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Fig. 4. Repression of Nv-Kr by maternal Nv-gt is
required for head and thorax formation in Nasonia.
(A) Two models for maternal Nv-gt function. Cu-
ticular analysis (B, D, and F) and Nv-hb,,, expression
(C, E, and G) after knockdown for Nv-Kr [(B) and (Q)],
Nv-gt+gfp [(D) and (E)], and Nv-gt+Kr [(F) and (G)].

Nv-gt and green fluorescent protein (gfp) and
observed the expected Nv-gt phenotype: deletion
of head and thorax, as well as loss of anterior
Nv-hb expression (Fig. 4, D and E). Knockdown
of Nv-gt and Nv-Kr yielded striking results. In
92% of examined embryos, the head and thorax
(T1/T2) were restored (Fig. 4F), and the resulting
cuticular phenotypes were essentially identical
to those after Mv-Kr RNAIi alone (Fig. 4B).
Consistent with rescued head and thorax devel-
opment, anterior zygotic Nv-hb was also restored,
although not to wild-type levels (Fig. 4G). None-
theless, the amount of Nv-b present in Nv-gt+Kr
RNAIi embryos was sufficient to direct head and
thorax development, demonstrating that Nv-Kr
expansion impedes anterior patterning and that
maternally localized Nv-gt confines Nv-Kr to the
embryo’s center. Thus, whereas in Drosophila,
bcd-activated Dm-gt plays only a moderate role
in positioning Nv-Kr (Fig. 1C), in Nasonia, ma-
ternal Nv-gt is sufficient to perform this func-
tion. This distinction led us to consider whether
Dm-gt’s role in Drosophila would be enhanced
if the Drosophila embryo were reengineered to
develop like Nasonia—with Dm-gt maternally
provided and anteriorly localized. We found that,
whereas Dm-gt was sufficient to repress Dm-Kr
anteriorly in the absence of bcd (fig. S1B),
head and thoracic structures were not rescued
(fig. S1C)—an unsurprising result given that, in
addition to permitting anterior development by
regulating Kr-repressing gap genes, bcd also
functions instructively to activate genes required
for head and thorax formation. In Nasonia, by
contrast, the instructive and permissive anterior
patterning functions are discrete. Head- and thorax-
specific genes are triggered by an instructive
anterior determinant, maternal Nv-otdI, which is
localized independently of the permissively acting
maternal repression system, Nv-gz.

A comparison of the molecular mechanisms
employed by two independently evolved (6) long-

germ insects not only uncovers those features es-
sential to this developmental mode but also sheds
light on how the hcd-dependent anterior patterning
program might have evolved. Through analysis of
the regulation of the trunk gap gene Kr in Dro-
sophila and Nasonia, we have been able to dem-
onstrate that anterior repression of K7 is essential
for head and thorax formation and is a common
feature of long-germ patterning. Both insects
accomplish this task through maternal, anteriorly
localized factors that either indirectly (Drosophila)
or directly (Nasonia) repress Kr and, hence, trunk
fates. In Drosophila, the terminal system and bcd
regulate expression of gap genes, including Dm-gt,
that repress Dm-Kr. Nasonia’s bcd-independent
long-germ embryos must solve the same problem,
but they employ a maternally localized repression
system in which maternal Nv-gt is localized to the
oocyte’s anterior, where it represses Nv-Kr. In the
dipteran lineage, whereas g7 retained the ability to
repress Kr, maternal regulation of K7’s position
was taken over by two novel features—bcd, a spe-
cific dipteran innovation, and the terminal pathway,
which, although present ancestrally, appears to
function less extensively in the anterior of non-
dipteran insects (16, /7). In addition to activating
anterior patterning genes such as otd and hb, bed
also acquired regulation of g#, which became a
strictly zygotic gene with a reduced role in repress-
ing Kr. Our findings thus identify two independent
mechanisms for long-germ anterior patterning—
one using two maternally localized genes, otd] and
gt, that respectively activate anterior zygotic pat-
terning genes and repress trunk fates, and a second
using bed for these same functions, thereby de-
moting otd and gt to zygotic gap genes. Interest-
ingly, it appears that long-germ embryos use RNA
localization for a number of different developmen-
tal processes (3, 18, 19). By contrast, in short-germ
insects, although some localized RNAs have been
identified, there is as yet no evidence of their con-
tribution to anterior-posterior patterning (20).

REPORTS

mRNA localization indeed appears to be an
important component of long-germ embryogene-
sis, perhaps even playing a role in the transition
from the ancestral short-germ to the derived long-
germ fate.
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Emergent Biogeography of Microbial
Communities in a Model Ocean

Michael J. Follows,** Stephanie Dutkiewicz,* Scott Grant,>? Sallie W. Chisholm?

A marine ecosystem model seeded with many phytoplankton types, whose physiological traits were
randomly assigned from ranges defined by field and laboratory data, generated an emergent
community structure and biogeography consistent with observed global phytoplankton
distributions. The modeled organisms included types analogous to the marine cyanobacterium
Prochlorococcus. Their emergent global distributions and physiological properties simultaneously
correspond to observations. This flexible representation of community structure can be used to
explore relations between ecosystems, biogeochemical cycles, and climate change.

significant challenge in understanding
the changing earth system is to quantify
and model the role of ocean ecosystems

in the global carbon cycle. The structure of
microbial communities in the surface ocean is

known to regulate important biogeochemical
pathways, including the efficiency of export of
organic carbon to the deep ocean. Although
there is extraordinary diversity in the oceans,
the biomass of local microbial communities at
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any location is typically dominated by a smaller
subset of strains. Their relative fitness and eco-
system community structure are regulated by a
variety of factors, including physical condi-
tions, dispersal, predation, competition for re-
sources, and the variability of the environment
(1-3). Models reflecting this conceptual view
have been examined in idealized ecological
settings (4) and have been applied to studies of
terrestrial ecosystems (5). We have used this
approach in a marine ecosystem model that em-
braces the diversity of microbes and their ge-
nomic underpinnings, a model in which microbial
community structure “emerges” from a wider set
of possibilities and, thus, mimics aspects of the
process of natural selection. The system is flexible
enough to respond to changing ocean envi-
ronments and can be used to interpret the structure
and development of marine microbial commu-
nities and to reveal critical links between marine
ecosystem structure, global biogeochemical
cycles, and climate change.

Recent ocean models have begun to resolve
community structure by the explicit repre-
sentation of three or four classes, or functional
groups, of phytoplankton (6-9), but significant
challenges remain (/0, I1). First, the specifica-
tion of functional groups and diversity of the
model ecosystem is subjective and somewhat
arbitrary. Second, it is difficult to evaluate the
parameters controlling such models because
quantitative, physiological information from
laboratory cultures is extremely limited. Third,
observations of microbial community structure
with which to evaluate global-scale models are
still relatively sparse. Finally, model ecosystem
structures optimized to reflect today’s ocean
may not be sufficiently dynamic to adapt ap-
propriately to a changing climate where radical
shifts in community structure might be possible.

To circumvent some of these difficulties, we
formulated a marine ecosystem model that repre-
sents a large number of potentially viable phyto-
plankton types whose physiological characteristics
were determined stochastically. The initialized
organism types interacted with one another and
their environment, evolving into a sustainable eco-
system where community structure and diversity
were not imposed, but were emergent properties.

The ecosystem model consisted of a set of
coupled prognostic equations (egs. S1 to S5),
with idealized representations of the transforma-
tions of inorganic and organic forms of phos-
phorus, nitrogen, iron, and silica. Many tens of
phytoplankton types (here, 78) were initialized
in each simulation, each type distinguished by
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its physiological capabilities and the values of
coefficients that control the rates and sensitiv-
ities of metabolic processes. These were pro-
vided by random drawing from broad ranges
guided by laboratory and field studies (table S1).
We focused these choices on light, temperature,
and nutrient requirements (fig. S1), the niche
dimensions for phytoplankton thought to be most
important in regulating growth. To facilitate a test
of the approach, we also specifically addressed
functions that differentiate Prochlorococcus spp.
from other phytoplankton, including their small
size and inability to assimilate nitrate. Other
functions could be emphasized depending on
the aim of the study. Ecological trade-offs were
imposed through highly simplified allometric
constraints [see supporting online material
(SOM)]. To reflect the extra energetic expense of
using nitrate, relative to other inorganic nitrogen
sources, we allowed the maximum growth rate to
increase slightly when nitrate was not the major
nitrogen source (/2). Organisms incapable of
utilizing nitrate were given a slightly lower nu-
trient half-saturation. We explicitly represented
predation by two classes of grazer and, for the
action of heterotrophic microbes, we used a
simple remineralization rate (SOM).

A global ocean circulation model constrained
by observations (/3) provided flow fields and
mixing coefficients that transport all biological

Fig. 1. Annual mean
biomass and biogeog-
raphy from single in-
tegration. (A) Total
phytoplankton biomass
(uM P, 0 to 50 m aver-
age). (B) Emergent bio-
geography: Modeled
photo-autotrophs were
categorized into four
functional groups; color
coding is according to
group locally dominating
annual mean biomass.
Green, analogs of Prochlo-
rococcus; orange, other
small photo-autotrophs;
red, diatoms; and yel-
low, other large phyto-
plankton. (C) Total
biomass of Prochlorococ-
cus analogs (uM P, 0 to
50 m average). Black line
indicates the track of
AMT13.
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and chemical tracers. All phytoplankton types
were initialized with identical distributions of
biomass, and the model was integrated forward
for 10 years, over which time a repeating annual
cycle in ecosystem structure emerged. We re-
peated the integration 10 times, each time with a
different random selection of phytoplankton phys-
iologies, forming an ensemble of 10 members. Al-
though each ensemble member produced a unique
emergent ecosystem, the broad-scale patterns of
productivity, community structure, and biogeogra-
phy were robust across all 10. Global patterns of
open-ocean biomass (Fig. 1A), primary produc-
tion, and nutrients (fig. S3) were qualitatively con-
sistent with in situ and remote observations. The
ensemble mean globally integrated, annual primary
production was 44 gigatons C per year, with a
standard deviation of less than 5%. This small
standard deviation suggested that sufficient phyto-
plankton “types” were initialized for consistent
emergent solutions and also reflects the large-scale
regulation by the physical transport of nutrients.
After an initial adjustment, the biomass of
some phytoplankton types fell below the thresh-
old of numerical noise, and these types were
assumed to have become “extinct.” In all ensem-
ble members, about 20 phytoplankton types ac-
counted for almost all of the total global biomass
(fig. S2). We classified the phytoplankton types
into four broad functional groups, each a
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composite of several types, according to aspects
of their physiology: (i) diatom analogs—Ilarge
phytoplankton that require silica, (ii) other large
eukaryotes, (iil) Prochlorococcus analogs—small
phytoplankton that cannot assimilate nitrate, and
(iv) other small photo-autotrophs. The large-scale
biogeography of the emergent phytoplankton
community was plausible with respect to obser-
vations (Fig. 1B) and consistent among the 10
ensemble members. The model successfully cap-
tured the domination of annual biomass by large
phytoplankton in subpolar upwelling regions,
where both light and macronutrients are season-
ally plentiful. The subtropical oceans were domi-
nated by small phytoplankton functional types
(14). Large areas of the tropics and subtropics
were dominated by several Prochlorococcus
analogs (Fig. 1C), also in accord with observa-
tions (15, 16). Along the cruise track of At-
lantic Meridional Transect 13 (AMT13), total
Prochlorococcus abundance (the sum of all

OBSERVATIONS

E Prochl. ecotype eMIT8312

Depth {m) Depth (m) Depth {m)

Depth {(m)

40°§  20°S 0

20°N  40°N

Prochlorococcus analogs) qualitatively and quan-
titatively reflected the major features of the ob-
served distribution with highest abundances in
the most oligotrophic (nutrient-depleted) waters
(15, 17) (Fig. 2, A to D).

Real-world Prochlorococcus exhibit genetic
diversity, which leads to differences in light and
temperature sensitivities (/7-20), as well as ni-
trogen assimilation abilities (27). The strains, or
ecotypes, of Prochlorococcus exhibit distinct pat-
terns of abundance along ocean gradients (15, 17),
and observations on AMT13 (/7) (Fig. 2, E, G,
I, and K) provide an ideal test for the stochastic
modeling strategy: Do the emergent model ana-
logs of Prochlorococcus reflect the geographic
distributions, relative abundances, and physio-
logical properties of their real-world counterparts?

Of the Prochlorococcus analogs initialized in
each model solution, between three and six var-
iants persisted with significant abundances (fig.
S4). We grouped the analogs by defining three

40°5  20°S 20°N  40°N

Fig. 2. Observed and modeled properties along the AMT13 cruise track. Left column shows
observations (17), right column shows results from a single model integration. (A and B) Nitrate
(umol kg™); (C and D) total Prochlorococcus abundance [log (cells ml™)]. (E, G, I, and K)
Distributions of the four most abundant Prochlorococcus ecotypes [log (cells ml™)] ranked
vertically. (F, H, and ]) The three emergent model ecotypes ranked vertically by abundance. Model
Prochlorococcus biomass was converted to cell density assuming a quota of 1 fg P cell™ (27). Black

lines indicate isotherms.
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“model ecotypes” based only on distinct geo-
graphic habitats, without regard to physiology,
which had a qualitative resemblance to the ob-
served distributions of ecotypes along AMT13.
In any ensemble member, more than one emer-
gent Prochlorococcus analog may fall into a
particular model-ecotype classification, and some
were ambiguous. Model ecotype m-e! (Fig. 2F)
was defined to include emergent analogs with
significant biomass in the upper 25 m along the
transect between 15°N and 15°S, qualitatively
corresponding to the habitat of real-world eco-
type eMIT9312 (Fig. 2E). Model ecotype m-e2
(Fig. 2H) included analogs that had significant
biomass in surface waters polewards of 15° but
low biomass within 15° of the equator, broadly
reflecting eMED4 (Fig. 2G). Finally, model eco-
type m-e3 (Fig. 2J) was defined to include ana-
logs that had a subsurface maximum biomass, in
common with eMIT9313 and eNATL2A (Fig. 2,
I and K). The observed widespread distribution
of deep maxima with low abundance associated
with eMIT9313 and eNATL2A was not clearly
reflected in the model analogs. This might be
explained by the tendency toward unrealistically
complete competitive exclusion typical in eco-
system models (22, 23), precluding persistent
populations at low abundance. There is a deep,
high biomass layer in the model made up of
other, nitrate-consuming, small phytoplankton.
This may partially reflect a contribution from
nitrate-utilizing Prochlorococcus, which have re-
cently been inferred from ocean observations (24),
but which have not yet been seen in culture.

T
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Fig. 3. Optimum temperature and light inten-
sity for growth, T,, and I, of all initialized
Prochlorococcus analogs (all circles) from the
ensemble of 10 model integrations. Large
circles indicate the analogs that exceeded a
total biomass of 10° mol P along AMT13 in the
10th year. Colors indicate classification into
model ecotypes (see main text): Red circles, m-e1;
blue circles, m-e2; green circles, m-e3. Mixed-
color and solid black circles denote ambiguity in
model-ecotype classification. Bold diamonds indi-
cate real-world Prochlorococcus ecotypes (red,
eMIT9312; blue, eMED4; green, eNATL2A; and
yellow, eMIT9313).
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Within each ensemble member, emergent
model ecotypes typically followed the abun-
dance ranking of their geographically identified
real-world counterparts (Fig. 2 and fig. S4):
Model ecotypes m-el and m-e2 ranked first and
second (compare these with eMIT9312 and
eMEDA4, respectively), with m-e3 consistently at
lower abundances (compare this with ecotypes
eNATL2A and eMIT9313).

There is a simultaneous correspondence
between the physiological characteristics of emer-
gent, modeled ecotypes and cultured represent-
atives of the wild population. Each cultured
strain of Prochlorococcus and the emergent
model ecotypes from all 10 ensemble members
were characterized by an optimal temperature
(T;,5¢) and photon flux (Z,,,) for growth, the tem-
perature or light intensity at which growth rates
are greatest if all other limitations are set aside
(fig. S1). Potentially viable Prochlorococcus ana-
logs were seeded in the model over wide ranges
of optimal temperature and photon fluxes (all
circles, Fig. 3), but those that maintained signif-
icant abundances along the AMT transect (solid
large circles, Fig. 3) were all characterized by
T, > 15°C. This is consistent with the observa-
tions of Prochlorococcus in warmer waters and
with the warm T;,,, of cultured strains (/7). Our
model indicates that the oligotrophic conditions
confined Prochlorococcus analogs to warmer wa-
ters and selected for warm T;,,,, an emergent “‘ad-
aptation” driven by other environmental factors.
In the cooler waters of the model, nutrients are
typically abundant, and so larger phytoplankton,
with higher intrinsic maximum growth rates, have
an advantage. In the highly oligotrophic (typically
warmer) regions, the Prochlorococcus analogs’
lower half-saturation (consistent with their very
small size) is advantageous.

Across the ensemble of 10 integrations, the
geographically defined model ecotypes were clus-
tered in optimal temperature and light parameter
space (Fig. 3): Model ecotype m-el (red circles)
generally occupied the warmest area of parameter
space over a broad, upper range of optimal pho-
ton fluxes; m-e2 (blue circles) generally had a
lower T,,,, but a similar range of 1, This is con-
sistent with their surface-oriented habitats and
latitudinal (or temperature) separation. In con-
trast, m-e3 (green circles) occupied a wider
range of T, but only in the region of lowest
I, consistent with its expression of subsurface
maxima. Although there were exceptions, the
clustering of geographically defined model eco-
types in physiological parameter space indicated
that robust ecological controls were operating
across the 10 integrations. The physiological char-
acteristics (7., I,,) of real-world ecotypes
(colored diamonds, Fig. 3) are notably consistent
with the grouping of their model counterparts. This
correspondence was not imposed, but emerged
as a feature of the model solution.

Significantly, there was simultaneous con-
sistency between the geographical habitat, rank
abundance, and physiological specialization of the

emergent Prochlorococcus model ecotypes and
their real-world counterparts. These parallels indi-
cate that the stochastic, self-organizing represen-
tation of marine ecosystems reflects real-world
processes and is suitable for application in eco-
logical and biogeochemical studies. This approach
circumvents some of the obstacles facing most
current ocean ecosystem models, such as the a
priori imposition of low diversity, the prescrip-
tion of dominant functional types, and the dif-
ficulty of specifying the physiological rate
coefficients that define them. This function-
based approach can naturally evolve to exploit
the growing body of genomic and metagenomic
data mapping the oceans in terms of genes and
their encoded physiological functionality (25, 26).
Finally, because the ecosystem structure and
function are, by design, emergent and not tightly
prescribed, this modeling approach is ideally
suited for studies of the relations between marine
ecosystems, evolution, biogeochemical cycles,
and past and future climate change.
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Cascading Effects of the Loss of
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Coastal Ocean
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Impacts of chronic overfishing are evident in population depletions worldwide, yet indirect
ecosystem effects induced by predator removal from oceanic food webs remain unpredictable.
As abundances of all 11 great sharks that consume other elasmobranchs (rays, skates, and small
sharks) fell over the past 35 years, 12 of 14 of these prey species increased in coastal northwest
Atlantic ecosystems. Effects of this community restructuring have cascaded downward from the
cownose ray, whose enhanced predation on its bay scallop prey was sufficient to terminate a
century-long scallop fishery. Analogous top-down effects may be a predictable consequence of

eliminating entire functional groups of predators.

ators can be far-reaching (/) and include

Ecological impacts of eliminating top pred-
release of mesopredator prey populations

from predatory control (2) and induction of
subsequent cascades of indirect trophic interac-
tions (3—5). In the oceans, fishing has dispropor-
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METHODS:
S1. Ecosystem Model Algorithms.

We formulate the ecosystem model in a generalized framework which represents an arbitrary
number of nutrients, N;, phytoplankton types, P;, and grazers, Z;;. Each nutrient element also has
an associated particulate organic and dissolved organic matter pool, POM; and DOM,;
respectively. The rates of change of these prognostic variables are described by the following set
of equations:

ON,
a—tlw.(uzvi):v-(KVNi)—Z[uj7f7f7§V1’ij]+Si (S1)
J

oP ow/P,)

T VRV VP s B = P =Y e B
(52)

Y2, -V 2, R s -2,

at ki ki ki - JkNi P,‘ +kj) ke = ki (83)

aP;Mi +V- (uPOMl. ) =V. (K VPOMZ.)— Vooi POM , — G(W%SO]\/IZ.) + S pous (S4)
S5

aDaotMi +V - (uDOM,) =V -(k VDOM, )~ 1, DOM, + S ), >

Symbols are defined in the text below and parameter values or ranges are provided in Table S1.
Units are uM P for Eq. S2, and uM P, uM N, uM Si, or uM Fe (element represented by subscript
i) for Egs. S1, S3, S4 and S5. Here R;; denotes the ratio of element, i, relative to phosphorus, for
each phytoplankton type, j. Separate zooplankton pools are carried for each element, Z;; where k
is the zooplankton type and i the nutrient element, accounting for the ingestion of prey with
different elemental ratios. Subscript i=1 refers to phosphorus.

Tracers are transported by the currents, u, and mixing coefficients, x, from the ECCO
(“Estimating the Circulation and Climate of the Ocean”) state estimate of ocean circulation (S1)
based on a moderate resolution (1°x1°, 23 vertical levels), global configuration of the MIT ocean
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circulation model (S2) constrained to be consistent with observations of large-scale hydrography
and altimetry. Nutrient distributions are initialized from observed climatologies (S3) or previous
simulations (S4).

S1.1 Parameterizations of Phytoplankton Physiology

While the approach to the organization and complexity of the ecosystem model are novel, the
idealized descriptions of phytoplankton physiological processes are similar to those applied in
previous studies (S4-S7). Phytoplankton growth is determined by a maximum intrinsic growth
rate, 4;, modulated by non-dimensional factors which reflect sensitivities to ambient temperature,
photon flux and essential nutrients (Fig. S1). Nutrient limitation of growth is determined by the
most limiting resource,

}/;V =Q min(Nllim , Nzlim , ) (S6)

where the nutrients considered are phosphate, iron, silicic acid and nitrate, nitrite and ammonia.
The effect on growth rate of ambient phosphate, iron or silicic acid concentrations is represented
by a Michaelis-Menton function

Nl-lim — L (S7)
N, +k,

where the K;; are half-saturation constants for phytoplankton type j with respect to the ambient
concentration of nutrient i (Fig. S1C). We resolve three potential sources of inorganic nitrogen
(ammonia, nitrite and nitrate) though modeled phytoplankton may be able to assimilate ammonia
only, ammonia and nitrite, or all three (S8). Since it is energetically more expensive to utilize
nitrate relative to the other sources we represent nitrogen limitation by the following function:

lim _ N 03 o VVHaNO, | N 02 e Vs NH,

= —— (S8)
NO,; +kN03j NO, +kN02j NH, +kNH4j

where y reflects the inhibition of nitrate or nitrite uptake (S9). Growth rate is enhanced when
utilizing only ammonia, or ammonia and nitrite:

o=v+(1=v)NOI™ + NHI™)/ Nim) (S9)

where NO,"™ and NH,™ represent the second and third terms on the right of Eq. S8. A
phytoplankton type utilizing only nitrate thus has growth rate reduced by a factor v relative to one
using no nitrate (S70).
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Temperature modulation of growth is represented by a non-dimensional factor

yT = %( AT ) (S10)
1

which sets a temperature range over which each phytoplankton type can grow efficiently (Fig.
S1A), and there is a general decrease in growth efficiency with temperature (S77). Coefficients 7,
and 7, normalize the maximum value, while 4, B, T,, and C regulate the form of the sensitivity
envelope.

We incorporate a very simple radiative transfer model (S4) which captures self-shading but does
not resolve spectral bands. The light sensitivity of growth rate is parameterized using the function
(S12):

y = FL(I _ ke ) okl (S11)

where /(z) is the local, vertical flux of photosynthetically active radiation, PAR, and

F — kPAR + kinhib exp[_ kinhib ln[ kinhib J]
" kPAR kPAR kPAR + kinhib

is chosen to normalize the maximum value of 71{ to 1 (Fig. S1B). The parameter £k, defines the

increase of growth rate with light at low levels of irradiation while k;,;, regulates the rapidity of
the decline of growth efficiency at high PAR, or photo-inhibition (S72). This highly idealized
parameterization of light sensitivity captures variations in optimal light intensity, and their
ecological implications, but does not explicitly account for photo-acclimation, differences in
accessory pigments and other factors which might lead to variability in the maximum light

dependent growth factor. We note that, while the function }/; is normalized to a maximum value

of 1 for all phytoplankton types, large size-class phytoplankton are given a higher maximum
intrinsic growth rate, ;.

We impose fixed elemental ratios for each phytoplankton type, R, though these may vary
between types (e.g. some require silica while others do not). To restrict the niche dimension and
computational expense of this initial study, we have imposed an average, Redfieldian N:P
stoichiometry of 16:1 for all phytoplankton types. We note that in nature elemental ratios are
flexible and Prochlorococcus, for example, can significantly exceed this value (S73). Formulating
the model with dynamic nutrient quotas would capture flexible stoichiometry and is more
physiologically appropriate (S74,515) but also would significantly increase the number of three-
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dimensional arrays required to describe each phytoplankton type, dramatically increasing the
computational expense. Hence we have not used this approach in this initial illustration.

S1.2 Assignment of Physiological Functionality and Growth Rate Sensitivities.

At the heart of this modeling strategy is the self-organization of a stochastically generated
phytoplankton community. The physiological functionality and sensitivity of growth to
temperature, light and ambient nutrient abundance for each modeled phytoplankton type is
governed by several true/false parameters, the values of which are based on a virtual “coin-toss”
at the initialization of each phytoplankton type. These determine the size class of each
phytoplankton type (“large” or “small’’), whether the organism can assimilate nitrate, whether the
organism can assimilate nitrite, and whether the organism requires silicic acid. Parameter values
which regulate the effect of temperature, light and nutrient availability on growth, are then
assigned stochastically. 7,, which controls the optimum temperature for growth, and Kp¢,, the
phosphate half-saturation coefficient (to which other half-saturations are indexed by the fixed
elemental ratios), are drawn from prescribed ranges using a random number generator. Values for
kypar and ki, are also randomly chosen, drawn from prescribed normal distributions. Some simple
allometric trade-offs are imposed (Fig. S1): Phytoplankton in the large size class are distinguished
by higher intrinsic maximum growth rates and faster sinking speeds (S76). They also draw
parameter values from distributions with higher nutrient half-saturations (assuming they are less
efficient at acquiring nutrients, S77) and are assumed to be high-light adapted due to packaging
effects (S18, S19). These trade-offs are implemented by randomly selecting parameter values
from different (though overlapping) distributions for large and small phytoplankton.

We note that, since the values of the governing coefficients are initialized stochastically from
given distributions rather than prescribed specifically for each phytoplankton functional type, the
total number of externally prescribed parameters in this approach (Table S1) is the same whether
10 or 10,000 phytoplankton types are initialized. The diversity of the “successful” population, and
the parameter values that govern those organisms, are self-selected during the initial adjustment
of the ecosystem model.

S1.3 Grazing, Mortality, Remineralization and Biogeochemical Cycles.

Parameterizations of grazing and other forms of heterotrophy are simplified in this study, which
focuses on complexity and selection in the photo-autotrophs. None of the parameters regulating
grazing and remineralization processes are stochastic in the simulations presented here. We
prescribe a simple grazer community with two size classes. Large zooplankton preferentially
graze (gpus) on large phytoplankton, but can graze on small phytoplankton (gg..) and visa versa
for small zooplankton. A half-saturation coefficient (K*) regulates grazing efficiency at high prey
concentrations. Excretion and non-grazing mortality are represented as linear loss terms for both
phytoplankton and grazers, with coefficients m” and m” respectively. This simplified, low
diversity grazer community is chosen to facilitate a computationally and intellectually tractable
study in this initial illustration. Future studies should examine, for example, a greater diversity of
grazers with a variety of stochastically appointed feeding strategies broadening the general
strategy to include the next trophic level.

The term S; (Eq. S1) represents the source of inorganic nutrient due to the remineralization of
organic forms as well as external sources and non-biological transformations (54,517).
Heterotrophic microbes are not explicitly represented and the remineralization of dissolved and
particulate organic detritus pools is treated as a simple linear decay with respective prescribed
timescales 1/rpoy; and 1/rpoy; (S4). Spomi (Eq. S4) and Spow: (Eq. S5) are the sources of particulate
and dissolved organic detritus arising from mortality and excretion of all phytoplankton types and
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grazers (in Eq. S2 and S3), closing the nutrient budgets. Here we simply define a fixed fraction
(foom) of mortality and excretion to pass into each organic detritus pool, assuming that large
phytoplankton and zooplankton contribute a larger fraction of their detritus to the POM; pool
than do the small phytoplankton. All silica is assumed to go to a POM pool, there is no dissolved
organic silica.

The remineralization of organic phosphorus and iron produce phosphate and dissolved iron
respectively, while the remineralization of organic nitrogen is assumed to produce ammonia
which may then be nitrified to nitrite and, subsequently, nitrate. The microbial process of
nitrification is also treated simply as first order reactions with fixed rate coefficients ({noz, {nos)
resulting in qualitatively reasonable distributions of the nitrogen species. Due to the relatively
short timescale of the integrations and to restrict the complexity of this initial study we do not
represent diazotrophy. Simplified one dimensional studies indicate that enabling diazotrophy as a
possible functionality for the modeled phytoplankton types enhances the availability of more
reduced forms of nitrogen in the subtropical regions resulting in an increase the abundance of
Prochlorococcus analogs.

Iron chemistry in seawater is parameterized (S20) with a complexation to an organic ligand
(binding strength, Br.) and scavenging to falling particles (rate, ;). Dust (S27) deposited in the
surface (solubility, ay) is a source of iron.

SUPPORTING TEXT
S2. Supplementary Model Results.

An ensemble of model integrations was performed, each with a different randomization of
physiological characteristics but identical initialization and physical environment. 78
phytoplankton types were initialized in each integration: Experimentation suggested that the
modeled community structure would be less robust with fewer than 30, and practical
computational considerations placed an upper limit at 78. Computational cost also limited the
ensemble to only 10 members. Fig. S2 shows the annual mean concentration, at year 10, of
phosphorus in biomass of the 78 phytoplankton from a single ensemble member. All ensemble
members exhibit a similar set of occupied habitats which are collectively reminiscent of the
previously proposed biogeographical provinces (S22). All ensemble members produce very
similar total primary production and nutrient fields (shown for one member in Fig. S3), and these
compare favorably to observations. The similarity in the total primary production reflects the
significant regulation of physical nutrient supply and light on gyre and basin scales.

The general biogeography of the model (depicted for a single ensemble member in Fig. 1B and
Fig. S2) is robust between ensemble members. While various categorizations of “types” into
functional groups might be considered, the classification here (Fig. 1B) reflects groupings of
general interest and is tailored to reflect our particular interest in Prochlorococcus. .

In general, the habitats of the emergent Prochlorococcus-analogs bear some qualitative
resemblance to those observed but are much more sharply defined (Fig. 2, Fig. S4). Indeed, very
low background abundances and sharply defined habitats of all the abundant, modeled
phytoplankton types suggest that the model ecosystem is closer to complete competitive
exclusion than is the real world (S23). This may reflect the relatively small number of
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physiological specializations (niche dimensions) in the model, the comparatively smooth, coarse
resolution, physical environment (S24) or the low diversity of predatorial strategies (523).

Though each of the ten members of the ensemble of solutions are initialized with different
randomization of the characteristics of the phytoplankton population, the emergent community
structures and biogeography are relatively robust. For example, in each solution the four most
abundant, emergent Prochlorococcus-analogs are relatively consistent (Fig. S3): the most
abundant is typically of m-el classification and the second most abundant typically m-e2, with m-
e3 type analogs at lower abundances. Although our model does not exhibit a significant deep (low
light) biomass of Prochlorococcus-analogs (Fig. S4), there is a deep biomass maximum at the
nutricline in the equatorial regions, comprised of “other small phytoplankton” types. Some of the
phytoplankton types which make up this deep maximum might represent nitrate consuming
Prochlorococcus strains which have been suggested from field observations (S25) but not yet
cultured. Such organisms, though present in the model, are not classified as Prochlorococcus in
our rather crude definition of functional groups.
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Fig. S1 Functional forms of the sensitivity of phytoplankton growth to (A) temperature, (B) flux
of photosynthetically active radiation, and (C) ambient phosphate concentration expressed as
normalized, non-dimensional growth factors, y;, which modulate the maximum intrinsic growth
rate. The collection of curves in each panel is chosen to illustrate the ranges from initialized
sensitivities are selected. Simple allometric trade-offs are indicated by the different ranges for the
small phytoplankton class (blue curves) and large phytoplankton class (red curves). The highly
idealized parameterization of light sensitivity captures variations in optimal light intensity but
does not explicitly represent variability in the maximum light dependent growth factor. However,
larger phytoplankton are given a higher intrinsic growth rate, y;. Optimal temperature and light
intensity for growth, T, and 1, are illustrated for a single phytoplankton type (dashed black
curves).
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Fig S3: Comparison of one ensemble member annual (0-50m) fields (right column) to observations (left column). (A,B) Primary Production
(gC/m’/y); (C,D) Phosphate (uM P); (E,F) Nitrate (uM N); (G,H) Silicic Acid (uM Si). Observational euphotic layer primary production was
calculated for 2005 using the Vertically Generalized Productivity Model (S26) and SeaWiFS-derived Chl. Data for this panel was downloaded
from http://science.oregonstate.edu/ocean.productivity. Observational nutrients are from climatology of in situ data (S3) and are averaged over 0-
50m.
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Fig. S4. The four most abundant Prochlorococcus-analogs (log(cells mi™*)) for the month of September along the AMT13 track from four of the
ten member ensemble of integrations. “Type” number indicates the numerical designation of each of the 78 stochastically initialized phytoplankton
types in each ensemble member. Analogs are classified into model-ecotypes as described in the main text. Model biomass is converted to cell
density assuming a nominal phosphorus quota of 1 fg cell” for Prochlorococcus (13). Black contours are isotherms.
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Table S1: Parameters of the ecosystem model

Parameter Symbol | Fixed Value Range Units
Maximum u Small: 1.4 d’
phytoplankton Large: 2.2
growth rate
Phytoplankton m’ Small: 0.1 d’
mortality rate Large: 0.1
PAR saturation Kat Small: mean 0.012, std 0.01 (uEin m” sy
coefficient Large: mean 0.012, std 0.003
PAR inhibition Kinniv Small: mean 6*107, std 1*10™ (uEin m’ s'l)'l
coefficient Large: mean 1*107, std 5*107
Temperature curve | 4 1.04
coefficient
Temperature T, -2 t0 30 °C
optimum
coefficient
Temperature range | B Small: 1*¥107 °oc!
coefficient Large: 3*10™
Temperature decay | C 4
coefficient
Temperature T, T2 0.33,0.3
normalization
coefficients
Phosphate half Kpos Small: 1.35%107 to 3.5%107 UM P
saturation Large: 3.5%107 to 5.5%107
Nitrate half Kyos Small: 0.24 to 0.56 uM N
saturation Large: 0.56 to 0.88
Nitrite half Kyo> Small: 0.16 to 0.42 uM N
saturation Large: 0.42 to 0.66
Ammonium half K Small: 4.3*107 to 0.112 uM N
saturation Large: 0.112 to to 0.132
Silicic acid half K Non-diatom: 0 uM Si
saturation Diatom: 2
Iron half saturation | K, Small: 1.7%10” to 4.4*10° uM Fe
Large: 4.4*10” to 6.9%10”

Phytoplankton Rg.p 16
elemental ratios Ryp 16

Reer 1.25*10°
Ammonia/nitrite W 4.6 (uM N)™!
inhibition
Nitrate v 0.1
consumption cost
Phytoplankton w’ Small: 0 md’
sinking rate Large: 0.5
Phytoplankton Joom Small: 0.2
partitioning Large: 0.5
DOM/POM

11




Zooplankton fast Shast 0.2 d’
grazing rate
Zooplankton slow Lilow 0.033 d?!
grazing rate
Zooplankton m* 0.033 d’
mortality rate
Phytoplankton half | K” 0.1 uM P
saturation
DOM Fpop 2.8%107 d’
remineralization DoN 2.8%107
rate ¥ DOFe 2.8*10°
POM Fpop 0.033 d’
remineralization 7PON 0.033
rate YPOFe 0.033

rposi 3.3*10°
POM sinking rate WpoM 10 md’
NH, to NO, oz 0.1 d’
oxidation rate
NO, to NO; Cnos 0.033 d’
oxidation rate
Iron solubility OFe 0.04
constant
Iron scavenging CFe 1.1¥10” d’
rate
Ligand binding Bre 2%10° (uM Fe)™!
strength
PAR attenuation k, 0.04 m’
coefficient
PAR attenuation Ky 0.64 (uM P)' m™
coefficient from
phytoplankton

12
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