophy. Simply
adding the twoprocesses together is inappropriate, and arguably gives a
dysfunctional model (see Flynn, 2010 for discussion on dysfunction-
ality). Type II (Fig. 1; Table 2) achieves at least some level of integration
through the sharing of a common biomass descriptor but its perfor-
mance is still wanting.
Bettermatches are given by Types III–V (Figs. 6, 8, and 10), thatmore
fully integrate the physiological processes (Table 2), with some degree
of feedback to balance and modulate the processes of phototrophy and
heterotrophy. This result is important because hitherto most descrip-
tions of mixotrophs have relied on additive descriptions, with no
feedback (Thingstad et al., 1996; Baretta-Bekker et al., 1998; Stickney et
al., 2000; Hammer and Pitchford, 2005).

The best results from the simple models appeared to require a
dominantly heterotrophic description with phototrophy acting as a
nutritional supplement. This, Type IV, is perhaps coincidentally consistent
with the evolution of these organisms as being primarily heterotrophs.
That said, none of the five test types came close to replicating the
behaviour most closely matching that of those original mixotrophs,
namely a mode of operation involving kleptochloroplasty (Scenario E,
Fig. 10; Lewitus et al., 1999; Johnson et al., 2006, 2007; Kim et al., 2008).

There is, however, a very important caveat that must be levelled at
even the ability of the best of the simple test types, namely that thefit to
the bulk state-variable data (biomass, nutrients) was achieved typically
using totally different dynamics of phototrophic and heterotrophic
activity to those in the control simulation using the mechanistic
description afforded by F&M09 (Figs. 3, 5, 7, 9, and 11; Table 4). This
issue will be considered further below, in Section 4.3.

One final issue is that the test models tend to misrepresent the
“reality” in the same way — an over-estimation of the importance of
C-fixation for the mixotroph which is particularly apparent in the early
phaseswhen thenumeric values of biomass are lowest. Thiswas soeven
for Type IV which was configured to give priority to the heterotrophic
mode of nutrition. The explanation for this is not obvious, but the
operation of mixotroph physiology in nature, and as represented by
F&M09, ismore complex than just switching betweenmodes because of



Fig. 10. As for Fig. 2, but for Scenario E, with continual grazing on algae, but with
retention and use of kleptochloroplasts, with growth in a shallowwater setting. See also
Table 2. A colour version of this plot is available online.

Fig. 9.Model outputs for mixotroph C-fixation (C-fix), ingestion (IgC) and growth rates
(Cμ) from the simulations described in Fig. 8. A colour version of this plot is available
online.
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the competition for space and resources within the mixotroph (Flynn
and Mitra, 2009).

4.2. Can we judge when simple mixotroph models may be acceptable?

Validation of a model is often judged against available laboratory or
field data. For example, Friedrichs et al. (2007) conducted a comparison of
a range of diverse plankton food web models against field data for both
bulk and rate data. There are problems with that approach of assessing
model skill (Stow et al., 2009) that apply to laboratory and especially to
field data. Problems are primarily based around the presence of errors in
the data— some of the data types have greater scope for errors, andmost
data then require the applicationof transforms to obtain comparable units
to those in the models, adding further scope for error. In addition, the
temporal range of data also varies greatly, some being collectedwith high
frequency (e.g., chlorophyll fluorescence), and some rarely (e.g.,
sedimentation rates). An alternative approach is where one model type
is considered as being a “reality”, enabling the use of a form of Turing test.
This requires that we believe the model “reality”. In defence, this is
analogous to believing that data series collected in the field or from
experiments based on specific species represent typical events. Accepting
the concept of using amechanistic complexmodel in generation of a data
series not only provides data of high temporal resolution which is free of
errors associated with laboratory and field sampling but is also free from
the need for transforming data with the associated errors. This then
provides a platform for exploring various matters that would assist in
deriving experiment and sampling design (frequency, and type). In this
study, however, we concentrate on the issue of model complexity.

For the application at hand, there are no substantial parametric
data for even an initial validation. The model of Flynn and Mitra
(2009) as used for the generation of “reality” here was subjected to
non-parametric validation using the wealth of information available
on the general behaviour of these organisms; the model conforms to
expectations. Reasons for the lack of parametric data are explored in
Flynn and Mitra (2009), but are primarily due to problems over
measurement units (e.g., rates expressed per cell, when cell size varies
during the event), the inherent complexity of the organisms, and the
interactions with their prey (e.g., pigment allocation between prey,
mixotroph and mixotroph food vacuole). Rate data are particularly
difficult to obtain, because of the activities of prey within the same
water sample (e.g., predation against the background of prey growth;
C-fixation by algal prey, the mixotrophic predator and by klepto-
chloroplasts; nutrient use and regeneration). In consequence, data
from field and/or laboratory experimental studies will typically
consist of the nutrient concentrations and population cell numbers
or, at most, biomass (i.e., the types of parameters used for tuning the
test model types in this study).

However, from the test scenarios here it is evident that the simple
models tuned just to bulk data may not necessarily portray the correct
system dynamics. For example, in a system where the mixotroph
population thrives via ingestion in aperiodofnutrient depletion (Scenario
B; e.g., Caron et al., 1990; Skovgaard, 1996; Adolf et al., 2003, 2006), none
of the test Types I–V would be able to portray this phenomenon. Indeed,
all the test types show a bias towards carbon fixation over ingestion
(Figs. 3, 5, 7, 9, and 11). Knowledge of rate processes appears essential;
Friedrichs et al. (2007) reached a similar conclusion in their work on
plankton food web models (which, incidentally, ignored the role of
mixotrophs). This knowledge is especially required for models which are
used to predict HAB events (Mitra and Flynn, 2006b).

Determining key rates in mixotrophs is difficult. If the prey is
photosynthetic then only a combined population C-fixation rate
would be available. Measuring ingestion rates in microzooplankton is



Fig. 11. Model outputs for mixotroph C-fixation (C-fix), ingestion (IgC) and growth
rates (Cμ) from the simulations described in Fig. 10. A colour version of this plot is
available online.
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notoriously difficult but, of the two processes, is more likely to be
measured. To test whether the inclusion of rate data during model
optimisation could make a difference to our analysis, we have run the
tunings with the addition of the data for the mixotroph ingestion
rates. The results were the same as those without this inclusion, even
when a higher priority was given to fitting the test models to the
ingestion rate data (not shown). The basic problem, as mentioned
above, is that most of the simple model types are incapable of
describing the system dynamics expected, although Type IV does
what may be accepted as a good enough job in some scenarios.

The lack of good data for the parameterisation of mixotroph models
washighlighted as amajor problemby Flynn andMitra (2009). Even the
best experiments in this regard (e.g., Adolf et al., 2003) are inadequate.
We need experimental laboratory and field data for rate processes such
as ingestion, carbon fixation and nutrient uptake. Until such data
become available we only have phenomenological data to test our
models against; F&M09 (Flynn and Mitra, 2009) represents a dynamic
embodiment of that phenomenological data.

In the absence of adequate data to better validate models, it would
appear that at present the placement of simple additive types of
mixotroph models within ecosystem scenarios should be avoided. At
the least the mixotroph models need to simulate the core activity of
these organisms, namely an interactive trade-off between the contrast-
ing physiological processes of phototrophy and heterotrophy.

4.3. Lessons from the study — when two wrongs make a right

In this work we have made the assumption that the behaviour of
the F&M09 model accords with reality. Setting aside the question of
whether such an assumption is acceptable, there is an important
lesson from the work described here.
Let us accept that indeed the output from the control simulation,
using F&M09, is real. The fact thatmodel Types III–V do a passable job at
matching the bulk behaviour of the “real” data but do so using totally
incorrect dynamics is a great cause for concern (Figs. 2–11; Table 4).
Indeed, presented only with the output using Type I, which has a
structure that is clearly dysfunctional, many would accept the
performance of the model as being useful The apparently “good” fits
of these simple models to the data is due to the growth rate of the
mixotroph being approximately correct even though both the ingestion
and C-fixation rates are wrong (μmax

photand μmax
het values, Table 4) — these

errors thus compensate for each other. We have seen such a situation
before where a model apparently fitted the data correctly using
incorrect system dynamics; Mitra et al. (2007) demonstrated how
two errors in the classic Nutrient–Phytoplankton–Zooplankton (NPZ)
model compensated for eachother resulting in twowrongs appearing to
make a right.

A basic tenet of modelling is to use models that are as simple as
possible to describe theprocess, to answer thequestion being set, and to
validate them against data. Traditionally that judgement has beenmade
against numeric data, by assessingwhat is now referred to asmodel skill
(Stow et al., 2009).We have argued before (Flynn, 2010; Anderson and
Mitra, 2010) that irrespective of the question being set, the functionality
of the model structure must be in accordance with the system that it is
attempting to mimic. The results here give a demonstration of why that
is so. Simple models are usually simple because some sweeping
generalisations have been made in their construction; those general-
isations have rarely if ever been tested. One is then leftwondering about
all those models used as drivers of theoretical ecology, many of which
are very simple in their structure (not least to aid mathematical
tractability). Should we trust them?
5. Conclusions

Mixotrophs are important components of HABs, and of planktonic
food webs in general. Their activity warrants appropriate recognition
inmodels. Simply adding “boxes” to depict the two contrastingmodes
of nutrition within a mixotroph population is inadequate. Mixotrophy
is not the sum of the parts but is a complex mechanistic process
requiring inclusion of appropriate feedback controls. Of the simple
types considered here, that which was most successful was Type IV,
which was primarily heterotrophic, using phototrophy to counter
shortages in prey. Notably, however, none of the simple types could
match the behaviour of a kleptochloroplastic mode of feedingwhich is
an important survival strategy for various mixotrophic species (e.g.,
Dinophysis; Kim et al., 2008).

In defence of simple models, one can argue that such models may
match population data adequately. However, such a justification is not a
strong enough defence when similar values of state variables can be
given with contrasting underpinning rates, a situation made worse as
critical rate data are typically missing from the literature. Conforming to
phenomenological (non-parametric) data shouldbe just as an important
part of determining model skill as fits to parametric data (Stow et al.,
2009). Indeed, it should be undertaken first, to remove dysfunctionality
(Flynn, 2010). The approach provided in this paper could be utilized to
achieve a compromisebetween thefidelity andcomplexity ofmodels for
their application in describing population and system dynamics.
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