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Primary productivity is a fundamental ecological and biogeochemical process
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Chisholm 2000
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Net community production

Phytoplankton
nutrient ytop Zooplanl_(ton
uptake | 14+1+1 = GPP 1+1 = NPP | & bacteria
grazing '
autotrophic .
respiration nutrient
recycling )
< heterotrophic
respiration

net nutrient supply _ NCP _ export of particulate &
upwelling & mixing - Ci - dissolved organic matter

GPP: Gross primary productivity
NPP: Net primary productivity

NCP: Net community production

after Sigman & Hain 2012
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Physical-biological coupling: large-scale biogeography

Observationally-based seasonal surface chlorophyll and nitrate distributions

July, August, September January, February, March

Chl a [mg m?]

Nitrate [uM]
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Research questions

Q1: What is the local impact of eddies on phytoplankton?

Q2: What is the rectified impact of mesoscale eddies on NCP?
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Global eddy-resolving integration: Model configuration

Forcing

CORE ‘Normal Year' (adjusted to climatology, i.e. repeating annual cycle)

Initialization

Physics (U, V, T, S): prior physics-only integration (~ 15 yrs)

Long-lived pools (DIC, Alk, nutrients): GLODAP/WOA climatologies, MLR gap-fill

Phytoplankton, Fe, etc.: interpolated from prior 1° solution

Configuration details

Grid

Tracer Horiz.
Closure

Momentum
Closure

Advection

Topography

Coupling
interval

Low resolution

1° (60L), displaced pole

GM, diagnostic

Anisotropic harmonic viscosity
Upwind-3

Full-cell ETOPO2

Daily

High resolution

0.1°tripole (62L)

Biharmonic

Biharmonic

Centered (T&S), Upwind-3 (BGC)
Partial-cell ETOPO2

6 hr

Numerical experiments



Physical solution: mesoscale variability

Standard deviation of sea level anomalies (14—-120 day band-passed filtered)

AVISO observations POP 0.1°

SO A O N ®
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Physical solution: vertical mixing

Winter mixed layer depth diagnosed from density structure (Aog = 0.125)
(NH: JFM, SH: JAS)

POP 0.1°

WOA observations (0.25°)
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Trajectories of long-lived (lifetimes > 60 days) eddies

a) Observations
17034 Anticyclones 17563 Cyclones

2 40°E  80°E  120°E 160°E 160°W 120°W 80°W 40°W  0°
b) Block-Averaged Model
15759 Anticyclones 16979 Cyclones

® 40°E BOE_ 120°E  160°E 120°W  80°W  40°W 0°
c) Full Resolution Model

oy, 16779 Anticyclones 17213 Cyclones
80 - —

120°E 160°E W 120°W  80°W  40°W

Fewer mid-latitude open ocean eddies in
simulation than in observations.

Sampling bias in AVISO in equatorial
regions? (Fast eddy propagations and
dispersed satellite ground tracks.)

Increased prevalence of cyclones (+3%)
matches AVISO exactly (at native
resolution).
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Eddy demographics

Amplitude Radius Lifetime
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Ratios of observed to simulated eddy amplitude and scale
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Eddy-centric perspective :



Eddy impacts on chlorophyll:

SSHO®
SSTO
chl @

eddy pumping (intensification)

SSH@
SST@
chi®

A {
Py

after Sarmiento and Gruber 2006

sea-level

euphotic zone
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Eddy impacts on chlorophyll

Eddy stirring of tracer gradients

Propagation
Direction

Chelton et al. 2011

Eddy-trapping

MEANDER SEPARATION RING
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Warm Core Ring Executive Commitee, 1982
via P. Gaube

Eddy-induced Ekman pumping
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Eddy impacts on chlorophyll

a) Eddy Stirring b) Trapping of CHL c) Eddy Intensification d) Ekman Pumping
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Gaube at al. 2014
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Cross-correlation between high-pass filtered SLA and Chl

a) Observations

40°E  80°E 120°E 160°E 160°W 120°W 80°W 40°W

b) Block-Averaged, Masked and Smoothed Model
—— T

> Significant negative correlation in boundary
current regions.

> Positive correlations appear to dominate open
ocean regions.

» Model has about twice as much surface area
with positive correlation than observations.

40°E  80°E 120°E 160°E 160°W 120°W 80°W 40°W

. c) Full Resolution Model
0"

80°E 120°E 160°E 160°W 120°W 80°W 40°W  0°

Eddy-centric perspective



Tracer transport: resolved versus parameterized eddies

Tracer equations

8 9 o oy

¢ Fivap+ vy - <m¥> = Jo(x) +  Vh(kuvhe)
= ot 0z 0z biharmonic lateral
T diffusion

Tendency +  Mean advection +  Eddy advection —  Vertical mixing = Source/sink

o S Bl o
LY VIF+ VU + Viignp — V- KeoVe — 5<fgvaj> = J.(x)

ot eddy-induced advection isopycnal mixing

Lo-res
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Eddy-mean decomposition

Coarsen grid by integer multiple

et

KRS

Mean filter: (-) = éfs() ds

where S is a region of space and time (coarse grid, long-term mean).
Standing component: (:)f = () = ()
Advection operator

A, =V -(up)
Mean advection

Ap = Ay (u, )
Standing eddy component

A = Ag(ul, ol

Transient eddy component

AL =Ap— Ay — A

Eddy decomposition :



Nitrate balance (O 1° ) NOS advective ransport (mean)

[molmyr')

NO3 Source/Sink

[molmyr')

NO3 vertical mixing

[mol meyr')

Results :: Surface ocean nutrient budgets



Surface ocean nitrate budget comparison: Net production and vertical mixing

Low resolution (1°) High resolution (0.1°)
NO3 Source/Sink - NO3 Source/Sink
{molm?yr'] [molm?ye'}
|
| [ f
{moim?yr'] [mol m*yr')
|
|
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Surface ocean nitrate budget comparison: vertical advection

Low resolution (1°) High resolution (0.1°)

NO3 vertical adv. (mean) NOS vertical adv. (mean)

NOS vertical adv. (eddy)

resolved eddies

Results :: Surface ocean nutrient budgets



Surface ocean nitrate budget comparison: vertical advection

Low resolution (1°) High resolution (0.1°)

NO3 vertical adv. (mean) NOS vertical adv. (mean)

{moim?yr'] mol myr'}

fmolmyr')

parameterized eddies

Results :: Surface ocean nutrient budgets 21



Vertical advection of living biomass: diatoms

Low resolution (1°) High resolution (0.1°)

diatC vertical adv. (mean) diatC vertical adv. (mean)
mol myr'}

{moim?yr']

4
L

-,

diatC lateral mixing (vertical)
moim?yr)

¥

parameterized eddies

N
N}
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Dissolved iron balance (0.1°) Foadvecive ranspor (mear)

Fe Source/Sink

ol m yr']

Fe advective transport (standing)

Results :: Surface ocean nutrient budgets



Surface ocean iron budget comparison: vertical advection

Low resolution (1°) High resolution (0.1°)

Fe vertical adv. (mean) Fe vertical adv. (mean)

fumoim®ye']

Fe lateral mixing (vertical) Fe vertical adv. (eddy)

S
parameterized eddies

Results :: Surface ocean nutrient budgets 24



Discussion

Physical simulation: mesoscale variability, eddy demographics

Eddy impacts on surface chlorophyll

Surface nutrient budgets

: Discussion :
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