
Basic Biological Models
The ocean is inhabited by innumerable individuals of many different genera and

species, each having its own developmental/ physiological state and each being immersed
in its own environment. The organisms move, both because of water flow and because
of their own swimming or buoyancy, and interact with their environment by gathering
resources which they need and by excreting waste products. The assimilated material can
be used for maintenance, growth, or reproduction. Finally, the organisms can die either
from natural causes or because of attacks by another organism.

Furthermore, the processes just described must generally be regarded as stochastic.
For example, the probability of a predator capturing a prey item will depend on multiple
factors, each with its own probability:

• finding a prey item in range
• the choice to attack (presumably depending on the level of satiation of the predator
and the perceived nature of the prey)

• success in the attack (a function of the condition of the predator and of the prey)
• competition against others

Such a description suggests an “agent-based” or IBM with each agent carrying information
about its position, its species, its physiological state, etc. Organisms can grow, reproduce,
and die. Certainly, we can build small versions of such models, but the number of individ-
uals is necessarily limited (compared to nearly 20,000 copepods per cubic meter observed
during Globec [Incze, 19xx], or to phytoplankton densities on the order of 108 per cubic
meter). However, such experiments may indeed give insight into the way in which the
local, stochastic interactions translate into terms representing, for example, grazing rates
in terms of average densities.

Once again, we could take the alternative view of attempting to predict the probability
distribution for biomass in a continuous space, in this case using something like weight and
“species” as our variables. The latter is, of course, discrete, yet different organisms can
be genetically or, more importantly, functionally quite close to others. If we choose a
species ordering such that the maximum growth rate varies smoothly, we may expect that
other terms entering the dynamics such as the losses by predation will also fall on a fairly
smooth curve. Certainly on any diagram such as figure 3.1 the gaps will be so small as to be
negligible, and viewing the ordinate as a continuous variable is not unreasonable. We can
then consider the ways that the processes described above alter the biomass distribution
in this space.
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Figure 3.1: Sketch of a few elements in a size-“species” system; biomass moves
along the size direction (purely horizontally) by growth (transferring b to larger
sizes) or by reproduction (the arcs shifting it from large to small sizes). Biomass
moves in both size and “species” by predation.

As in the individual-based model, the number of variables we would have to consider is still
unmanageably large. Furthermore, for each (w, sp), we need to specify the sources, the
sink, and the transfer rates, including possible nonlinear dependence on the local biomass
b(w, s|x, t) and the density at the source/ sink b(w′, s′|x, t).

Any attempt to construct such a model or the IBM version will inevitably point out
how little we know about most of the species inhabiting the ocean. But we may be able
to use general rules such as allometric scaling (properties proportional to some power of
the weight or some factor times the log of the weight; c.f., xxx, 19xx) to simplify the
interactions, recognizing that there will be many exceptions. We shall return to some of
these approaches in chapters xx and xx, but focus now on the basic structure to help us
understand the meaning and limitations of conventional models.

3.0.1 — Trait-based models

We can build a potentially more complex version of fig. 3.xx by considering each type
of organism as specified by the values of a set of trait variables s = (s1, s2, . . . , sN); we can
think of these as a simplified genetic code. The value of s determines the phenotype, which,
for the modeller, means the vital rates for uptake of resources, reproduction, vulnerability
to various predators, etc. Sensitivity to external factors such as temperature would also
depend on s. For example, we could specify nutrient uptake rates as
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where µ0 gives the maximum growth rate at the optimal light level L0 and abundant
nutrient, whileNh sets the properties of the nutrient uptake curve: both ∂µ

∂N
at low resource

levels and how large N has to be for the uptake to begin to saturate. Such forms will be
discussed in more detail below, but here we just want to consider the relationship of such
formulae to trait space. We might be tempted to take µ0, L0, Nh as the traits; however,
we suspect that they are not independent. Species which prefer low light may need higher
nutrients, for example. In that case, we can think of L0 and Nh as varying parametrically
with a single trait variable so that the trait space would have dimension two or lower rather
than three.

Once we’ve define the trait space and the dependence of vital rates (as well as what
parts of the space serve as food sources or predators for organisms with trait s), we can
construct the dynamical equations. If the interactions are all of the quadratic/ Lotka-
Volterra kind, we will have

∂

∂t
b(s) =

∫

ds′L(s, s′)b(s′) +

∫

ds′ds′′N(s, s′, s′′)b(s′)b(s′′) (3.1)

Biotic variables respond on a per-capita basis, so that we can simplify this using

L(s, s′) = L′(s)δ(s− s′) , N(s, s′, s′′) = N ′(s, s′)δ(s− s′′)

giving
∂

∂t
b(s) = b(s)

[

L′(s) +

∫

ds′N ′(s, s′)b(s′)
]

(3.2)

The choice of an integral rather than just a term like n(s, s′)b(s′) is an important step in
gerneralizing trait-based models. Such forms are known as functionals, and they map
a function like b(s) into a real number. Since the term in square brackets in 3.xx has
to be a real number (with dimensions of 1/T ), but b(s) is a function, functionals are
the appropriate mathematical operators. Another way to see this is consideration of the
dimensions: b has units of concentration (mass per unit physical volume per unit phase
space volume). The integral takes care of the extra phase space volume in the quadratic
term.

Another way of viewing the issue is to consider the discrete form: suppose we want
to know the biomass of a particular phytoplankton type s1. If we have a value when this
is the only only active type, but then add another nearby one at s2, we expect b1 to get
smaller; e.g., we might be balancing

∑

gibi with dZ/a in the grazer equation. As more
and more nearby types are added, making a denser coverage of trait space and assuming
that they all survive somehow, b1 will decrease in inverse proportion to the number of
types. In contrast, the function b(s) will have a well-defined limit as the discretization
gets finer and finer. This discussion indicates the difficulty of defining “species” in this
type of model: it really represents a small but finite volume in trait space. Offspring do
vary somewhat in the finer details of their phenotype, so that the biomass in particular
species is best thought of as an integral measure of a peaked distribution. The biotic form
3.xx presumes offspring have exactly the same s as the parents; at very high resolution
of trait space, we would want to use 3.xx with reproduction occuring with a kernel which
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spreads the new s values slightly. (Mutation will also cause spreading in trait space.) And,
when considering interactions with other types, we must assume that predators will not
distinguish among organisms which are very close in trait space, again making an integral
formulation appropriate.

Finally, we note that some traits, such as weight, are fungible and may change sig-
nificantly over a lifetime with noticable impact on properties such as swimming, feeding,
reproduction, etc. In figure 3.xx, this appears as the horizontal arrows; we shall discuss
adding this to models in chapter xx.

NPZ models

Having laid out a fairly general framework, let us now examine the relationship to
models like the one in chapter 1 and then discuss common elaborations used in these
discrete, low-dimensional systems. We can view conventional NPZ type models as singular
solutions with

b(x, t, s) =
∑

bi(x, t)δ(s− si)

This form still has finite biomass bi when integrated over a volume around si. With this
form, the dynamical equations 3.xx or 3.xx reduce to algebraic form

∂

∂t
bi = Lijbj +Nijkbjbk (3.3)

or
∂

∂t
bi = bi[L

′
i +N ′ijbj ] (biotic)

with terms such as N ′ij equal to N ′(si, sj).
Alternatively, we can regard the bi as representing a collection of different types oc-

cupying some volume in trait space. In essence, we are making an approximate separation
of variables

b(x, t, s) ≃
∑

bi(x, t)fi(s)

and we take fi to be nonzero in a finite part of trait space, with unit integral. The
approximate dynamics follows from integrating 3.xx over the ith subvolume to give 3.xx,
but with Lij =

∫

Vi
ds

∫

ds′L(s, s′)fj(s
′). Thus terms like a death rate for P are attempting

to sum up the death rates of each type weighted by its abundance.
For the rest of this chapter, then, we shall retreat to dealing with variables such as

P viewed either as the integral over some range of traits or as a single point in the space
– in either case fixing the shape of the distribution in trait space. We can then presume
that transfers into and out of the resulting “black-boxes” can be represented as functions
just of the integrated values and attempt to parameterize those. In the following sections,
we shall examine stochasitic effects, the ways in which transfers are parameterized, and
various box models. In the next one, weight-structured models are considered and then
we work back towards the kind of system represented in figure 3.1.
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3.1 — Deterministic/ stochastic dynamics
We shall mostly use differential equations to describe the changes in biomass or other

properties for each species or class modelled. But, at a more fundamental level, we are
really attempting to calculate the expected value of the property. Even if we could
simulate each organism, we would need to represent its actions stochastically; we are
forced at some level to deal with processes which are not predictable although we may
have some handle on mean rates (and perhaps variances). In addition, when we compare
a model to data, we would ideally like to know the variance not only of the data but also
of the model in order to decide whether the inevitable disagreement is significant or not.

In this section, therefore, we shall consider some simple problems, using not only the
conventional, deterministic equations but also equations for the probability distributions,
so that we can understand

• how the variability alters the equations for the means
• how large the variances might be

To consider an example, a biomass field b really represents the mean from a probability
distribution of numbers and weights:

b(t) =
∞
∑

n=0

∫ wmax

w0

nwP(n, w, t) dw

where P(n, w, t)dw gives the probability that there are n organisms with weights between
w and w + dw. The deterministic model will predict b, while the stochastic model will
examine the whole probability distribution P. Intermediate models may attempt other
moments of P such as the mean weight and variances in numbers, weights, and biomass.
Monte-Carlo simulations of a reasonable number of realizations provide another approach
to estimating the statistics, although such calculations can be time-consuming and difficult
to meld with physical models.

3.1.1 — Exponential growth

For our first example, we begin with constant growth, using phytoplankton as the
target organism. If there are no limitations on resources, each cell would divide in a time
of about τ . In the absence of any synchronization, this implies a constant probability of
division per unit time and

b(t+ δt) = [1 + g δt]b(t)

so that
∂

∂t
b = gb ⇒ b(t) = b0 exp(gt) .

To achieve doubling over time τ , we need g = ln 2/τ . The population grows exponentially;
clearly such a model is of limited validity. As we shall see, exponential growth (or decay) is
characteristic of linear models. Some terms which are nonlinear in the biological variables
are required to limit the population growth.
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3.1.2 — Stochastic dynamics

Now, let us take into account the stochastic nature of birth and death processes, so
that g δt and d δt represent the probability a cell will divide or will die during time interval
dt. Does the expected population satisfy the same exponential law? If we start with a
set of isolated seed populations, how much variation would we expect to find among them
at some later time? What is the probability the population will become extinct? (For
reference, see Barucha-Reid, 1960, Elements of the Theory of Markov Processes and their

Applications, McGraw Hill, NY.)
For the linear model (no density dependence), we can answer such questions exactly.

Consider a vector Pn(t) giving the probability that there are n organisms at time t; we
would like to predict Pn(t + dt) or, in the limit as dt → 0, ∂

∂tP. Assuming that a given
organism can double, can die, or can survive during time dt leads to

Pn(t+ dt) = Pn−1(n− 1)δt+ Pn+1(n+ 1)dδt+ Pn(t)(1− ngδt− ndδt) +O(δt2) .

I.e., we can move from having n−1 organisms to n if one of the n−1 individuals divides (the
probability of two dividing in time δt is another factor of δt smaller and will be neglected.)
From this, we derive the “master equation”:

∂

∂t
Pn = (n− 1)gn−1Pn−1 + (n+ 1)dn+1Pn+1 − n(gn + dn)Pn (3.4)

where we have allowed for the possibility that the per capita birth and death rates may
be density dependent; if not, they are simply given by g and d, respectively.

The first few equations help us gain insight into the character of the solutions

∂

∂t
P0(t) = d1P1(t)

∂

∂t
P1(t) = −(d1 + g1)P1(t) + 2d2P2(t)

∂

∂t
P2(t) = −2(d2 + g2)P2(t) + g1P1(t) + 3d3P3(t)

∂

∂t
P3(t) = −3(d3 + g3)P3(t) + 2g2P2(t) + 4d4P4(t) .

The probability of extinction, P0, increases monotonically; whether it is bounded by some
value less than one will depend on how rapidly P1 decreases with time. Thus, we cannot
expect to find a truly steady solution to the master equation.† Populations either grow
indefinitely or become extinct; however, as we shall see, the extinction time for large
populations can be so long that we find a quasi-steady solution. We shall return to this
issue when we discuss density-dependent dynamics.

† Unless a single individual is immortal (d1 = 0)!
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In general, we are less concerned with the detailed probability distribution than with
its moments

〈nm〉 =
∑

n

nmPn

in particular, the mean 〈n〉 and the variance σ2 = 〈n2〉 − 〈n〉2; these are quantities which
may be measurable and which can be related to the deterministic density b.

From the form of (3.1), we can show that

∂

∂t

∑

Pn = −
∑

ngnPn −
∑

ndnPn +
∑

(n− 1)gn−1Pn−1 +
∑

(n+ 1)dn+1Pn+1

so that
∂

∂t

∑

n

Pn(t) = 0

implying that 〈n0〉 is preserved at its initial value 1 — as required for a probability distri-
bution. The first moment equation is

∂

∂t
〈n〉 =

∑

n(gn − dn)Pn .

When the birth and death rates are constant, this reduces to

∂

∂t
〈n〉 = (g − d)〈n〉 ,

and the mean satisfies the same exponential rule 〈n〉 = 〈n〉0 exp([g−d]t) as the deterministic
case.

The second moment (with constant rates) satisfies

∂

∂t
〈n2〉 = 2(g − d)〈n2〉+ (g + d)〈n〉 ;

substituting 〈n2〉 = σ2+ 〈n〉2 and using the dynamical equation for 〈n〉 results in the same
equation for the variance. The solution is

σ2(t) =

(

σ2(0) + 〈n〉0
g + d

g − d

)

e2(g−d)t − 〈n〉0
g + d

g − d
e(g−d)t .

For large times and a growing population, the first term dominates, and the ratio of the
standard deviation to the mean becomes constant

lim
t→∞

(

σ

〈n〉

)

=

√

σ2(0) + 〈n〉0 g+d
g−d

〈n〉20

implying that the error bars on a plot of log〈n〉 versus t would be uniform.
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What about the extinction probability? For the case with constant birth and death
rates (gn = g, dn = d), an exact solution can be obtained. Since the derivation is not very
general, we refer the reader to Barucha-Reid for details and simply give the result: the
extinction probability becomes constant

lim
t→∞

p(0, t) =
∑

n

Pn(0)

(

d

g

)n

. (3.5)

(When d > g, the mean decays exponentially, and the extinction probability limits to 1.) If
we start with exactly N organisms, the extinction probability will be (d/g)N . Even if the
birth rate is only 1% higher than the death rate, the extinction probability beginning with
1000 organisms, 5×10−5, corresponds to a 50/50 survival chance after 15,000 generations.

3.1.3 — Logistic equation

The simplest form of limitation arises from competition for scarce resources, leading
to a decrease in the growth rate g as b increases. Let us consider a general form

∂

∂t
b = g(b)b

and take the first two terms in a Taylor expansion of b

g(b) = g0

(

1− b

b0

)

where g0 is the “intrinsic growth rate” and b0 is the “carrying capacity.” The logistic
equation

∂

∂t
b = g0b

(

1− b

b0

)

has an analytical solution, which can be found by looking at the equation for the inverse
s = 1/b.

∂

∂t
s = −s2g0

1

s

(

1− 1

sb0

)

= −g0s+
g0
b0

so that

s =
1

b0
+

(

1

b(0)
− 1

b0

)

exp(−g0t)

thus

b =
b0

1 +
(

b0−b(0)
b(0)

)

exp(−g0t)
. (3.6)

The solution has a sigmoid shape. For b(0) << b0 and short times, we have

b = b(0) exp(g0t) .
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For long times b limits to b0, the carrying capacity, whether b starts above or below b0.
The latter holds under the assumption that we can carry the Taylor expansion beyond
b = b0, which may or may not be the case.

Note that the inverse trick also holds for the advection operator

D

Dt
≡ ∂

∂t
+ u · ∇

but not for diffusion.

More formal justification...

We can justify the logistic form to some degree using the following argument:

• The nutrient available per organism is inversely proportional to the population density
— Avail = N0/b.

• The cells require a minimum amount of nutrient to offset respiration — Avail > Resp.
This sets the carrying capacity b0 = N0/Resp. The division rate increases as the
available nutrient increases.

• The division rate has a maximum value.

These suggest a division rate vs. available nutrient like

Division rate = Max rate
Avail − Resp

Avail

= Dmax
1/b− 1/b0

1/b

=

{

Dmax

(

1− b
b0

)

b < b0

0 b > b0

.
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Figure 3.2: Examples of division rates vs. nutrient available per organism.
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When we set Dmax = ln 2/τ , we recover the logistic equation, except that the growth
rate remains zero, rather than going negative, when the population exceeds the carrying
capacity. The resulting growth rate, ∂

∂tb, is a truncated quadratic function of b.
We will encounter formulae like the one above where the value changes if some con-

dition is satisfied or not. Mathematically, this can be handled with a Heaviside function;
we will use a programming notation with the function (b < b0) being 1 when true and 0
when false. So we can write

Division rate = Dmax

(

1− b

b0

)

(b < b0) .

Since we also often want only positive branches, with zero when the argument is negative,
we will introduce another notation

Division rate = Dmax

(

1− b

b0

)

+

which means it is zero when the quantity in the parentheses is negative.
Of course, we can think of many other functions which satisfy the conditions, such

as a ramp function which makes ∂
∂tb a tent map of b instead of a quadratic. But the

time-dependent solution is very similar – in this case, a growing exponential joined to an
exponential which approaches b0.

Adding a death rate, d (which we shall associate with predation by herbivores, al-
though it could also include cell senescence) gives

∂

∂t
b = g(b)b− db .

For constant g, we still have exponential growth

b(t) = b(0) exp[(g − d)t] .

The quasi-logistic form
∂

∂t
b = g0b

(

1− b

b0

)

+

− db (3.7)

is again solvable; if we start with a small b value, the population grows as exp([g0 − d]t)
and then slows and approaches the asymptote b0(g0 − d)/g0. The solution is the same as
(3.3), except for the different growth rate and asymptote:

b =
b(0)b0(g0 − d)

g0b(0) + (b0[g0 − d]− g0b(0)) exp(−[g0 − d]t)
.

If we start with a population larger than b0(g0 − d)/g0, it will decay to this value. But
the decay may occur in two stages: if b(0) > b0, we have b = b(0) exp(−dt) until the time
when b = b0, after which the solution above takes over.
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3.1.4 — Stochastic logistic dynamics

If the birth/death processes are stochastic, the master equation (3.1) applies; however,
we now assume that the probability of reproducing decreases with increasing n (based on
the same food availability arguments) gn = g(1− n/n0) [or zero for n > n0], dn = d. We
still have

∂

∂t

∑

n

Pn(t) = 0

but now
∂

∂t
〈n〉 = (g − d)〈n〉 − g

n0
〈n2〉 = (g − d)〈n〉 − g

n0
〈n〉2 − g

n0
σ2 . (3.8)

If the variance σ =
√

〈n2〉 − 〈n〉2 << 〈n〉, then 〈n2〉 ≃ 〈n〉2 and we recover the logistic
form; in general, they will not agree, since the variance is not negligible.

We carried out simulations of the master equation for g = 0.2, d = 0.15, and a range of
(rather small) n0 values from 100 to 1000, for which the logistic equations would estimate
〈n〉 = 25 to 250. The initial conditions were P(n0/5, 0) = 1, and the simulations ran for
1000 time units. The final probability distributions shown in figure 3.3 indicate that they
narrow as n0 increases, and that the values near n = 0 decrease precipitously so that the
extinction probability drops.
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Figure 3.3: Probability distributions n0Pn plotted versus n/n0. (The normaliza-
tion preserves the integral, but, for n0 = 100 and 200, substantial extinction —
58% and 3%, respectively — has occurred so that the areas under the curves are
smaller.)

As shown in figure 3.4a, the mean values approach the logistic estimate n̂ = n0(g −
d)/g, but remain significantly below it. The variance (calculated below) increases in the
same way, 〈n〉1/2, as in simple sampling problems (see figure 3.4b). For very large n0,
then, the last term in (3.5) will be order one compared to the others which are order n0,

11



so that the use of the simple logistic equation for 〈n〉 is indeed justified; a simulation with
n0=5000 produced 〈n〉/n0 = 0.2494 compared to the 0.25 predicted by n̂/n0.
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Figure 3.4a: Mean populations (as a fraction of n0). The solutions to the master
equation are indicated by “Full”; the others are discussed below.
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Figure 3.4b: Relative error for approximations to the mean.

For this model, the extinction probability eventually approaches 1, rather than limiting
to a smaller value as in the exponential growth model (3.2). Instead, the extinction rate
becomes nearly constant. We can estimate the extinction rate by assuming that the shape
of the probability distribution P1,P2,P3, . . . remains unchanged but the amplitude varies:

Pn =

{

1− A(t) n = 0
A(t)fn n > 0
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with
∑

fn = 1. We find fn by starting with f0 = 0, f1 = 1, and stepping the steady version
of (3.1) forward to find f2, f3, f4, etc. stopping when one becomes zero (or negative). We
then renormalize the positive values so that the sum of the fn’s is one. The behavior of
A(t) is found from the equation for the extinction state:

∂

∂t
(1− A) = dAf1 ⇒ A = exp(−df1t) .

Thus the mean population will decay in a characteristic time 1/df1; as shown in figure
3.4c, this gives an excellent estimate of the rates.
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Figure 3.4c: Extinction rates

We can see the connection between the stochastic and deterministic equations by
Taylor-expanding (3.1), assuming that n is large and treating it as a continuous variable:

∂

∂t
P(n) ≃ − ∂

∂n

[

ng(n)P(n)− nd(n)P(n)
]

+
∂2

∂n2

[

ng(n) + nd(n)

2
P(n)

]

(3.9) .

By analogy to the Boltzman equation, the first term on the right corresponds to the
deterministic dynamics

∂

∂t
N = Ng(N)−Nd(N)

which is just our logistic equation, while the second term causes a spreading of the proba-
bility distribution, giving a non-zero variance. For large n0, we can examine equation (3.6)
in the vicinity of n̂ for which g(n̂) = d(n̂) — i.e., n̂ = n0(g − d)/d for the logistic case we
have been treating. Then the equation simplifies to

∂

∂t
P(n) ≃ − ∂

∂n

[

D(n− n̂)P(n)
]

+
∂2

∂n2
[KP(n)] (3.10)
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with D = n̂g′(n̂) − n̂d′(n̂) < 0 and K = n̂d(n̂). This equation appears in other problems:
tracer behavior in a region of converging flow, intensification of vorticity gradients in 2D
turbulence, and the concentration of depth-keeping animals near a front (c.f., Olson and
Backus, 19xx). The steady state distribution is Gaussian

P =
1√
2πσ

exp[−(n− n̂)2/2σ2]

with the standard deviation given by σ2 = K/|D| which is dn0/g in the logistic problem.
Although we can estimate P1 from this form, the probability distribution is closer to
exponential for small n so that the Gaussian understimates the extinction rate significantly
(figure 3.4c).

Given that the use of the logistic equation for the mean seems to have very small
errors when n0 (or 〈n〉) is large, why should we be concerned any further? The problem
lies in the presumption, inherent in this model, that the biota and their resources are all
well-mixed; otherwise, extinction can occur in small subregions (which can, by themselves,
support fewer organisms) and replenishment by mixing may overcome such losses.

Various studies (xxx, xxx, xxx) have examined this issue with individual-based models
and theories. We follow a procedure like that of Hernández-Garcia and López: for each
organism, we calculate an estimate of neighbor density R (using xx.xx) and then adjust the
birth probability to be g(1−R/ρ0)δt; the probability of dying remains dδt. Births occur at
the location of the parent; in between time steps the organisms move with random flights
characterized by the parameters κ and r. Figure 3.5 shows the densities compared to the
logistic value ρ0(g − d)/g. For large diffusivities the competition is essentially global; for
small densities, it is local, and we find small clumps of organisms which die out while new
ones form as individuals move out of the competitive range and begin to reproduce more
effectively. forming a new clump.†
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† Unlike Hernández-Garcia and López (20xx), but consistent with the results of Birch
and Young (20xx), we do not find regular patterns for the parameters used.
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Figure 3.5: Mean density in a 20×20 domain for various κ parameters controlling
the random flight.

The localized nature of competition for resources (or other biological interactions) thus
provides some justification for understanding the stochastic model for modest numbers of
organisms a bit further. Let us first try to predict the value of σ2. We can construct the
equation for the second moment

∂

∂t
〈n2〉 = 2(g − d)〈n2〉 − 2

g

n0
〈n3〉+ (g + d)〈n〉 − g

n0
〈n2〉 .

We now run into a closure problem: to calculate 〈n〉, we need 〈n2〉; to calculate 〈n2〉 we
need 〈n3〉; etc. If we assume the first and second moment equations reach a steady state
and write n = 〈n〉+ n′, we have

[

2(g − d)− 4
g

n0
〈n〉

]

σ2 = −2d〈n〉+ 2
g

n0
〈n′3〉 ≃ −2d〈n〉 . (3.11)

If we neglect the skewness in the final state, 〈n′3〉 = 0, we can solve the approximate
equation (3.8) together with (3.5) to find the steady state mean and variance. These
results are labelled “σ correction” in figures 3.4a-b. But 3.6 also indicates clearly that
σ2 ∼ 〈n〉, so that (3.5) predicts 〈n〉 ≃ (g − d)n0/g and therefore σ2 ≃ d〈n〉/(g − d) in the
large 〈n〉 limit (labelled σ2 = d/(g − d) ∗ 〈n〉 in the figures).
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Figure 3.6: Ratio σ/〈n〉.
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3.1.5 — Lotka-Volterra and QNPZ dynamics

To complete our discussion of stochastic models, let us consider predator-prey models
of the classic Lotka-Volterra

∂

∂t
P = µ̂P − gPZ

∂

∂t
Z = gPZ − dzZ

or the quadratic NPZ model (chapter 1) which replaces µ̂ by µN = µ(NT − P − Z). The
master equation for the probability P(P, Z, t) of having biomasses P and Z (in nitrogen
units) becomes

mP
∂

∂t
P(P, Z, t) = µ(P −mP )N

−P(P −mP , Z, t)− µPNP(P, Z, t)+

g(P +mP )(Z − amP )P(P +mP , Z − amP , t)− gPZ P(P, Z, t)+

dp(P +mP )P(P +mP , Z, t)− dpP P(P, Z, t)+

dz
a
(Z + amP )P(P, Z + amP , t)−

dz
a
Z P(P, Z, t) (3.12)

with mP being the biomass of an individual. The a factors account for the fact that a loss
mP from the P biomass increases the Z biomass by amP .

Solving equation (3.9) in the Lotka-Volterra version (N− = N = const.) runs into
difficulties: as P diffuses, it reaches the trajectories that take long excursions and pass
close to the origin or the Z = 0 axis. As a result, there will be a flux of P into the largest
P values (indeed to infinity along the line where the herbivores have become extinct).
Preventing reproduction out of the maximum P grid points allows P to move up in Z
and eventually return into the domain moving diagonally towards larger Z and smaller P ;
however, it then returns near the P = 0 axis, moves own towards the origin, and feeds
more P into the extinct zooplankton line. It appears likely that the zooplankton will all
become extinct and the phytoplankton population will grow exponentially thereafter.

In the QNPZ case (N− = NT−P−mP−Z, N = NT−P−Z), however, the probability
function settles quickly when µ = 0.6, giving mean values very close to those predicted
by the deterministic model. Even for µ = 0.05, the deterministic and probabilistic models
track quite well (figure 3.7). The standard deviation again grows as

√
N whereN = PV/mp

is the number of organisms in the volume considered to be well-mixed; therefore, the
expected error bars in the densities P and Z decrease as V/mp increases.
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Figure 3.7: Probablilistic QNPZ model with mP = 0.0078125 showing the final
probability distribution (contour interval 5×10−5) and the trajectory of the mean.

3.2 — Functional forms
In the QNPZ model, we used the simplest Lotka-Volterra form of interaction between

the consumers and their resources: the growth rate of the consumer 1
Z

∂Z
∂t was presumed

to be proportional to the density of the resource P . Such a form is unlikely to be realistic
for two reasons: first, competition among the consumers, as discussed above, limits the
consumer populations and, second, organisms have limits on the rates at which they can
assimilate their resource(s). Therefore, in constructing reaction terms for

1

bi

∂

∂t
bi = Ri(b,x, t)

we generally expect Ri to be a nonlinear function of its arguments, reaching a finite limit
or decreasing as the relevant b’s increase. Holling (19xx) discussed a number of possible
forms for 1

b
∂b
∂t

(figure 3.8); for each group being modelled, we need to assess which type of
response is appropriate. Here, we shall give arguments for common forms.

Resource level

Uptake

rate

I

II
III

IV
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Figure 3.8: Response curves Ri(resource), showing Holling type I-IV behavior.
Type I, rather than remaining linear, may switch to a constant saturation level
at some point.

3.2.1 — Grazing model

To represent foraging for prey, consider the following scenario: an individual zooplank-
ter searches over a volume µ in a time τ . If it finds prey in this volume, it eats it; otherwise
it tries again the next time period. Assume that the prey are randomly distributed at each
time with an average number density P/mP (where P is the phytoplankton biomass in
nitrogen units and mP is the biomass in nitrogen units of an individual). Then the prob-
ability the zooplankter will feed is equal to the probability that there is at least one prey
item in volume µ,

Pfeed =
∞
∑

n=1

P(n)

which is also equal to 1 − P(0). For the Poisson distribution, appropriate for randomly
distributed prey, we have

Pfeed = 1− exp(−µP/mP )

and the expected rate of feeding of an individual zooplankter is

1

τ
[1− exp(−µP/mP )] .

The predator incorporates a fraction a of the prey mass into its own biomass, so the rate
of assimilation of mass will be amP times the above. Finally, we must also multiply by
the number of individual zooplankton, Z/mZ , to find the overall rate of growth of Z:

D

Dt
Z = a

mP

τmZ
Z

[

1− exp(− µ

mP
P )

]

If we define g ≡ µ/τmZ and ν = µ/mP , we end up with Ivlev grazing formulation

D

Dt
Z = agZ

1

ν
[1− exp(−νP )] + . . .

which has a typical saturating shape.
Davis, et al. (19xx) studied a physiologically more detailed model of zooplankton

encountering a stochastic sequence of prey items and processing them or not, depending
on its gut-fullness; the net uptake rate as a function of food concentration follows the Ivlev
model fairly well.
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3.2.2 — Nutrient uptake

Nutrients are a bit different, since they are present in solution rather than as dis-
crete prey items. The uptake of nitrogen by phytoplankton is usually represented by a
biochemically-based form, Michaelis-Menten kinetics. (See Michaelis, L. and M.L. Menten,
1913. Die kinetic der invertinwirkung. Biochemische Zeitschrift 49:333-369. Laidler, K.J.,
1950. Chemical Kinetics. McGraw-Hill Book Company, Inc., New York, 408pp). The
conversion of nitrogen from the substrate within the cell into protein products occurs via
enzymatic reactions

E +N
k1

−→
←−
k−1

C
k2−→E +R .

C represents the enzyme-substrate complex and R the product used to make more tissue.
The rates of change of the concentrations satisfy

∂

∂t
[C] = k1[N ][E]− k−1[C]− k2[C]

∂

∂t
[N ] = −k1[N ][E] + k−1[C] +Ns

∂

∂t
[E] = −k1[N ][E] + k−1[C] + k2[C] + Es

∂

∂t
[R] = k2[C] +Rs

where the Ns, Es, and Rs represent other reactions which serve as sources or sinks.
Murray (19xx) analyzes this kind of equation in detail (although without the addi-

tional source-sink terms) and shows that the concentrations change on two time scales (see
figure 3.9a). In the rapid phase, the source terms play no role and the enyzme and complex
concentrations come into equilibrium: from the first and third equations [C] + [E] ≡ E0 is
constant over this period so that [C] satisfies

∂

∂t
[C] = k1[N ]E0 − (k1[N ] + k−1 + k2)[C]

and relaxes rapidly to

[C] ≃ k1[N ]E0

(k1[N ] + k−1 + k2)
.

Using this in the [N ] equation gives

∂

∂t
[N ] = −k1[N ]E0 + (k1[n] + k−1)[C] +Ns = − k2E0[N ]

[N ] + (k−1 + k2)/k1
+Ns .

19



0

1

2

3

4

5

6

7

0 20 40 60 80 100

C
N
E
R
N
P

Figure 3.9a: Solutions of the full equation set and the approximations for [N ]
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Figure 3.9b: Detail of the initial adjustment.

To convert to an uptake rate for dissolved nitrogen from the whole assemblage of
phytoplankton, we assume the internal store [N ] is proportional to the dissolved nitrogen
in the water column [N ] = αN and multiply by the number of organisms present P/mP ;
this gives us the Michaelis-Menten (abbreviated as MM) form:

∂

∂t
N = −µ

NP

N +Nh
+ other terms .
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The half-saturation constant Nh (often written ks) gives the value of N such that the
uptake rate is half the maximum. In principle, µ = αk2E0/mP and Nh = (k−1+k2)/(αk1),
but in practice, these parameters are found by fitting to lab or field data. Such a disconnect
between the simple theory and practice should not be that surprising since many processes
have been glossed over or ignored:

• Phytoplankton do store nutrients internally and use the internal stock, when it is
abundant enough, in their biochemical processes. How does the nutrient cross the cell
boundary and how is it modified into the internal form?

• Primary production and growth in cell numbers and biomass involve many complex
reactions, and cells may use different biochemical pathways under different conditions.

• Cells undergo a cycle, incorporating nutrients and growing and then dividing; cells
which have just divided cannot immediately do so again. Pascual and Caswell (19xx)
show that this kind of delay can lead to oscillations in a system with a constant nutrient
supply or chaotic variability in cell numbers when the nutrient supply fluctuates.

• Building new cells requires more than nitrogen. If the supplies of carbon, phospho-
rus, or trace elements such as iron are not sufficient, phytoplankton biomass cannot
increase. We shall discuss this further below.

For such reasons, we cannot predict from basic biochemistry how rapidly a cell will grow
and divide given the composition of the surrounding water and the light level. Certainly,
models more complex than the µNP/(N +Nh) form can be built (e.g., Flynn, et al.20xx)
and even incorporated into nutrient-phytoplankton-zooplankton models (Collins, 20xx).
But we need to be sure of the goals: do we wish to understand phytoplankton better
or to be able to predict some phenomenon such as red tide which may depend on both
circulation and ecosystem dynamics? Building a model always requires thinking about the
complexities of each sub-piece and attempting to balance how much we include or exclude:
a phytoplankton model with lots of detail may not be helpful in a large-scale ecosystem
model if other parts (e.g., grazing) are treated much more crudely.

We mentioned light above, and it is, of course, important since it provides the basic
energy source for primary production and the subsequent secondary production in ocean
ecosystems (with the exception of vent communities). But the distribution and absorption
of light can also be a complex problem (c.f., Jerlov, 19xx) requiring treating different wave-
lengths separately. And the response of phytoplankton to light can depend on their history
(photo-adaptation). In addition, ocean biology can feed-back upon the ocean physics by
altering the amount of absorption and its distribution with depth, thereby affecting the
heating in the upper waters. However, assuming an exponential depth distribution of light
(constant absorption) and that µ depends on the light (perhaps with photo-inhibition at
high intensities) is usually sufficient (again considering the issue of balance).
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3.2.3 — Ratio-dependent

The previous forms have assumed that the specific growth rates 1
bi

∂bi
∂t depend upon

the resource concentration, either linearly in the Lotka-Volterra case, or nonlinearly. Thus,
the more general form we might take in, for example, the zooplankton equation

1

Z

∂

∂t
Z = g(P, Z)

became
1

Z

∂

∂t
Z = g(P ) .

Arditi and Ginzburg (1989) have argued that, on the longer time scales appropriate for
population reproduction and growth, limitations like those producing the logistic equation
should apply: g should depend on the amount of resource available per individual

g = g(P/Z)

Examples include the logistic form

g(P, Z) = gmax

(

P/Z − r0
P/Z

)

+

= gmax

(

P − r0Z

P

)

+

[with F+ = max(F, 0)], a modified Ivlev form

g(P, Z) =
gmax

ν
[1− exp(−νP/Z)]

or a hyperbolic or Michaelis-Menten form

g(P, Z) = gmax
P/Z

Rh + P/Z
= gmax

P

RhZ + P
‘.

In general, we might expect some mixture of forms: when the zooplankton density is
small so that they are not competing with each other directly, the standard Ivlev form g(P )
seems appropriate. As the animals begin to compete for resources, the ratio of the resource
density to that of the animals becomes more relevant. One simple model for the interplay
between these two effects considers randomly distributing NP prey and NZ predators in a
volume. Each predator can forage a volume ν0 in the time period t to t+ δt. If the closest
predator-prey pair is within the predator’s foraging volume, the predator eats the prey
and is satiated for that time period. After eliminating both of these organisms, the next
closest pair is selected and tested. We repeat this until either all the prey are gone, all the
predators have fed, or all remaining pairs are too far apart. We use the results from 100
random realizations to find the average number of prey consumed per unit time and per
predator – an estimate of g(P, Z). Figure 3.10 shows the Ivlev model, a ratio-dependent
form, results from a 2D version of the simulation just described, and a mixed form

g(P, Z) = gmax

[

1− e−ν(Z)P
]

, ν(Z) =
1

Z
[1− exp(−ν0Z)] .
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We construct the latter by computing the expected volume which is outside the range of
all the randomly distributed predators. Just as exp(−ν0P ) gives the probability all prey
are outside a foraging volume, exp(−ν0Z) represents the probability that all predators
are more than a foraging volume away from a randomly chosen point.† Thus the volume
covered by all the predators is V[1− exp(−ν0Z)], and, when we partition this among the
ZV predators, the expected volume each can cover (allowing for interference by others) is
the ν(Z) above. Note that ν(Z) becomes 1/Z with less than 5% error for ν0Z > 2, so the
ratio form indeed applies at large densities (each zooplankton tending to have at least one
competitor within its foraging volume).

The simulation at Z = 2 (in rather arbitrary units) shows noticeable deviation from
the Ivlev form 1 − exp(−ν(Z)P ) no matter what choice is made for the value of ν(2).
The feeding process described implies the grazing events are not independent; a P may be
accessible to one Z but be grabbed by another, and having two P in one grazer’s volume
does not ensure both are safe, since the second one may be picked off by a different Z.

3.2.4 — Effects of using different forms

Different functional forms can give very different results. If, for example, we modify
the QNPZ model (chapter 1) to have saturating responses

∂

∂t
P = µ

(NT − P − Z)P

Nh +NT − P − Z
− g

ν
[1− exp(−νP )]Z − dpP

∂

∂t
Z =

ag

ν
[1− exp(−νP )]Z − dzZ

MM/Iv

or ratio-dependent forms (in this example only in the predator equation; ratio dependence
could also be applied in the nutrient equation)

∂

∂t
P = µ

(NT − P − Z)P

Nh +NT − P − Z
− gZ[1− exp(−P/Z)] − dpP

∂

∂t
Z =

ag

ν
Z[1− exp(−νP/Z)] − dzZ

MM/ratio

the equilibria and/or their stability properties can be quite different. Figures 3.11a-c
show the equilibria and their stability as NT varies. The phytoplankton and zooplankton
biomass both increase as the total nitrogen increases for the ratio-dependent forms, whereas
P becomes constant in the other two. For the MM/Iv form, Z also approaches a limit, and
addition of nutrients only increases the pool of dissolved N . If we vary depth instead of
NT , we see similar pictures, with QNPZ and MM/Iv having fixed P values until nearly the
bottom of the biotic region, while P/Z is fixed in the MM/ratio system, both decreasing to
zero (see figure 3.12). The MM/Iv form has instabilitites for large NT (or at intermediate
depths) and develops a limit cycle. The MM/ratio system permits phytoplankton to grow
deeper than the cutoff, but if any zooplankton are present, they will graze P down, and

† Thanks to Andrew Solow, WHOI, for clarifying this argument.
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Figure 3.10: Examples of grazing rates vs. P and Z. Upper left shows 1 −
exp(−πP ), upper right 1 − exp(−P/Z), Lower left the simulation, and lower
right 1− exp[−ν(Z)P ] with ν(Z) = 1

Z
[1− exp(−πZ)].
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both will die out. In the P , Z plane, this corresponds to the origin being unstable along
the Z = 0 axis and stable along a P/Z = const. attracting line.
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Figure 3.11a: Steady states for the QNPZ model. The growth rates for pertur-
bations are always negative.
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Figure 3.11b: Steady states for the NPZ model with MM/Iv functional forms. At
high enough values of NT , the equilibrium is unstable, and a limit cycle develops.
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Figure 3.11c: Steady states for the MM/ratio model. The growth rates for per-
turbations are always negative.
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Figure 3.12a: Steady states for the NPZ model with MM/Iv functional forms. At
intermediate depths, the equilibrium is unstable, and a limit cycle develops.
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Figure 3.12b: Steady states for the MM/ratio model. These are stable.

For all the models above, except the MM/ratio form, P is constant when zooplankton
can survive; such a result will hold whenever 1

Z
∂Z
∂t

depends only on P , not on Z. Con-
versely, introducing a nonlinear term in the Z equation, such as Henderson and Steele’s
(19xx) quadratic death rate dzZ

2, will lead to P varying with NT or µ. Indeed, with
Lotka-Volterra grazing, the ratio P/Z = dz/ag becomes constant.

3.3 — Multiple components

Many models are built by linking different “compartments” usually using saturating
forms like the ones above for the transfers. Conceptually, we are defining areas in size-
species space and attempting to calculate the integrated biomass within the area. Transfers
across the boundary are defined in terms of the net biomasses in different compartments;
therein lies the simplication but also the difficulty: in general, we would expect grazing
rates and uptake rates to depend on the distribution of biomass among the different types of
organisms which have been lumped together in one compartment. The physical analogue—
the box models used to study the overturning circulation (e.g., Stommel, 19xx) or climate
(Marotzke, 19xx)— likewise try to determine the average temperature (or other properties)
over a large volume of water. The averages 〈T 〉i over different volumes are well-defined and
change according to the fluxes through the boundaries of each volume; however, to obtain
a closed set of equations for the averages, we again are forced to parameterize the fluxes as
functions of these global properties despite the fact that the transport really depends on the
local gradients and flow at the boundaries. Despite the caveats, compartment models are
and will remain a reasonable compromise between complexity and inclusion of significant
aspects of ecosystem dynamics.
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As we learn more about particular groups, we may split compartments into, for exam-
ple, Pdiatoms, Pcyanobacteria, and Pdinoflagellates; furthermore, we can modify the functional
forms to represent their preference for nitrate vs. ammonium, their need for silica, etc. We
can often characterize this kind of model by a flow diagram such as those in figure 3.14
with arrows between the compartments showing the flow of nitrogen.
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Figure 3.14: Diagrams of biological models. On the left is the Nutrient-Phytoplankton-
Zooplankton model like that in Chapter 1. In the middle case we add a Detritus
compartment. The arrows crossing the dashed, wavy line indicate the system is
open and loses/ gains nitrogen from the deep water. On the right is the Fasham,
Ducklow, McKelvie model for three kinds of nitrogen, phytoplankton, bacteria,
zooplankton, and detritus. The arrows beginning from small circles indicate a
fraction of the flux is diverted (e.g., by excretion or failure to assimilate) to an-
other compartment.

Model complexity grows both as the number of compartments increases and as the func-
tions used to describe the interactions have more parameters controlling their shape. Boxes
can be added or removed and different connections or functional forms can be tried, de-
pending on the kinds of information and measurements available and the modeller’s goals.
Some features can be qualitatively robust to changes in the model; for example, all three
of these may exhibit a spring bloom given light and mixed-layer depth changes.

Figure 3.14 illustrates another aspect of biological models: many are open in the sense
that the currency is presumed to leave the region being considered (e.g., the surface ocean)
and to be supplied externally. The overall level – the sum total in all the compartments
– is set eventually by these import/export processes. Models can also be closed (such as
the NPZ model in the diagram) so that the totals are set ab initio. The distinction carries
over when flow, mixing, and movement are included, but in the sense of integrated over
the domain. Open systems have exchanges with the atmosphere or the sediments.

Given the choice of compartments b1, b2, b3 . . . (which we collect into a biological
“vector” b), the functional forms for the exchanges, and the values of the parameters
required, we have a fully-specified set of biological equations

∂

∂t
bi = Bi(b,x, t) . (3.13)

Adding the physics and biological movements gives

∂

∂t
bi +∇ · (ubi + ubioibi)−∇κ∇bi −∇κbioi∇bi = Bi(b,x, t) . (3.14)
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3.3.1 — Mathematical Analysis of Biological Models

All too often, once a model has been put together, the builders try to get “realistic”
behavior by:

• Adjusting the parameters which are not well known. As discussed above the rates
in patchy enviroments and stochastic conditions may differ from those measured in
a well-mixed container on shipboard or in the lab. In addition, of course, variables
like P collect many disparate species so that the rates of uptake can be very different
depending on which species is dominant. Other properties, such as grazing, are very
difficult to quantify directly. Given these kinds of concerns, use of empirical values
rather than attempting to derive them from first principles seems justified.

• Sensitivity experiments may be conducted to determine how solutions are altered
when some of the parameters are altered.

However, after specifying a model, we can gain a great deal of insight into its behavior by
studying various mathematical properties of the dynamical system:

• What do the steady states (or equilibria – values of b such that d
dtb = 0) look like?

For the dynamical system
∂

∂t
bi = Bi(b,x, t)

we can have steady solutions if the reaction terms do not have explicit time-dependence.
In that case, all of the Bi(b,x) can vanish for one or more sets of values of the fields,
b = b(x).

• Are the equilibrium points stable or unstable? As shown in chapter 1, small amplitude
perturbations evolve according to

∂

∂t
b′i =

(

∂Bi

∂bj

)

∣

∣

∣

b
b′j ≡ Bijb

′
j .

If Bij has any eigenvalues with a positive real part, the equilibrium will be unstable.
if all eigenvalues have negative real parts, it will be stable.

• Even if stable, does the system respond to perturbations by making large excursions
before settling back to the equilibrium? Neubert and Caswell(1987) discuss a number
of measures for this property, of which

max
|b′(t)|
|b′(0)|

is perhaps the best measure, but the most difficult to evaluate. The time at which
the maximum excursion appears is also significant relative to the time scales of the
forcing. For the linear problem, this becomes

amp = maxt || exp(Bijt)|| (3.15)

(using the matrix exponential and the matrix norm). These ideas carry over to nonlin-
ear dynamics, but the amplification factor will generally be computed by simulations
and will depend on the size of the initial perturbation.
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• Are there cyclic solutions (known as limit cycles), and do solutions approach these or
diverge from them?

• Is there an “attractor,” meaning that the solution resides mostly in a subspace of the
full region? For example, the seven-dimensional system in figure 3.14, if closed, can
be reduced by one order using conservation of NT but may, in fact, occupy either
a zero-dimensional point or a one-dimensional curve. The last statement does not
mean that only one of the variables changes with time; rather, it means that many
solutions started in a four-dimensional region end up on a curve blc(s) parameterized
by a single along-curve distance (or time) s. See figure 3.18 below.

NPZ

As an example, we consider a refined NPZ model (figure 3.14) using Michaelis-Menten
uptake of nutrients and Ivlev grazing, but also including the kinds of sources and sinks
that can arise from transfer across the base of the mixed layer (making it an open model):

∂

∂t











N

P

Z











=











−uptake by P + unassimilated grazing + dead P&Z +mixing gain/loss

uptake by P− grazing by Z− death−mixing loss

grazing/assimilation− death−mixing loss











or, expressed mathematically,

∂

∂t
N = −µ

NP

N +Nh
+

eZ(1− a)g

ν
Z[1− e−νP ] + rPdpP + rZdzZ + k(Ndeep −N)

∂

∂t
P = µ

NP

N +Nh
− g

ν
Z[1− e−νP ]− dpP − kP (NPZ)

∂

∂t
Z =

ag

ν
Z[1− e−νP ]− dzZ − kZ .

We have used the common approach of assuming the fields are well-mixed and averaging

over the mixed-layer depth h, so that µ = 1
h

∫ 0

−h
µ(z) (see Appendix 3.xx for a simple

physical model). In this form, the rP and rZ give the regenerated fraction of the dead
phytoplankton and zooplankton (although one could also consider the dz term as including
excretion of nitrogen in the form of ammonium). The constant eZ is the fraction of
unassimilated phytoplankton which goes back to nutrients rather than being lost as sinking
fragments. The parameter k gives the rate at which the mixed layer values are restored to
the deep values (assuming no organisms live below the layer). As pointed out in Appendix
3.xx, such a representation may be adequate when the mixed-layer is deepening, but is
more questionable otherwise. Some models assume that the mixing acts differently on the
phytoplankton and the more active zooplankton.
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Analysis:

The results from the closed system rP = rZ = eZ = 1, k = 0 were presented above in
figures 3.11b and 3.12a. If k 6= 0, we can still sum the equations to find

∂

∂t
(N + P + Z) = kNdeep − k(N + P + Z) .

Thus, the total nitrogen in the mixed layer becomes the same as the deep value, and the
system again has two degrees of freedom. The k simply serves to increase the effective
death rates to dp + k and dz + k.

Although we recover the QNPZ model in the limit N << Nh, νP << 1, the closed
model can display qualitatively different behavior. A model with two degrees of freeom
can only have fixed points and/or limit cycles. This result follows from the fact that
trajectories in the (P , Z) plane cannot cross since the “velocity” vector (∂P∂t ,

∂Z
∂t ) has a

unique value at each point in the phase plane (given N = NT − PZ).
Stability of an equilibrium is determined by the eigenvalues of

Bij =

(

∂P
∂P

− ∂P
∂N

∂P
∂Z

− ∂P
∂N

∂Z
∂P

∂Z
∂Z

)

=

(

µ N
N+Nh

− µ NhP
(N+Nh)2

− gZe−νP − dp − k − g
ν [1− e−νP ]− µ NhP

(N+Nh)2

agZe−νP ag
ν [1− e−νP ]− dz − k

)

.

The 2× 2 case is particularly simple: the eigenvalues are given by

σ2 − σTr(Bij) + Det(Bij) = 0

where the trace, Tr(Bij) = Bii is the sum of the diagonal elements and Det(Bij) is the
determinant B11B22−B12B21. The growth rate ℜ(σ) will be positive if the trace is positive
or the determinant is negative.

We now list the three potential equilibrium states and their properties.

Equilibrium Bij Stability condition

P = Z = 0, N = NT

(

µ N
N+Nh

− dp − k 0
0 −dz − k

)

Det< 0

‘ Z = 0, P > 0

(−µ NhP
(N+Nh)2

− g
ν [1− e−νP ]− µ NhP

(N+Nh)2

0 ag
ν [1− e−νP ]− dz − k

)

Det< 0

P > 0, Z > 0

( dz+k
a

Z
P − µ NhP

(N+Nh)2
− gZe−νP −dz+k

a − µ NhP
(N+Nh)2

agZe−νP 0

)

Tr> 0

As in the QNPZ case, increasing NT or µ leads to succesive bifurcations, first to a state
with finite phytoplankton biomass (when µ N

N+Nh
> dp + k) and then to states where
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zooplankton can survive (agν [1 − e−νP ] > dz + k). Here, however, we can have a third
bifurcation to predator-prey oscillations when B11 > 0.

Note that B22 = 0 when the equilibrium has non-zero Z; such a result applies for
many models: when

∂

∂t
bi = biBi(b,x, t)

and Bi depends only on the other variables in the system – the per-capita biological rates
for these organisms are independent of their density – then Bii will be zero. Intuitions
drawn from tracers for which perturbations decay directly (meaning diagonally dominant
Bij) will not work. For example, consider perturbations of the equilibrium by physical
flows (as discussed in Chapter 1)

∂

∂t
b′i = Bi(b+ b′)− Bi(b)− u · ∇(bi + b′i) ≃ Bijb

′
j − u · ∇bi .

Advection of high b2 = Z into a region (e.g., −u · ∇Z > 0) will not be offset directly by
increasing zooplankton population (as would occur for the logistic model), but must be
balanced by changes in the other fields (reduced phytoplankton concentration P ′ < 0 in
the NPZ example).

The amplification factor (eqn. 3.12) shows an increase from around 1.4 as the depth
increases (interrupted by the unstable range) and peaks where Z drops out, with ampli-
fications of about 330. It drops back to 1 (meaning purely decaying solutions) below the
biotic zone. Thus the region near the base of the biotic zone is the most sensitive to per-
turbations, and, in addition, the time scales for the growth and decay are order years, so
that anomalies can be very persistent. The QNPZ model has a similar response (especially
noticeable when we squeeze the vertical scale by a factor of 1.5), without the gap for an
unstable equilibrium and with much less sensitivity in the deep water. The ratio-dependent
model, however, is much less sensitive to perturbations (except for a spike below the biotic
zone), and the sensitivity decreases rather than increases with depth. Again, we see that
changes in the functional forms can significantly alter the dynamics.
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Figure 3.15a: Amplification factors and growth rates for the NPZ model with
MM/Iv functional forms.
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Figure 3.15b: Amplification factors for the QNPZ model vs. depth.
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Figure 3.15c: Amplification factors for the MM/ratio model. Note the linear scale
here.

The open system is more difficult to analyze, since it has more parameters. If a fraction
of dead or unassimilated grazing is directly lost from the mixed layer, the response is similar
to the model including detritus discussed next.
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NPZD

If we add a detrital box which collects dead plankton and unassimilated grazing (figure
3.14), our model becomes

∂

∂t
N = −µ

NP

N +Nh
+

eZ(1− a)g

ν
Z[1− e−νP ] + rD + k(Ndeep −N)

∂

∂t
P = µ

NP

N +Nh
− g

ν
Z[1− e−νP ]− dpP − kP (NPZD)

∂

∂t
Z =

ag

ν
Z[1− e−νP ]− dzZ − kZ

∂

∂t
D = dpP + dzZ +

(1− eZ)(1− a)g

ν
Z[1− e−νP ]− rD − kD − wD

h
D

with r giving the rate at which usable nutrient is regenerated from detrital material and
wD the sinking rate.

The number of parameters is becoming large enough that exploration of the full pa-
rameter regime is difficult. We show one example, altering the sinking rate, in figure 3.16;
this strongly suggests that there are two regimes, one for slow sinking (having limit cycles)
and a second (having steady solutions) which applies for rapid sinking. We can analyze
both limits fairly easily.

With slow sinking, the mixing makes the total nitrogen value in the upper layer equal
to Ndeep; we can find the equilibrium state for wD = 0 easily. We find the value of P from
1
Z

∂Z
∂t = 0, use D = Ndeep − P − Z −N in ∂D

∂t = 0 to get a linear relation between Z and

N , and substitute these into the ∂P
∂z = 0 to derive a quadratic expression for N . Then,

we can show that this equilibrium (as well as the trivial ones with Z = 0 or Z = P = 0)
is unstable. A truncated model in the spirit of Hopf bifurcation analysis (Appendix 3.xx)
can give an estimate of the amplitude and structure of the limit cycle; however, solving
numerically is straightforward.
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Figure 3.16: Effects of varying the sinking velocity in the NPZD model. The
maximim and minimum values of the variables over times 4800-5000 d are plotted;
when these are the same the system has settled to a steady state. Parameter
values are in table 3.xx
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Figure 3.17: Steady equilibrium states and growth rates [1/d] of perturbations.

The case of rapid sinking is easier to analyze: the detritus sinks out so quickly that
D ≃ 0 in the mixed layer. The NPZD system reduces to the open NPZ system with
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rP = rZ = 0. For wD/h = 100 d−1, the steady state solutions agree to better than 0.2%.
Thus the four-dimensional model behaves like a lower order system. Indeed, we can see a
similar reduction in order even in the small sinking rate case: if we look at the trajectories,
we see that a cloud of initial conditions rapidly condenses onto a two-dimensional surface
and then moves to a 1-D manifold, the limit cycle (Figure 3.18). Even if we allow the
parameters to vary slowly, the system may reside in a lower-dimensional space. Later, we
shall come back to ways to exploit this kind of behavior and simplify a model.
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Figure 3.18: Trajectories in P , Z, D space, showing a rapid movement onto a 2-D
surface and then slower spiraling towards a 1-D limit cycle. wD/h = 0.001 d−1

3.4 — Multiple resources

In the next examples, we consider cases in which the organisms deal with multiple
resources. A required nutrient may be obtained from several different sources and/or the
biochemical processes may need various elements in differing proportions (and substitutions
may or may not be allowed). For example, the phytoplankton growth equation may look
more like

1

P

∂

∂t
P =

∑

j

gj(N1, N2, N3, . . .)− grazing − cell senescence

with the jth nutrient being depleted at a rate gjP . Example forms for gj include:
1) independent: gj = µjNj/(Nh,j +Nj). Each nutrient is incorporated according to its

own MM law and the sum of the intake provides the growth.
2) indiscriminate: gj = µajNj/(Nh +

∑

ajNj). The organism simply regards the usable
nutrient as a weighted sum of that in all the possible sources and takes them up in
proportion. The aj factors give the preference for each particular nutrient, but do not
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represent switching behavior. The ratio of the uptake of N1 to N2 is proportional to
the ratio of the concentrations.

3) preferred: gj = ajN
2
j /(Nh

∑

akNk +
∑

akN
2
k ). When the second nutrient is low, the

organism uses the first with a normal MM form. When the second nutrient has a
larger value, the uptake of the first is significantly reduced. In this case the ratio of
the uptake rates grows as N2

1 /N
2
2 , dominated by the one which is more available.

4) switching: g = max(µjNj/[Nh,j +Nj ]). A more extreme form of preference, in which
the uptake of the first will stop completely when the second gives more benefit.

5) inhibiting: g1 = µ1N1 exp(−a1N2)/(Nh,1 +N1). This case applies to nitrogen utiliza-
tion by phytoplankton: the organisms can use nitrate (N1) much more easily than
ammonium (N2), but the presence of the latter decreases their ability to take up ni-
trate (xx, 19xx). The uptake of ammonium proceeds according to the standard MM
form.

6) limiting: g = µ min(Nj/[Nh,j + Nj ]). With this form, two nutrients or resources
are simultaneously limiting when N1/N2 = Nh,1/Nh,2; in the case of nitrogen and
phosphorus, for example, we can regard this as the Redfield ratio RNO3/PO4

. We
would expect the nutrients to be removed in the same ratio, so that the optimal
uptake rates µj in

∂

∂t
Ni = −µi min

Nj

Nj +Nh,j
+ . . .

would satisfy µ1/µ2 = Nh,1/Nh,2. When N1 is limiting, the uptake of N2 will be that
required to maintain the Redfield ratio and will be less than that predicted by the MM
form µ2N2/(N2 + Nh,2). Recent models which explicitly include the internal stores
of nutrients (discussed below) give a more detailed picture of nutrient limitation and
Redfield ratios.

Figure 3.19 shows the partitioning of the resource utilization between two resources as a
function of the ratio of N1 to the total N1 +N2 according to the schemes outlined above.
We’ve assumed a1, µ1 are 0.25 and a2, µ2 are 0.75.
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Figure 3.19: Ratio of the uptake rate of N1 versus the total uptake rate as a
function of the ratio of resource density

NNPZ

For nitrogen-based models, we should incorporate the fact that nitrogen within the
water appears in a number of forms: “fixed nitrogen” (nitrite, nitrate, ammonium) which
phytoplankton can use, dissolved gas which must be converted by nitrogen fixers, and
particulate or dissolved organic nitrogen which can be processed by bacteria.

McGillicuddy et al.(19xx) dealt with nitrate and ammonium, with the former being
supplied from below by physical processes, while the latter increases by excretion and
regeneration of dead microzooplankton (the organisms represented by Z).

ZPNO NH3 4

Figure 3.20: NNPZ model. The solid arrows descending from the P and Z
compartments indicate sinking of particulate organic nitrogen.

Phytoplankton prefer nitrate, but the presence of ammonium inhibits their ability to use
nitrate. The resulting form for nutrient uptake

D

Dt
P = µmax

(

1− e−I/I1
)

e−I/I2
[

NO3 e−knNH4

NO3,h +NO3
+

NH4

NH4,h +NH4

]

− . . .

includes a sensitivity to light intensity I such that the uptake rate approaches a satura-
tion value µmax and then falls off again when the light becomes too strong. (However,
McGillicuddy et al., 19xx, conclude that light inhibition is not a factor in the JGOFS
region they are simulating.)

NNNPBZD

The Fasham, Ducklow, and McKelvie (19xx) model (figure 3.14) adds dissolved organic
nitrogen and detritus (PON) and includes explicitly the bacterial component.

NPZFe
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More Complex Models

4.1 — Size-spectrum models
The models so far have split the species-size space by collecting species into func-

tional groups (plants, herbivores, predators,...) and ignoring size information. Various
researchers have treated small and large zooplankton separately (e.g., xxx); rather than
explore that route here, we shall now look at models which treat a full spectrum of sizes.
Moloney and Fields(19xx) developed a PZ model based on logarithmic size classes, and
Armstrong(19zxx) analyzed the steady state behavior in more detail. Like the ratio-
dependent forms, his model allows both the phytoplankton and zooplankton biomasses to
increase as the total nitrogen increases; however, the net population growth arises because
the food chains of larger and larger sized organisms come into play. We shall discuss both
discrete and continuum versions of size-spectrum models here.

Size

"Species"

autotrophs

dissolved

heterotrophs

N

P

Z

Figure 4.1: Sketch of the a size-spectrum model. Multiple arrows indicate het-
erotrophs in one size class may feed on several classes of autotrophs.

4.1.1 — Model formulation

Logarithmic size classes are commonly used to allow spanning a wide range of lengths
or weights. If we take the weight W (in nitrogen units) as our underlying variable, then
ω = ln(W/W0) will be our coordinate, withW0 the size of the smallest autotroph. At times,
we shall discuss the “length” L taken to be the equivalent spherical radius ρ0

4π
3
L3 = W .

The variable Pj measures the biomass in the log-size class ω = j∆ to ω = (j + 1)∆
where ∆ is the logarithmic width of each class. The center of the jth class is at ω =
(j + 1

2)∆. For the heterotrophs, the smallest class will be ωZ , and Zj represents the
biomass with log-size centered at ωZ + (j + 1

2 )∆. The smallest classes of P and Z may be
photosynthesizing bacteria (e.g., prochlorococcus) and protozoans, repectively; however,
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we shall use “phytoplankton” (“PP”) and “zooplankton” (“ZP”) as shorthand names for
the two groups.

Let us begin by defining the food available for the ZP in size class i:

Fi = pijPj (4.1)

where pij expresses the range of PP which will be grazed (non-zero values) and the prefer-
ence or ability to forage for different-sized prey. We shall make a number of assumptions
about the structure of the matrix pij : (1) the entries represent relative preferences so that
∑

j pij = 1, (2) the ZP of size ωZ + j∆ can only ingest prey of size j∆ and smaller (pij = 0
for j > i), and (3) the preferences or foraging abilities are fixed, independent of whether
there is prey in a particular size class or not. For example, if the food available for Z2

is (P0 + P1 + P2)/3, it will remain so even if P1 = 0, not switch to (P0 + P2)/2. These
assumptions interact with the presumption that there is a minimum weight, W0, in subtle
ways; alterations in them may have unexpected effects on the system.

The grazing rate will be taken to be a saturating function of the available food

gi
Fi

1 + Fi/Ci

so that the rate of removal of PP in class j by ZP in size i is

gi
Fi

1 + Fi/Ci

Pj

Fi
= gi

Pj

1 + Fi/Ci
.

We choose the Monod form, rather than the Ivlev version, because it makes the equation
above slightly simpler. Of the grazed food, a fraction ai is assimilated (although we could
use aij if the ZP assimilate different prey differently). Our equation for Zi becomes

∂

∂t
Zi = Zi

[

aigi
Fi

1 + Fi/Ci
− dZi

]

(4.2)

and the PP equation is

∂

∂t
Pi = Pi

[

µi
N

Nh,i +N
− gjpjiZj

1 + Fj/Cj
− dPi

]

. (4.3)

The continuum equations follow by replacing sums with integrals

F (ω) =

∫

dω′p(ω, ω′)P (ω′) (4.4)

∂

∂t
P (ω) = P (ω)

[

µ(ω)N

Nh(ω) +N
−

∫

dω′
g(ω′)p(ω′, ω)Z(ω′)

1 + F (ω′)/C(ω′)
− dp(ω)

]

(4.5)

∂

∂t
Z(ω) = Z(ω)

[

a(ω)g(ω)F (ω)

1 + F (ω)/C(ω)
− dz(ω)

]

. (4.6)

41



Equations 4.1-3 or 4.4-6 constitute the size-spectrum model.
The number of parameters seems now to be unmanageably large: for each PP class,

we must specify µi, Nh,i, dPi, and for each ZP class gi, ai, dZi, Ci, and a preference matrix
pij .

For functions such as µi = µ(ωi) or g(ωi), we invoke allometric relations

µ(ωi) = µ0

(

W

W0

)βµ

= µ0 exp(βµω)

where µ0 and βµ are the constants which define the shape of the curve. Allometric rela-
tionships make a lot of sense: many biological characteristics scale with the length, surface
area, or weight. For example, nutrient transport into a cell would depend on the surface
area, the net metabolic loss would vary with the weight, and properties such as foraging
volumes would generally increase as the size increases. Various authors have explored phys-
iological mechanisms for allometric scaling; e.g., West, et al.(1997) argue that constraints
on the transport of fluid through branching networks (such as circulatory or vascular sys-
tems) give metabolic rates proportional to L1/4 and that the fractal nature of subsystems
implies most properties will scale as quarter powers (Ln/4). Empirically, such relationships
seem to hold fairly well; Moloney and Field (19xx) suggest L−3/4 = W−1/4 laws for µ, g,
and dz xx?? based on xx.†

For the p matrix or function, we have assumed the ZP graze on the PP in a size range
proportional to their own size with equal preference:

p(ω, ω′) =























1

ω − ωz
0 ≤ ω′ ≤ ω − ωZ ≤ w

1

w
ω − ωZ − w ≤ ω′ ≤ ω − ωZ

0 else .

† However, as Smith (19xx) argues persuasively, empirical fits, especially when justified
by visual comparison of points and a line on a log-log plot, obscure real physiological
differences. In addition, correlation coefficents often give a misleading impression of how
well the power law represents the data.
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4.1.2 — Ranges and Steady States

Phytoplankton will only be able to grow in the range 0 ≤ ω ≤ ωPmax where the
maximum possible size is given by

µ(ωPmax) = dp(ωPmax) .

However, not all of this range may be occupied, depending on parameters such as

NT = N +

∫

dω P (ω) +

∫

dω Z(ω) .

Zooplankton require
a(ω)g(ω)C(ω) > dz(ω)

but will generally be restricted by the amount of available food.
Let us now consider the sequence of steady states as NT increases from zero:

1) Initially, N will equal NT until the threshold

N > Nc0 =
dP0Nh,0

µ0 − dP0

is passed.
2) Next, N remains fixed at Nc0 while P0 increases (= NT − Nc0). The food available

for ZP in class j increases as pj0P0. By the assumptions about pij , the food for class
Z0 will be the largest, so that we expect to reach the critical level

F0 = P0 → Fc0 =
dZ0C0

a0g0C0 − dz0

first.
3) P0 now remains constant (= FC0) and further increases in NT result in Z0 increasing.

But N must also increase so that the ∂
∂t
P0 equation can be balanced as the grazing

pressure grows.
4) When N reaches the Nc1 level, the second group of autotrophics, P1, will be able to

survive and the sequence described in stages 2-3 will repeat but at the j = 1 level,
and then the j = 2 level, etc.

In practice, the problem is easier to solve in reverse: we choose a value for N and then
find the classes which satisfy

µj
N

N +Nh
> dPj ;

these classes (0 ≤ j ≤ jN ) will be populated, with the same number of ZP classes. We
then find the vector of Fi values from the steady state version of (4.2) and the Zi values
from (4.3) (involving inverting pji). Finally we invert (4.1) to obtain the Pi values and
sum Pi, Zi and N to get NT . Repeating for a set of N ’s allows us to plot the steady states
(figure 4.2). For these examples, we used the parameters in table 4.xx and show various
∆ values; the figures suggest that the continuum case will also be well-behaved.
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Figure 4.2: Net P , Z, and N for the size-spectrum model at different resolutions.
The number of classes, in the title, is ωPmax/∆. For the larger values of NT , all
phytoplankton size classes which can sustain growth (µ(ω) > dp) are filled, and
P levels off.
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Figure 4.3: Net P , Z, and N for the size-spectrum model at different resolutions.
The number of classes, in the title, is ωPmax/∆. For the larger values of NT , all
phytoplankton size classes which can sustain growth (µ(ω) > dp) are filled, and
P levels off.

We can evaluate the stability of these steady states for the discrete case, since the
system is a finite set of ODE’s (although the stability matrix has the dimension of twice
the number of occupied classes and thus can be very large). The steady states for 10, 20, 40
80, and 160 classes are unstable for NT larger than 8.4, 5.9, 4.0, 2.7, and 2.1 respectively.
The instability seems to lead to very irregular fluctuations (figure 4.3). Note that the
instability of the full system is different from that of individual parts; for example, in the
NT = 5 case with 8 active size classes, any individual pair, Pi and Zi, alone will grow
and develop a limit cycle, but the system reaches a steady equilibrium when all the size
classes are included in the initial conditions. For NT = 3, only the smallest class has a
limit cycle. These cycles are possible for the cases with high NT levels but with only a few
of the possible classes occupied because the N levels are also very high (2 to 3). When all
of the different classes are active, the N levels are much lower (0.05); in effect, each class
sees a much lower NT level and is pushed into the steady state rather than the limit cycle
regime.
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Figure 4.4: Time dependence of the unstable state NT = 6.25.
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Figure 4.5: Cumulative PP biomass for the 15 active size classes.
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Figure 4.6: Same for the ZP.

The algorithm for finding steady states requires the lower-triangular assumption for
pij , i.e., the lowest heterotroph class can feed only on the lowest autotroph class, P0 → Z0).
The higher classes, Zj , prey on P0, P1, . . . Pj . If this condition does not hold (e.g., if Z0

feeds on P0 and P1, Z1 on P0, P1, P2, etc.), the pij matrix may be singular or we may
end up with negative values for some of the Zi. That does not mean we cannot use such a
system, just that finding steady states becomes more difficult. Time-stepping shows that
gaps open in the PP size-spectrum (and possibly in the ZP one as well), with some classes
dying out (figure 4.6). Tilman’s (19xx) theory ... xx.
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Figure 4.7: End states (after 80,000 days) in the case of a lower-triangular pij
with food ranging from LZ/40 to LZ/10 and a case with the range being LZ/20
to LZ/5. Since the minimum LP is one-tenth the minimum LZ , the latter case
is not lower-triangular. The second case also has persistent oscillations.

As formulated, the model implies that the ratio of sizes of the largest to the smallest
ZP is the same as the ratio for the PP. Although this may appear to arise from the use of
the same ∆ values for both classes, that choice really stems from the way we specify the
range of available food for ZP of size LZ : we assume that they graze over weights

α0

(

WZ

W0

)γ

WZ ≤ WP ≤ α1

(

WZ

W0

)γ

WZ

(applying allometric scaling). In log-size space, we have

lnα0 + γωZ + ωZ ≤ ωP ≤ lnα1 + γωZ + ωZ .

To keep the classes synchronized, we should choose

(1 + γ)∆Z = ∆P .

The size ranges will now satisfy

WZmax

WZmin
≤ 1

1 + γ

WPmax

WPmin
.

For the examples above, γ is zero, so that the ZP forage over a range of sizes which is a fixed
fraction of their own, and the maximum/ minimum ratios are the same. If, however, the
size of the food items foraged by ZP does not increase in proportion to the heterotroph’s
size but grows more slowly (γ < 1), the size range for ZP is larger than for PP. The factor
is probably not large, so that we must increase the length of the food chain to include the
larger zooplankton — these animals must must be omnivores or predators, rather than
herbivores.
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4.1.3 — Continuum case

We can find the steady state for the continuum model in much the same way. Given
N , the largest sustainable size for PP is given by ωPmax such that

µ(ωPmax)N

Nh(ωPmax) +N
= dp(ωPmax) .

We then find for the ZP food distribution

F (ω) =
dz(ω)C(ω)

a(ω)g(ω)C(ω)− dz(ω)

and solve the integral equation

∫ ωPmax

0

dω′p(ω, ω′)P (ω′) = F (ω)

for P . To determine Z, we are faced with a second integral equation

∫ ωZ+ωPmax

ωZ

dω′p(ω′, ω)
g(ω′)Z(ω′)

1 + F (ω′)/C(ω′)
=

µ(ω)N

Nh(ω) +N
− dp(ω) . (4.7)

Finally, we compute NT by

NT = N +

∫ ωPmax

0

P +

∫ ωZ+ωPmax

ωZ

Z .

For the example parameters we have been using, with C and a constant and with the
allometric coefficients for g(ω) and dz(ω) the same, F (ω) is constant. Since

∫

dω′p(ω, ω′) =
1, P (ω) will be the same constant P (ω) = dZ0C/(ag0C − dZ0), 0 ≤ ω ≤ ωm. The only
difficult part is solving the Z (or ζ) equation.

The results are not what one might expect. We would normally expect a continuous
solution. Given that g and µ are proportional to exp(βω) and dp is constant (for our choice
of allometric scalings) and that p(ω′, ω) = 1/w for some range of ω′, we would anticipate
a solution like Z0 + Z1 exp(−βω) might work. In the range where the largest prey would
be larger than ωPmax, Z would be constant. But this solution does not integrate correctly
when the range of integration overlaps the point joining the two solutions. Instead, we
must write the integrals explicitly

µ0N(1 + F/C)

(Nh +N)g0
exp(βω)−dp =































∫ w

ω
dω′ 1

ω′
exp(βω′)Z(ωZ + ω′)+

∫ ω+w

w
dω′ 1

w
exp(βω′)Z(ωZ + ω′) ω < w

∫ ω+w

ω
dω′ 1

w
exp(βω′)Z(ωZ + ω′) w < ω < ωPmax − w

∫ ωPmax

ω
dω′ 1w exp(βω′)Z(ωZ + ω′) ωPmax − w < ω < ωPmax .
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Differentiating these with respect to ω and dividing by exp(βω) gives a set of difference
equations:

−wβ
µ0N(1 + F/C)

(Nh +N)g0
=



















w
ωZ(ωZ + ω)− exp(βw))Z(ωZ + ω + w) ω < w

− exp(βw)Z(ωZ + ω + w) + Z(ωZ + ω) w < ω < ωPmax − w

Z(ωZ + ω) ωPmax − w < ω < ωPmax .

Thus the Z(ω) values are step-wise constant on ranges ωPmax+ωZ − (n+1)w to ωPmax+
ωZ − nw, with a linear rise at the beginning. Figure 4.7 compares this solution with the
(incorrect) continuous one and the discrete model.
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Figure 4.8: Steady state ZP structures for the continuous size class solution, the
discrete case with 231 active classes ∆ = ln(21/32), and the erroneous smooth case.
The discrete model with ∆ = ln(21/128) (922 active classes) is almost identical to
the continuous solution.

4.1.4 — Prey switching

The previous system presumes that the ZP which prey on a range of PP weight classes
will not alter their behavior depending on the range of food items available – the pij ’s are
constants. We’ve called this “indiscriminate” behavior above. Although we have used the
same values for the constants, we could rationalize the factors being different in terms of
varying ability to sense or to attack successfully prey types. However, a more significant
alteration comes from introducing preferences as well, so that the ZP focuses foraging effort
on the more abundant prey. Taking pij to be

pij =
aijPj

ΣaikPk
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(with the aij ’s being constant) produces a modified Holling type III model. The resulting
system is much more stable (figures 4.8-9).
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Figure 4.9: Time dependence of the case with switching; NT = 6.25.
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4.2 — Weight, length, or age models
In the size-spectrum models, all ingested resources are used to produce new biomass

within the same size class. Different size classes implicitly contain different sets of species.
However, the macrozooplankton (such as copepods or euphausiids) can increase in weight
by several orders of magnitude from the larval to adult stages. The different stages or sizes
vary significantly in terms of their foraging ability, ingestion rates, and the kind of prey they
consume, as well as in their metabolic rates. Reproduction may occur seasonally, rather
than continuously as assumed so far, and is limited to the adult part of the population.
As we shall see, the time-delays between reproduction and the increase in adult biomass
can significantly alter the dynamics.

“Structured population models,” which incorporate effects of growth in size and age,
can be formulated in discrete (matrix) or continuous forms, Since we are using continuum
models when possible, we shall discuss the Von Foerster-McKendrik form. We describe the
population by a number density n(w,x, t) such that the number (or probable number) of
organisms per unit weight class and per unit volume of water. It satisfies an advection-like
equation

D

Dt
n(w, t) +

∂

∂w

[

g(w)n(w, t)
]

= −dz(w)n(w, t) +

∫

dw′E(w|w′)n(w′, t) (4.8)

where g represents the rate of weight gain (dw/dt), dz the mortality, and E the rate at which
new organisms at size w are created by adults at size w′ reproducing. We have suppressed
many of the arguments for the various functions: they all can depend on space and time
as well as environmental parameters, such as the density of food or the temperature. In
addition, the rates can depend on functionals of n as well (e.g., when competition for food
limits growth, decreases birth rates, or increases mortality).†

We shall factor E assuming that
• the newborn size does not depend on the adult size or conditions

E(w|w′) = e0(w)e1(w
′, t)

• the birth rate is a function of the number of adults

NA ≡
∫

dwα(w)n(w) , e1(w) = R(NA, t)α(w) ⇒
∫

dw′En = e0(w)NAR(NA, t)

and we can normalize e0 by

∫

dw e0(w) = 1 ,

∫

dw we0(w) = w0

† A functional maps a function into a number and can be represented as F [n] =
∫

dwf(w)n(w) with a specified kernel f . E.g., we can represent competitive pressure at
size w from other organisms as C =

∫

dw′c(w|w′)n(w′), where c is peaked around w−w′;
we then specify that the rate of growth s(w) is some decreasing function of C.
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• the weight range for newborn organisms is small – effectively a delta function

e0(w) = δ(w − w0)

The last of these allows us to replace the source term in (4.8) with a boundary con-
dition, giving

∂

∂t
n+

∂

∂w
gn = −dzn , g(w0)n(w0, t) = NAR(NA) . (4.9)

Numerics

Equation 4.9 can also be written as

∂

∂t
n+ g

∂

∂w
n = −(dz +

∂

∂w
g)n , g(w0)n(w0, t) = NAR(NA)

which makes the connection to the scalar advection equation explicit. Since analytical
solutions are rare, we again need to consider numerical methods. The previous equation
can be solved in a Lagrangian form (method of characteristics) in which we start with a
cohort at time t and weight w0 and follow it

d

dt
W = g(W, t) , W (t) = w0

d

dt
n = −[d(W, t) +

∂g(W, t)

∂W
]n , n(t) = n0 .

At each time, we have a set of cohorts of different numbers and weights. To calculate
n0 for the next cohort, we need to approximate the integral for this unequally spaced
data, which can be done easily. This kind of model can be extended to cases where g,
dz are functionals of n by again approximating integrals (c.f., deRoos’ “escalator-boxcar
train” article, 19xx). After some cutoff time (or weight or number density), cohorts can
be discarded; nonetheless, we could have a large number of cohorts active at any time.

For the Eulerian approach, we write discretized equations for nj = n(wj), wj =
w0 + (j + 1

2
)δw in terms of the fluxes Fj defined at w0 + jδw

∂

∂t
nj = −(Fj+1 − Fj)/δw − djnj , F0 = RNA , NA = δw αjnj .

The problem, as with the case of advection, lies in specifying the fluxes at the edge of
each grid box. Various authors (xx) have discussed the accuracy, numerical diffusivity,
and positivity of different schemes. We shall use an “upwind difference” in which the flux
at weight wj is given by g(wj)n(wj − 1

2δw) which maintains positivity (n > 0), but has
a numerical diffusivity ∼ 1

2gδw/δt causing a weight distribution to spread as the animals
grow. Such spreading is realistic, since not all individuals grow at exactly the same rate;
as the previous chapter demonstrates, we would expect a diffusivity

K =
δt

2
〈[g − 〈g〉]2〉
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which will match up with the numerical case if the variance in g is proportional to g (and an
alteration to the mean growth rate). Unfortunately, the diffusion permits some individuals
in sharp pulse of newborns to reach adult in a time (wA − w0)δt/δw – much too rapidly.
The same problem occurs even without discretization if we do represent the variability
on g as a diffusivity; information can propagate infinitely rapidly. Usually, the errors are
acceptably small since the newborns are distributed in time and the temporal changes in
the coefficients are smooth, but one needs to verify that the model is not dominated by
this kind of rapid propagation effect.

4.2.1 — Maps

The simplest form which makes the possibility of oscillatory/ chaotic behavior clear
assumes that all reproduction occurs at a specific adult size: α(w) = g

dz
δ(w−wA), with the

factor making α dimensionless and ensuring that
∫

dwαn results in a number of individuals.
The reproducing population is NA = g

dz
n(wA, t); all adults reproduce at a single weight.

With this form, the flux of newborn animals is given by

gn(w0, t) = NA(t)R(NA(t)) .

Finally, we can solve the equation between w0 and wA easily if g and dz are constant

n(wA, t) = n

(

w0, t−
wA − w0

g

)

exp

(

−dz
wA − w0

g

)

= n(w0, t− T ) exp(−dzT )

with T = (wA − w0)/g being the generation time. Therefore

NA(t) =
1

dz
exp(−dzT )NA(t− T )R(NA(t− T ))

Thus we can algebraically map the number of adults at one generation into the number at
the next. If the growth rate and death rates vary with weight, the coefficient of NAR(NA)
changes, but the form remains the same.

As an example, let us assume the rate of producing offspring per adult depends on
the food per adult f = P/NA in the form of a sigmoid curve

R =
r

T

(f/f0)
β

1 + (f/f0)β
=

r

T

1

1 + (N/N0)β

with N0 = P/f0 being the half-saturation value (figure 4.10). Then Xn = N(nT )/N0

satisfies

Xn+1 = γ
Xn

1 +Xβ
n

, γ =
r

dzT
exp(−dzT ) (4.10)

For this iterated map, we can show easily that
• The X = 0 steady state is unstable for γ > 1.
• The state X = (γ − 1)1/β to which the system bifurcates becomes unstable for γ >
β/(β − 2) to a period 2T oscillation.
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• Further bifurcations to period 4T , 8T , 16T , etc. occur at shorter and shorter incre-
ments in γ, leading to a non-repeating sequence for a finite value of γ. This is the
“period-doubling” route to chaos. See figures 4.11-12.

This map demonstrates the potential for chaotic, unpredictable population fluctuations. In
Appendix 4.xx, we reproduce a simple proof that a map can give non-repeating sequences.
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Figure 4.11: Iterated map structure for γ = 2.5, β = 5, showing the offspring
production rate per adult as a function of the number of adults and the map
Xn → Xn+1.
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Figure 4.12: Two views of the number in successive generations. The upper
plot shows a time-series, while the lower plot is a “cobweb diagram: starting at
(X0,X0), we project vertically to the N0X/(1+Xβ) curve, then move horizontally
back to the diagonal arriving at (X1, X1). Repeating this procedure traces out
the sequence and shows periodic solutions clearly in the N0 = 2 case.
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Figure 4.13: Bifurcation diagram showing 200 generations after spin-up of 5000
generations.
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4.2.2 — Appendix 4.xx: Truly chaotic...

Here, we reproduce a simple proof (c.f. xx, 19xx) that the logistic map produces
non-repeating patterns. Let

Xn+1 = γXn(1−Xn)

and look at the case γ = 4 (the maximum); we can then write

Xn = sin2 θn .

The recursion relation becomes

sin2 θn+1 = 4 sin2 θn(1− sin2 θn) = sin2(2θn)

⇒ θn = 2nθ0 .

We note that sin2(aπ) depends only on the fractional part of a, not the part to the left of
the decimal point. If we let θn = anπ, we have

an = 2na0 , a0 = θ0/π .

Now consider writing a0 as a binary fraction. To find an, we shift a0 to the left n places
and discard the integer part. If θ0/π is an irrational number, the fractional part of a0
will not repeat; therefore, no matter how far we shift it, we will never find the exact same
sequence of 0’s and 1’s as some previous value. In addition, two very close initial conditions
will eventually reach the point where their fractions differ and the sequence of states will
be entirely different thereafter. (On finite precision machines, the an series rapidly runs
out of significant bits, while the standard iteration because of roundoff errors continues to
generate changes in the least significant bits).

4.2.3 — Finite Range of Reproducing Adults

The iterated map version has a number of oddities: the cycles from each starting time
in the range [0, T ) are independent of each other. Allowing reproduction over a range of
sizes will couple neighboring times together, leading to smooth behavior; therefore, we
might worry that the chaotic behavior disappears. To examine this issue, consider another
case where all animals with weights greater than or equal to wA are reproducing. Then
α(w) = H(w − wA). We can find an equation for the number of adults

NA =

∫ ∞

wA

dwn(w)

by integrating (4.9) over the same limits

∂

∂t
NA = −dzNA + g(wA)n(wA) .
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Using the solution for n gives a delay-differential equation

∂

∂t
NA(t) = −dzNA(t) + e−dzTNA(t− T )R(NA(t− T ))

with T = (wA − w0)/g again being the generation time. Because of the delay term, this
equation is not just a first order equation, and it can exhibit complex behavior.

We use the same form for R, define X = NA/N0, and nondimensionalize time by T
to find

∂

∂t
X(t) = −dX(t) + dγ

X(t− 1)

1 +X(t− 1)β
, d = dzT . (4.11)

We can again show that the steady solution X = (γ − 1)1/β exists for γ > 1.
The stability analysis of this solution illustrates some of the differences between a

delay-differential equation and an ODE. We perturb around X to find

∂

∂t
X ′(t) = −dX ′(t) + dX ′(t− 1)− βd

γ − 1

γ
X ′(t− 1)

= −dX ′(t)− d

[

β
γ − 1

γ
− 1

]

X ′(t− 1) .

The term in square brackets is often positive, so it appears that the solutions should decay;
however, if X ′(t − 1) has the opposite sign as X ′(t), growth may be possible. Taking a
solution form

X ′(t) = X ′0 exp(σt− ıωt)

gives

σ − ıω = −d− d

[

β
γ − 1

γ
− 1

]

e−σeıω

with the last terms arising from the delay; separating into real and imaginary parts yields

σ = −d− d

[

β
γ − 1

γ
− 1

]

e−σ cosω

ω = d

[

β
γ − 1

γ
− 1

]

e−σ sinω .

The critical point, σ = 0, can be found by eliminating the term in brackets between the
two:

ω = −d tanω

which must be solved in the range 1
2
π < ω < π so that the cosine will be negative, and σ

may be positive. Once we have found ω, the second equation gives

γ =

[

1− 1

β

( ω

d sinω
+ 1

)

]−1

.
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For the parameters in the example, β = 5 and d = 4, the instability occurs at γ = 1.78.
Since ω/ sinω ≥ π/2, the expressions above show that instability in general requires

d >
π

2(β − 1)
.

A population for which a small fraction dies over one generation will have stable steady
solutions; otherwise, the populations will begin to oscillate when γ is high enough – when
each individual has many offspring [we can consider the net production of offspring as
approximately the rate times the expected lifetime 1/dz giving g/dzT = γ exp(d) – order
200 for the chaotic state below].

Numerical solutions can be obtained easily. Given a time step, dt, we define a vector
of previous NA values at times t, t − dt, t− 2dt, t − 3dt,..., t − 1 (initially filled with the
steady state value plus random perturbations). The last element gives the delayed value
NA(t − 1) required in stepping NA(t) forward. The array is then shifted one position so
that the last element becomes NA(t + dt − 1) and the new value NA(t + dt) is put into
the first slot. We can display the time-series of NA; however, it is easire to spot periodic
or chaotic behavior by looking at delay plots of NA(t+ 1) vs. NA(t). Figure 4.13 gives a
number of examples and shows that instability to a periodic oscillation indeed begins at
γ = 1.78; period doubling occurs, and we reaching chaotic states by γ = 3.5. For larger γ
values, we return to periodic states.
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Figure 4.14: Figures showing (left) time-series of the number of adults NA and
(right) NA(t+ 1) vs. NA(t) for γ = 2.5, 2.9, 4, 5, 7, 8.
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4.2.4 — Coupling to food source

To link this kind of model to lower trophic levels, we need to consider the biomass
changes implied in (4.9). Although the numbers in any weight class other than w0 can
only decrease, the movement of numbers from one class to a larger class imply an increase
in biomass which must have derived from the animals’ food source. For a single organism,
the rate of change of mass is just

d

dt
w = g

(in the Lagrangian sense), and the net biomass changes by

d

dt
b = n

d

dt
g = ns =

g

w
b

(not counting biomass loss by death, which does not affect the food source). This, then,
represents the rate of biomass assimilation by ZP at size w. To derive this from the number
equation, we examine changes in the net biomass

∂

∂t

∫

wn = w0NAR−
∫

w
∂

∂w
gn−

∫

dzwn

= w0NAR+

∫

gn−
∫

dzwn .

The first two terms represent biomass increases; we must relate these to depletion of the
resources. Of course, ZP of different weights may draw from differnt PP groups, in which
case the terms can be suitably partitioned.

As written, the reproduction draws directly on the prey for its biomass. We would
then think of both R and g as being functions of P , functions which vanish as P → 0.
Therefore, we have a PP equation of the form

∂

∂t
P = uptake− 1

a

∫

g(P,w)n− 1

a
w0R(P,NA)NA − death .

As an alternative, suppose that the biomass of offspring is drawn from the adult biomass
directly at a rate which could be independent of the food supply. Then the w0NAR term
must be offset by one of the other two integrals – either the death rate must increase or
the growth rate decrease to compensate. We can represnt these possibilities as

dz → dz +
w0

w
Rα

(so that the integral of the last term times wn cancels w0NAR) or

g → g(P,w)− w0Rα
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(with the integral times n providing the reproductive biomass). In those cases, the PP
equation will be

∂

∂t
P = uptake− 1

a

∫

g(P,w)n− death .

To maintain some generality, we shall use a system including both externally provided
biomass (Re) and one which redistributes it within the ZP (Ri), expecting one or the other
to be zero:

∂

∂t
n = − ∂

∂w
gn− (dz +

w

w0
Riα)n

g(w0)n(w0) = (Ri +Re)

∫

αw

∂

∂t
P = uptake− 1

a

∫

gn− 1

a
w0ReNA − death .

(4.12)

Example:

Let us consider the equivalent of the NPZ model using a structured zooplankton
population. We assume that the growth rate is g = G(P )gw(w), the assimilation efficiency
is constant, and the birth rate is R = Re(P ) (Ri = 0), so that reproduction biomass derives
from food intake. The equations become

∂

∂t
P = µP

(

NT − P −
∫

dwwn

)

− 1

a
G(P )

∫

dw gwn− 1

a
w0R(P )

∫

αn− dpP (4.13a)

∂

∂t
n = −G(P )

∂

∂w
gwn− dzn , G(P )gw(w0)n(w0) = R(P )

∫

αn (4.13b) .

For future use, we note that the ZP biomass Z =
∫

wn satisfies

∂

∂t
Z = G(P )

∫

gwn+ w0R(P )

∫

αn−
∫

dzwn .
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Steady states:

The steady state equation

G(P )
∂

∂w
gwn = −dzn , G(P )gw(w0)n(w0) = R(P )

∫

αn

can be solved by discretizing it to derive a matrix multiplying the vector of n values. An
upwind scheme is suitable, since the diffusion in weight space will give a representation of
the effects of variability in the growth rate. The P which makes one eigenvalue zero can
be found by searching, and the corresponding eigenvector gives the shape of n. We can
also find the steady state analytically: the number equation

∂

∂w
gwn = − dz

G(P )
n

yields
n(w)

n(w0)
=

gw(w0)

gw(w)
exp

(

−
∫ w

w0

dw′
dz(w

′)

G(P )gw(w′)

)

.

For this form, we find P from the birth equation

gw(w0)G(P ) = R(P )

∫ ∞

0

dwα(w)
n(w)

n(w0)
.

Because the decay of n with weight depends on P , the case with R proportional to G
(all resource dependence arising from the grazing function) still provides the necessary
information.

The PP equation gives n(w0) :

µP

(

NT − P − n(w0)

∫

w
n(w)

n(w0)

)

= n(w0)
1

a

∫

wdz(w)
n

n(w0)
+ dpP

(using the steady version of the ZP biomass equation).
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Stability:

Perturbations to the steady state n have an exp(σt) dependence and a weight structure
satisfying

σn′ +G
∂

∂w
gwn

′ + dzn
′ = −P ′

G′

G
G

∂

∂w
g − wn = P ′dz

G′

G
n

Ggw(w0)n
′(w0)−R

∫

αn′ = P ′
[

R′

R
R

∫

αn− G′

G
Ggw(w0)n(w0)

]

= P ′
[

R′

R
− G′

G

]

R

∫

αn .

Here functions such as G or G′ ≡ ∂G
∂P

are evaluated at P .
In general, the solution for n′ will be proportional to P ′

n′(w) = P ′n̂(w, σ)

and the PP equation will reduce to

1

P ′
∂P ′

∂t
= −µP +

1

a

[

G

P
−G′

]
∫

gwn+
w0

a

[

R

P
−R′

]
∫

αn

− µP

∫

wn̂− 1

a
G

∫

gwn̂− w0

a
R

∫

αn̂

= −µP +
w0

a

[

G′

G
− R′

R

]

R

∫

αn+
1

a

[

G

P
−G′

]
∫

dz
G

wn

− µP

∫

wn̂− 1

a
G

∫

gwn̂− w0

a
R

∫

αn̂

however, finding σ is still non-trivial, since n̂ depends on the growth rate.

Simplification:

If we examine the special case dz constant and R(P ) proportional to G(P ), we can
obtain a somewhat surprising result. Since R′/R = G′/G, the perturbation equation has
the solution

n′ = P ′
dz
σ

G′

G
n or n̂ =

dz
σ

G′

G
n ≡ G′

σ
γn

with γ = dz/G(P ), leading to a PP equation

σ = −µP +
1

a

[

G

P
−G′

]

γ

∫

wn− µPG′

σ
γ

∫

wn− 1

a

γG′

σ

[

G

∫

gwn+ w0R

∫

αn

]

= −µP +
1

a

[

G

P
−G′

]

γ

∫

wn− µPG′

σ
γ

∫

wn− 1

a

γG′

σ
dz

∫

wn

= −µP +
1

a

[

G

P
−G′ − dzG

′

σ

]

γ

∫

wn− µPG′

σ
γ

∫

wn .

(4.14)
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But a simple ODE model

∂

∂t
P = µP (NT − P − Z)− 1

a
γG(P )Z − dpP

∂

∂t
Z = γG(P )Z − dzZ

gives the same growth rate equation

σ = −µP +
1

a

[

G

P
−G′ − G′dz

σ

]

γZ − µPdzG
′

σG
Z .

Thus the stability properties of the size-resolved model match exactly the ODE stability
conditions if the measure of the efficiency of converting grazed food into ZP biomass, γ, is
chosen suitably. The steady state will be unstable if

G

P
−G′ >

µa

γ

P

Z
.
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Figure 4.15: Size spectrum at various times in fluctuating regime.

But the resemblence between the two models is much deeper: numerical solutions
show that the shape of n remains constant even when the amplitude is fluctuating (figure
4.14). This result suggests the continuous model can have a solution

n(w, t) = Z(t)
n(w)
∫

wn
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where the normalization ensures that Z is the biomass. If we substitute this into the
equation 4.9, we find

n
∂

∂t
Z = Z

[

−G(P )
∂

∂w
gwn− dzn

]

= Z

[

G(P )

G(P )
dzn− dzn

]

and

ZG(P )gw(w0)n(w0) = ZR(P )

∫

αn = Z
R(P )G(P )

R(P )
gw(w0)n(w0)

which holds since R(P )/R(P) = G(P )/G(P ). Therefore, the ZP dynamics becomes

∂

∂t
Z = Z [γG(P )− dz] .

The PP equation

∂

∂t
P = P (NT − P − Z)− 1

a
G(P )Z

∫

gwn
∫

wn
− w0

a
R(P )Z

∫

αn
∫

wn
− dpP

can be transformed using the integral of w times the equation for n to

∂

∂t
P = P (NT − P − Z)− 1

a
dz

G(P )

G(P )
Z − dpP

= P (NT − P − Z)− 1

a
γG(P )Z − dpP

so that the two equations for Z and P are precisely the ODE forms with γ = dz/G(P ).
For this system, then, we can dispense with the structured model and simply solve

for the biomass. Of course, we are not assured that the solution above is the one actually
obtained; it could be unstable to perturbations in the weight distribution (e.g. pulses of
high population). While that cannot happen for the steady state (by eqn. 4.14), we have
neither shown the limit cycle is stable nor ruled out other equilibria or cycles which are
far enough from Zn/

∫

wn. Numerically, however, we find no evidence of such solutions:
after a period of adjustment, the weight distribution settles to n and stays there.

We can easily think of ways that this simplification process will fail: for example, dz
may include predation, which would depend on the size/ weight of the ZP. Reproduction
could have a seasonal modulation (via temperature or other cues) which differs from the
changes in the growth rate. We shall discuss approximate approaches to these kinds of
problems below and in chapter xx.
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Second example:

Most problems cannot be reduced to a low order system in the manner above, and the
dynamics including a structured ZP population will generally be richer than the standard
ODE models. To illustrate this, we consider the case where the reproduction biomass is
drawn from the adult population. We assume that Ri = R is simply a constant, that
G(P ) = P to match the QNPZ model, and that the biomass of the offspring can be
neglected (w0α/w → 0). The last assumption is not necessary but simplifies the analysis
significantly; numerically, we can show that the finite w0 case is quite similar to the results
from the approximated set:

∂

∂t
P = µP

(

NT − P −
∫

dwwn

)

− 1

a
P

∫

dw gwn− dpP (4.15a)

∂

∂t
n = −P

∂

∂w
gwn− dzn (4.15b)

Pgw(0)n(0) = R

∫

dwαn . (4.15c)

We change the weight variable to one representing the time required to grow to a
particular weight

ξ =

∫ w

w0

dw′
1

gw(w′)
⇒ dξ = dw/gw(w) .

Multiplying (4.15b) by gw and defining N ≡ gwn gives

∂

∂t
P = µP

(

NT − P −
∫

dξ wN

)

− 1

a
P

∫

dξ gwN − dpP (4.16a)

∂

∂t
N = −P

∂

∂ξ
N − dzN (4.16b)

PN(0) = R

∫

dξ αN . (4.16c)

In the case where α is a step-function, the steady state is

N = N0 exp(−dzξ/P )

P = − dzξA
ln(dz/R)

N0 =
µNT − µP − dp

∫ (

µw + 1
agw

)

exp(−dzξ/P )
.

The stability problem for the population structure is also simple:

σN ′ + P
∂ξ

∂N

′

+ dzN
′ =

P ′

P
dzN , PN ′(0) + P ′N0 = R

∫

dξ αN ′
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giving

N ′ = N0
P ′

P
[
dz
σ

exp(−dzξ/P ) + β exp(−(dz + σ)ξ/P )]

with

β =

[

dz
dz + σ

exp(−σξA/P )− 1

]−1

.

The equation for σ from the perturbation form of (4.16) becomes

σ = −µP − dz
σ
N0

∫

(µw +
gw
a
) exp(−dzξ/P )− βN0

∫

(µw +
gw
a
) exp(−[dz + σ]ξ/P ) .

If β were zero, we would recover the quadratic form for σ found before; in the case here
with G = P , these terms lead to stability. The new terms add not only additional factors
of σ from the integrals but also the transcendental term in β. Instead of solving this
equation, we examine the discretized version of the equations

∂

∂t
ni = δi,0Rαjnj + P (gi− 1

2

ni−1 − gi+ 1

2

ni)/δw − dzni

∂

∂t
P = P

[

µ(NT − P − winiδw)−
1

a
gi− 1

2

niδw − dp

]

(for gjmax+ 1

2

= 0; modifications for w0 6= 0 are obvious) or

∂

∂t
b = b1L1b+ L2b

with b = (P, n0, n1, . . . , nmax) being the vector of variables. We need to solve for the mean

b1L1b+ L2b = 0

and then can pose the perturbation problem as an ordinary matrix eigenvalue problem:

∂

∂t
b′ =

[

(L1b)× [1, 0, 0, . . . , 0] + b1L1 + L2

]

b′ ≡ L′b′ . (4.17)

We can search for the P = b1 which makes PL1+L2 have a zero eigenvalue; the eigenvector
renormalized by the value of P gives the basic state. Alternatively, we can solve the problem
in reverse: given a guess of P , we can start with n0 = 1 and iterate the n1, n2, n3, . . .
equations to find the population structure. The n0 equation then tells us the value of R
corresponding to that P . We search for the P which gives the desired R value. Once we
have this, the P equation gives us the value of n0 and the population vector scales by this
number to yield the full steady solution.

The results for the stability calculation in figure 4.15 indicate perturbations will grow
for R ≥ 0.5. Numerical simulations (figure 4.16) show limit cycles developing. These
fluctuations are associated with changes in the weight distribution: a PP bloom triggers
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rapid growth so that a larger percentage of the ZP reach adult size. These reproduce, and
the larger generation depletes the food supply further. As the ZP die out, the nutrients
build back up, setting the stage for a new PP bloom (figure 4.16b).
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Figure 4.16: Growth rate for perturbations as a function of R. The case neglecting
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Moments

For some problems, we can reduce the full structured model to a few ODE’s by a
moment method (xx, 19xx). We project the number density equation on a set of functions
φm(w). If

Nm =

∫

dw φm(w)n

then

∂

∂t
Nm = −P

∫

dw φm
∂

∂w
gwn−dzNm = φm(0)R

∫

dwαn+P

∫

dw ngw
∂

∂w
φm−dzNm .

We can close the system exactly if α can be represented by a finite sum of φ’s and g ∂
∂wφm

is a sum of the φn’s with n ≤ m. To couple to the P equation,
∫

wn and
∫

gwn must also
be expressible in terms of the projection.

For example, we can take gw to be constant and φm = wm/m!. If α = ws/s!, then

∂

∂t
P = µP (NT − P −N1)−

gw
a
PN0 − dpP

∂

∂t
N0 = RNs − dzN0

∂

∂t
Nm = gwPNm−1 − dzNm (1 ≤ m ≤ s) .
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From these, we find the steady state values

P = d(1+s)/s
z g−1w R−1/s

N0 =
µNT − µP − dp

µgwP/dz + gw/a

Nm = (gwP/dz)
mN0 .

The perturbation problem will generally be an order s+ 2 polynomial in the growth rate,
and we can write an equation for it. Computationally, however, it is simpler to phrase the
problem in the same matrix form as we did above

d

dt
b = b1L1b+ L2b

with different matrices, of course. The results in figure 4.17 indeed show an instability as
R increases; this occurs as a pair of complex roots moves from the negative real half plane
to the positive side (a Hopf bifurcation). Thus the population develops a limit cycle.
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Figure 4.18: Growth rates for various s values.

For the von Bertalanffy growth equation, we can also solve using moments with the
functions φm = (w/wm)m/3 for which

g0

[

(

w

wm

)2/3

−
(

w

wm

)

]

∂

∂w
φm =

g0
wm

m

3
[φm−1 − φm] .

From this, we find

∂

∂t
Nm = δm,0R

∫

dwαn+ P
g0
wm

m

3
[Nm−1 −Nm]− dzNm
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and
∂

∂t
P = µP (NT − P − wmN3)−

g0
a
P (N2 −N3)− dpP .

To obtain a sigmoid form for α, we use α = s(w/wm)(s−1)/3 − (s− 1)(w/wm)s/3 so that

∂

∂t
Nm = δm,0R[sNs−1 − (s− 1)Ns] + P

g0
wm

m

3
[Nm−1 −Nm]− dzNm .

For this problem, instability requires very large values of s (order 40) with the parameters
we are using; increasing g0 by a factor of 3 permits instability even for the smallest value
s = 3. In any case, the moment calculations give persuasive evidence that the limit
cycles are not numerical artifacts and that the NP-structured Z model can have different
dynamics from the QNPZ model of chapter one.

Simplification

The previous discussion concentrated on cases where the structured model differs from
the stable, steady QNPZ model. However, for some parameter values (or gw(w), alpha(w)
functional forms), the structured model still has steady solutions, and we might wish to
explore simplifying the model to obtain a much lower dimension system which can be used
in simulations with space or time-dependent variability. If we write n(w, t) as a product
of the biomass, Z, and the weight structure n̂(w, t)

n(w, t) = Z(t)n̂(w, t) ,

∫

dwwn̂(w, t) = 1

and substitute into the dynamics, we find

n̂
∂

∂t
Z + Z

∂

∂t
n̂ = −ZP

∂

∂w
gwn̂− dzZn̂ .

Multiplying by w and integrating gives

∂

∂t
Z = PZγ(t)− dzZ

with γ =
∫

gwn̂ and a structure equation

∂

∂t
n̂ = −P

∂

∂w
gwn̂− Pγn̂ , Pgw(0)n̂(0, t) = R

∫

dwαn̂ .

The PP equation
∂

∂t
P = µ(NT − P − Z)− γPZ − dpP

likewise has the appropriate form. As a comparison, consider the case when the light level
varies seasonally, so that the PP uptake rate varies. We presume a sinusoidal dependence
with µ changing from 0.6 to 1.4 times the mean value. Figure 4.18 shows that the sim-
plification works quite well in the stable case; when limit cycles occur, the approximation
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represents the average trajectory reasonably well, but does not produce the large cyclic
variations (figure 4.19). However, the detailed cycling depends on initial conditions and
thus is not likely to be realistic. Figure 4.20 compares the simplified model to the aver-
age of runs of the full model with different starting phases; we can predict the expected
trajectory fairly well, although there is a noticeable offset in the ZP field.
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Figure 4.19: Comparison of a two-year cycle of the full model and the simplified
two-variable representation for R = 0.4.
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Figure 4.20: Comparison for R = 1.0.
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Figure 4.21: Comparison to phase-averaged cycles for R = 1.0.

Other simplifications

The oscillations in b(t) certainly have a biological basis in the delay in maturation
and the intra-species competition for food. The amplitudes and periods will not be so
regular in nature, and the phases and other details will be very sensitive to model error as
well as initial conditions. Yet we can certainly imagine circumstances in which the delays
implied by the structured model will be be an essential part of the dynamics (for example,
seasonally modulated reproduction or the response to impulsive events such as the onset
of upwelling winds). In these situations, the change in structure of the population will be
essential; however, carrying a large number of weight classes (126 in the examples above),
perhaps multiplied by the number of ZP species, becomes prohibitive in a spatially resolved
system. We need to consider methods for reducing the number of variables while retaining
the important aspects of the dynamics.

The problem of simplified representations is, of course, much broader than just the
issue of dealing with structured populations, and we shall return to it later. For now, con-
sider the projection or Galerkin method: we approximate n using a small set of functions

n(w, t) = an(t)φn(w)

and also pick a set of orthogonal functions φ̃m

∫

dw φ̃m(w)φn(w) = δmn .
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If we substitute the approximation into the dynamical equation, multiply by one member
of the set of φ̃’s and integrate, we end up with a dynamical system

∂

∂t
am = −P

[
∫

dw φ̃m
∂

∂w
gwφn

]

an − dzam

=

[

Rφm(0)

∫

dwα(w)φn(w)

]

an + P

[

∫

dw
∂φ̃m

∂w
gwφn

]

an − dzam .

The procedure is straightforward, but the choice of basis functions φm and the adjoint
functions φ̃m seems much less so. If the basic dynamics is expressed in matrix form, the
φm(w) functions become a matrix of size length(b) × # modes (including P within the
projection; we choose Φ and Φ̃ so that one mode picks out just P with no amplitude in
the n variables). The dynamics has the same form but with smaller matrices

∂

∂t
b̃ = b̃1[Φ̃L1Φ]b̃+ [Φ̃L2Φ]b̃ = b̃1L̃1b̃+ L̃2b̃

As a first example, we divide the weight space up into discrete bins and let φm select
and average over the mth bin

φm(w) = [(w > wm−1)− (w > wm)]/(wm − wm−1)

using the programming notation a > b being 1 when true and zero when false. The
reduced model is essentially the same as produced by a coarser w-grid. As figure 4.21
shows, the oscillations are not well-reproduced even with twenty weight classes; with ten,
the fluctuations only occur in the phase when the ZP biomass is increasing, and they are
scarcely present with five classes.
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Figure 4.22: Representation using twenty weight classes.
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For the second example, we employ the unstable eigenmode for the steady state with
R = 1 – the solution b′ to (4.17). We also find the left eigenvector corresponding to the
same mode y such that yiL

′
ij = σyj and normalize it so that yib

′
i = 1. We begin with

Φinit =











1
0
. . . b ℜ(b′) ℑ(b′)
0
0











and Φ̃init =







1 0 0 . . . 0 0
0 w1 w2 . . . wmax−1 wmax

ℜ(y)
ℑ(y)







and perform the equivalent of Gram-Schmidt orthonormaliztion so that Φ̃Φ = I. The
resulting four-mode model captures the overall cycle but overestimates the variability.
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Figure 4.23: Representation using four modes.

Because the third and fourth modes have both positive and negative lobes, we are not
assured that our estimated n or even Z values will always be positive. The weight-grouping
approximation does not have this problem, but requires a large number of modes. We shall
expand on these issues in Chapter xx.
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4.3 — Species-Weight
We have the pieces required to construct a model such as figure 3.1: transfer of biomass

between trophic levels, multiple limitations, size-dependent processes, and growth in size
within a population. We can also reformulate the structured-population model in terms
of biomass in log-weight classes as follows:

First, we note that the flux form still holds

∂

∂t
n = − ∂

∂ω
g̃n− dn (4.18)

where n dω is the number density in the class ω to ω + dω and g̃ is the rate of growth in
terms of log weight

g̃ =
d

dt
ω =

1

w

d

dt
w =

g

w
.

The biomass in a particular log-weight class is just b = wn = w0 exp(ω)n, so we can find
the evolution equation for b by multiplying (4.19) by w0 exp(ω)

∂

∂t
b = − ∂

∂ω
g̃b+ (g̃ − d)b

g̃(ω0)b(ω0) =

∫

dω r(ω)b(ω) .
(4.19)

In the second form, the ∂
∂ω

term moves biomass (b dω) conservatively from weight to weight
while the g̃b terms represents the biomass which must be added for the organisms to gain
weight. Transfer of biomass from other parts of the size-species domain must be adequate
to account for this term as well as any residual biomass gain needed for reproduction
(recognizing, of course, the inefficiency of grazing).

The somewhat different form of the reproduction term just makes relating the newborn
biomass produced by adults of weight w to intake easier. Competitive nonlinearities can
still be included, both here and in the growth term, by making r(ω, s) and/or g̃(ω, s)
functionals of b(ω, s).

To connect species s to the others on which it feeds or for which it is prey, we define
the transfer function p(ω, s|ω′, s′) – the amount of food from weight class ω′ in species s′

available to weight class ω in s. From this definition and the Holling type III form, we
have the total amount of biomass grazed by the predators

G(ω, s) = gω(ω, s)

∫

dω′ds′p(ω, s|ω′, s′)b2(ω′, s′)
A(ω, s)

with

A(ω, s) =

∫

dω′ds′p(ω, s|ω′, s′)b(ω′, s′) + 1

C(ω, s)

∫

dω′ds′p(ω, s|ω′, s′)b2(ω′, s′)
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and the rate at which grazing removes biomass from prey in class ω, s per unit biomass

D(ω, s) =

∫

dω′ds′
gω(ω

′, s′|ω, s) b(ω′, s′)
A(ω′, s′)

b(ω, s) .

The intake of food by the predators will either go to growth or reproduction

g̃ = (a− ar)G , r = arG

with the ar factor acting like α to isolate the adult portion of the weight spectrum.
With these definitions and choices, the equation for species s becomes

∂

∂t
b = − ∂

∂ω

[

(a− ar)Gb
]

+
[

(a− ar)G−D − d
]

b

a(ω0)G(ω0)b(ω0) =

∫

dωarGb .
(4.20)

(assuming ar(ω0) = 0) with the various quantities being functions of ω and s. If we
integrate with respect to log-weight, we find the biomass equation [b̃(s) =

∫

dω b(ω, s)]:

∂

∂t
b̃ = aGb

∣

∣

∣

ω0

+

∫

(a− ar)Gb−
∫

(D + d)b =

∫

(aG−D − d)b

If we integrate over species and set the assimilation factor a to one, the G and D terms
would cancel – they simply move biomass around, with the only losses arising from incom-
plete assimilation.

4.3.1 — Fixed Size Structure Species

Under some rather strong restrictions, we can again find solutions with a stable pop-
ulation structure for species s, so that b(ω, s, t) = Z(s, t)b(ω). If we substitute this ansatz
into (4.20), we can see that the b factors will cancel out G can be factored into a part depen-
dent on weight, but not environment (food, temperature, etc.) and a weight-independent
environmental term, G = Ĝgω. D and d must be independent of weight. The reproductive
term was already assumed to be proportional to G. The resulting structure equation is

Ĝ0

[

∂

∂ω
(a− ar)gωb− (a− ar)gωb

]

= −(D0 + d)b

a(ω0)gω(ω0)b(ω0) =

∫

argωb

⇒
∫

agωb =
D0 + d

Ĝ0

(4.21)
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where Ĝ0 and D0 are constants, chosen to give a value of (D0+d)/Ĝ0 making the solution
to the structure equation consistent with the boundary condition. With this form, the
temporal changes of the biomass satisfy

∂

∂t
Z = Z

Ĝ

Ĝ0

∫

aĜ0gωb−DZ − dZ = Z

[

Ĝ

Ĝ0

(D0 + d)−D − d

]

. (4.22)

For the conditions to apply for species s, F and D must be independent of ω, so that
p = p(s|ω′, s′) for all s′ which are prey and p = p(s′, ω′|s) for all s′ which are predators.
As an example, consider single-celled organisms which reproduce by cell division: we can
think of αg = 1 so that all intake of nutrient goes to growth. Reproduction takes the
flux into weight 2ω0 and redirects it to new cells at weight w0 so that g(ω0)b(ω0) =
g(2ω0)b(2ω0) or r = δ(ω − 2ω0)g(ω). In (4.20), we replace the integral condition by
G(ω0)b(ω0) = G(2ω0)b(2ω0). The factorization of G and the idea that grazers do not
distinguish between cell sizes seem quite reasonable, and the reproduction indeed scales
the same way with environmental variability as growth. Of course, we do need to account
for the variations in parameters with different species. Even for single-celled organisms,
however, this picture may be oversimplified: Pascual and Caswell (19xx) discuss the case
where only part of the cell cycle proceeds at a nutrient-dependent rate and demonstrate
that cell numbers can have oscillatory or chaotic fluctuations with, respectively, steady or
periodic nutrient supply. Thus even the simplest organisms may show significant effects
from varying weight distribution.

If we carry the fixed-weight distribution idea to an (unwarranted) extreme, by assum-
ing p = p(s|s′), C = C(s), d = d(s), all species will have fixed distributions

b = Z(s, t)b(ω, s) ,

∫

dω b = 1

with the equations for the structure and the dynamics given by (4.21-22); the food, grazing,
and predation mortality are set by

F (s) =

∫

ds′p(s|s′)Z(s′)

Ĝ(s) =
F (s)

1 + F (s)/C(s)

D(s) =

∫

ds′p(s′|s) Z(s′)

1 + F (s′)/C(s′)

[
∫

dω′ gω(ω, s
′)b(ω, s′)

]

.

(4.23)

(If a is independent of weight, the last integral becomes [D0(s
′) + d(s′)]/[a(s′)Ĝ0(s

′)]
but this is not a fundamental change.) In essence, the model reduces to a multispecies
“compartment” model like those in Chapter 3, conceivably with a much larger set of
variables (limiting to the case where s is treated as continuous).

While some of the effects of weight have been removed, the models in (4.23) can still
be developed within this context; indeed, the grouping chosen in that section could be
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just as well be phrased in terms of s rather than ω. If species are sorted by their mean
weight, then the allometric relationships still make sense. (However, such scaling for the
grazing rates does not account for differences in preference among prey species which have
similar mean weights; this kind of information can be incorporated into (4.23), but makes
specification of p(s|s′) more complex.)

Example:

As an example, we generalize the model in (4.4-6) to include carnivory. We take a
species/ weight diagram like 4.1 with the heterotrophs (PP) separated from the autotrophs
(ZP) and sorted by mean weight. Now p(s|s′) for s′ in the ZP will have contributions from
both smaller PP and smaller ZP classes. But this change enables the larger size classes to
grow and persist. In the case with Monod forms, the model is generally quite noisy (figure
4.23a); many species fluctuate to small values, with some becoming extinct (i.e., below
the precision of the calculation). Roughly 40% of the species die out over the long term
(107 days or 27,000 years). The results will also be sensitive to the numerical method; the
implication is that it can be very difficult to find the long-term statistics for this model.
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Figure 4.24a: Time series of total autotroph and heterotroph biomasses.
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If prey-switching is included, the system settles rapidly (4.24a), although the large
classes are still changing slowly (since their intrinsic rates are very small). We find the
system organizes into distinct weight groups (4.24b). Extinctions of the kind described
above do not occur, although gaps do form in the size spectrum and the number of species
does decline (again slowly as the largest organisms die out).
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Figure 4.25a: Time series of total autotroph and heterotroph biomasses with
prey-switching.
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Figure 4.25b: Weight distributions with prey-switching. The dashed lines show
the case with only herbivory.

4.3.2 — More general case

Finally, we discuss some cases including both multiple species and weight structure
within a species. Assume that the larger ZP have a life-history so that b(ω, s) has a finite
range in ω; the grazing then produces movement to higher weight classes (the ∂

∂ω
term).

We’ve used two different ways of specifying the minimum weight vs. the adult weight: (1)
min(w/128, max(wPP )) or (w/wz0)

0.85 (figure 4.25). Grazing is size-based: ZP of weight
w feed on all organisms in the range 1.25× 10−4w to 10−3w.
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Figure 4.26: Species-weight for the w/128 (dashed) and (w/w0)
0.85 (solid) choices.

These runs (with prey-switching) lead to a full suite of PP and small ZP, but only a
few species of the larger ZP (figure 4.27). Apparently, species in the gaps have at least
some period within their life-cycle when the food is inadequate, so that their net growth
rate is not large enough to overcome the net mortality. Changing the allometric coefficient
for ZP growth to 0.225 rather than 0.25 allows the higher weight organisms to persist
(figure 4.27c).

84



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1e-06 0.0001 0.01 1 100 10000 1e+06 1e+08 1e+10 1e+12 1e+14

sp
ec

ie
s/

bi
om

as
s

weight

Figure 4.27a: Species-weight distribution with wmin = (w/w0)
0.85.
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Figure 4.27b: Species-weight distribution with wmin = w/128.
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Figure 4.27c: Species-weight distribution with wmin = (w/w0)
0.85 and an allo-

metric coefficient of 0.225 for g.

4.3.3 — Size-spectrum

Particle counters provide a way to survey the ocean rapidly, assessing the number or
volume of particles in size bins. After Sheldon et al. (1977) proposed that the biomass
in logaritmic volume bins was roughly constant (with their data showing variations of the
order of factors of 5), Platt and Denman (1977) suggested that the size-spectrum of oceanic
organisms could be modelled by taking transfers of biomass to be local so that grazing gives
a flux of biomass to slightly larger organsims. Zhou and Huntley (1997) examined another
possibility, that the wieght gain term could also lead to a specific spectral shape (as we
have seen in section 4.xx). The species-weight kind of structure has both mechanisms, so
we can investigate the size spectrum. The results may not be simple: summing the data
in fig. 4.27c gives a size spectrum which is not particularly smooth (fig. 4.xx).
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86



We start with the quadratic form of the model with weight as one of the traits

∂

∂t
b(ω, s) +

∂

∂ω
g̃b = g̃b− db+

∫

dω′r(ω, ω′, s)b(ω′, s) ;

we can always define averaged quantities by

∫

dsf(ω, s, t)b(ω, s, t) = f(ω, t)

∫

dsb(ω, s) = f(ω, t)b(ω, t)

so that the biomass density equation, integrated over s becomes

∂

∂t
b(ω, t) +

∂

∂ω
gb = gb− d b+

∫

dω′r(ω, ω′, t)b(ω′, t)

The apparent simplicity arising form the dependence only on weight is, of course, mislead-
ing: terms like d which depend on predation cannot generally be predicting knowing only
b(ω, t). For example, the form we’ve been using

d(ω, s) = d0(ω, s) +

∫

dω′ds′G(ω′, s′|ω, s)b(ω′, s′)

(with time-dependence of terms implicit) gives

d(ω)b(ω) =

∫

ds d0(ω, s)b(ω, s) +

∫

dω′ds ds′b(ω, s)G(ω′, s′|ω, s)b(ω′, s′)

If all the vital rates are the same across traits other than weight (i.e, d0 = d0(ω), this
would become

d(ω)b(ω) = d0(ω)b(ω) + b(ω)

∫

dω′)G(ω′|ω)b(ω′) (4.24)

however, the condition on vital rates is very stringent and not very likely. Organisms with
the same weight will still have different predation strategies, prey, vullnerability to other
causes of mortality, etc. Evolutionary processes (Chapter xx) will work on these differences
to separate opulations geographically or temporally. An alternative reduction, assuming
fixed proportions of species in a weight class b(ω, s, t) = b(ω, t)β(ω, s) with

∫

dsβ(ω, s) = 1
gives

d =

∫

ds d0(ω, s)β(ω, s) +

∫

dω′b(ω′)

∫

ds ds′β(ω, s)G(ω′, s′|ω, s)β(ω′, s′)

which has the same form, but with coefficients that depend on the species distribution and
the variation of vital rates. So we’ll continue to use 4.xx, with the understanding that the
coefficients could be weighted averages.

If we assume allometric forms g = gao exp(−γω), d = da exp(−δω), and take r(ω, ω′) =
raδ(ω−ω′+lnW ) exp(−ρω) so that reproducing adultls are a factor W heavier than their
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offspring, we can find a size spectrum b ∝ exp(−βω) when the coefficents satisfy γ = δ = ρ
and

da = ga(1 + β + γ) + ra exp(−[ρ+ β]W )

∂

∂t
b(ω, s) +

∂

∂ω
g̃b = g̃b− db+ δ

(

ω − ω0(s)
)

∫

r(ω′, s)b(ω′, s)

d = d0 +

∫

dω′ds′G(ω′, s′|ω, s)b(ω′, s′)

g̃ = [1− α] a

[

µN +

∫

dω′ds′G(ω, s|ω′, s′)b(ω′, s′)
]

r = αa

[

µN +

∫

dω′ds′G(ω, s|ω′, s′)b(ω′, s′)
]

with the coefficients d0, α, a, µ all functions of ω and s, we can try to see when the
biomass in a log weight class B(ω) =

∫

ds b(ω, s) might have a simple shape. If we assume
grazing depends only on the difference in weights of predator and prey, then d, g̃, and r
are functionals of B, although they may still depend on s.

4.4 — Remarks
We have discussed a variety of models with a range of complexity, but have not tried

to produce a “best model.” Indeed, the arguments of Oreskes, et al.(1994) that models of
natural systems can never be “verified,” because of our imperfect knowledge of processes,
parameters, initial and boundary distributions, apply even more strongly to ecological
models. Instead, modellers face three tasks: (1) choose basic variables and functional
forms (2) determine that the numerics solves the underlaying mathematical equations
accurately, and (3) select parameters such that the model gives a reasonable estimate of
the available data or its statistics. At that point, one can accept that the model may be
a useful tool for interpreting the observations and for estimating the effects of changes in,
for example, ocean temperatures.

But we should always remain aware that models are imperfect tools and cannot cap-
ture nature’s complexity. In the case of predictive models, we should expect that new
data will lead to modifications to keep the model on track. In meteorology and physical
oceanography, for example, “data assimilation” procedures alter the values of imperfectly
known variables or parameters so that the model-data fit remains acceptable. Similar issues
apply to our problems. A model of copepod distribution of Georges Bank could incorpo-
rate information about the life-history with some parameters estimated from laboratory
work (c.f. Davis, 19xx). Other values, such as mortality rates, are much less well-knowm
as are the boundary conditions giving the input from the Gulf of Maine. Using filtering
techniques such as adjoint methods (McGillicuddy, 19xx) for runs over several years would
allow us to develop a picture of how such parameters/ boundary conditions vary season-
ally; information which could be used to project into the future. Thus, predicting from
such a model would be possible, but with limited accuracy. More likely, we would continue
to incorporate new data, in the expectation that estimates of values in the future or of
unobservable quantities such as the net predation (related in some way to the uptake of
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food by larval fish) will be better. The success of the model would be judged by the degree
to which it contribute to making the forecast better than an empirical/ statistical rule.

Similar caveats apply for more abstract models intended to help understand the un-
derlying dynamics. One model may suggest that some process (e.g. upwelling of nutrient)
is less significant than others (such as iron supply), while a different model could suggest
quite different balances or argue that some other effect plays a major role. Disagreements
among models can be difficult to resolve, although sometimes a more comprehensive system
which includes both models can be used to get at the relative importance of processes.

To illustrate some of these issues, consider applying some of the models in these chap-
ters to the Bermuda Atlantic Time Series (BATS) data (Michaels, et al., 19xx). Charac-
teristics such as the net biomasses in the autotrophs and heterotrophs obviously depend
both on the model and on the parameters. While we may be able to choose the parameters
for a given model to match desired b values, such a procedure is not really satisfactory.
As an example, we take four of the models above and adjust the constants such that the
steady-state values are the same (and close to the mean values from BATS). We assume
that the models represent the upper 50 m of the ocean and that there is a constant rate of
exchange or mixing with the fluid below; the deep water is presumed to have only dissolved
N with a fixed value NT . All unassimilated grazing and dead zooplankton are lost to the
deep water. As an example, the NPZ model can then be written as

∂

∂t
N = −µ

NP

N +Nh
− k(N −Nt)

∂

∂t
P = µ

NP

N +Nh
− g

Z

ν
[1− exp(−νP )]− kP

∂

∂t
Z = ag

Z

ν
[1− exp(−νP )]− dzZ − kZ .

If we specify the values of N , P , Z and Nt, we can write the steady-state equations as a
linear system for µ/g, dz/g, and k/g. We solve this and then choose g to give reasonable
maximum uptake rates. This example underscores the freedom in specifying even this
simple model: in addition to the degree of freedom in specifying g, the BATS data does
not have values for Z, so we assumed the steady value is 0.64P based on Hurtt and
Armstrong, 19xx.

When we vary the light level seasonally, using the formulae in Evans and Parslow
(19xx), and multiply µ by the light level, we can generate seasonal cycles. The yearly
cycles of P vs N in figure 4.27 show overall similarity, but significant differences in detail
(e.g., the NPZD version has both a fall and spring bloom). The measured cycles show
much stronger blooms, but with interannual variability such that one year did not have a
bloom at all.
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Figure 4.29a: NP cycles with seasonally-varying light for the QNPZ, NPZ, NPZD,
and species-weight (section 4.3).
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Figure 4.29b: measured P (from Chlorophyll-A/1.59) compared to the models.

To get some idea of the sensitivity, we vary parameters which are not well known (e.g.,
mean Z values, sinking rate for detritus) and compare the cycles. Some examples from the
NPZD model are shown; we might expect that the model can fit the yearly cycle from the
data. As figure 4.28 shows, the effort is not entirely successful: the spring bloom is weak,
and the fall one is too strong. The model can make larger spring blooms, but puts them
several months later in the summer.
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Figure 4.30a: measured 4-year average P (from Chlorophyll-A/1.59) compared
to the model.
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Figure 4.30b: measured 4-year average N compared to the model.

In a later chapter, we shall try to assess the effects of more complex physics (mixed-
layer deepening and eddies), but note here that the temperature cycle (figure 4.xx) is much
more regular. This result suggests either that the biology is more sensitve to the flows than
the temperature or that the ecosystem dynamics is itself not smooth and regular. Thus,
these chapters have pointed to the more complex processes which certainly occur in the
ocean and discussed ways of incorporating them into models, while indicating that we will
need to examine the structure and variability of the flows and environmental conditions in
much more detail.
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Figure 4.31: measured T and P
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