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1 .  INTRODUCTION 

1.1  Turbulent and Not-So-Turbulent Geofluids 

The complexity of geophysical flows, from scales of planetary radius down 
to scales of molecular diffusion, has long posed a fascinating and frustrat­
ing challenge to fluid dynamicists. It is not only a tantalizing theo­
retical question but also one of practical importance. Despite determined 
study, understanding of the oceans and atmosphere and, especially, the pre­
diction of responses to our trespasses upon these environments remain 
dangerously suspect. 

Much of the dynamical difficulty arises from nonlinear coupling across 
many scales of motion. Occasionally one refers to the "turbulent atmo­
sphere" or the "turbulent ocean." Just as often it is remarked that these 
systems are not altogether "turbulent" if that adjective is taken to connote a 
condition that is highly chaotic, dissipative, diffusive, or possessed of 
whatever other attributes that one may assign to "turbulence." Examples of 
wavelike phenomena abound but often are partly obscured by nonlinear 
interactions. Persistent, coherent, finite-amplitude flow features also are 
observed. 

Moreover there is the disturbingly nontrivial problem of distinguishing 
mean and fluctuating fields. Geophysical flows often are characterized by 
spectra, both in frequency and in wave number, that are continuous and 
"red" in character. Then the definition of a mean field becomes more or less 
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92 HOLLOWAY 

arbitrary. This problem is compounded when we ask the dynamical 
question, how are mean and fluctuating fields interrelated? 

1.2 Approaches 

Faced with this complexity, what is to be done? On the one hand, ever 
bigger and faster computers will provide ever more power to numerical 
hydrodynamical approaches in which a wide range of scales of motion are 
explicitly resolved. The computer approach has its weaknesses : It raises 
both the inevitable question of how much does any solution depend upon 
numerical method and how much upon physics, and also the need to 
organize the output of such numerical empiricism according to some 
conceptual framework. 

On the other hand, traditional theoretical approaches have tended to fall 
into two areas. Specific flow mechanisms, say a kind of wave propagation or 
an instability, might be isolated and solved analytically. The question then 
is how to obtain the collective result of many such mechanisms acting in a 
common environment; it is a "forest-and-trees" problem. The second 
theoretical approach is exemplified by turbulence theories such as those 
that rest upon dimensional analyses, similarity assumptions, or heuristics. 
Such theories yield statistical information on collective behavior. However, 
when the underlying mechanisms become more elaborate (e.g. including 
both wave propagation and turbulent advection), then the problem 
becomes ambiguous to dimensional analysis, may not support similarity 
assumptions, and can be quite confusing to heuristic approaches. 

This review concerns a third kind of theoretical approach. We consider 
the exercise of ideas from equilibrium and disequilibrium statistical 
mechanics as applied to macroscale geophysical flows. The literature 
discussing these applications to geophysical flows is relatively recent, 
mostly going back less than a decade. Earlier developments are due to 
Onsager (1949), Hopf (1952), and Lee (1952). We provide here an overview 
of the methods of equilibrium and disequilibrium statistical mechanics 
(Sections 3 and 4). These sections are brief, conceptual, and nonspecific. The 
major part of this review is then the discussion in Section 5 of specific 
examples illustrating a wide variety of geophysical applications. The reader 
who finds the conceptual overview esoteric may be surprised to see the 
detailed quantitative calculations that result from applications. A main 
point to be demonstrated is that these methods offer a practicable approach 
to problems that otherwise perforce fall into the domains of numerical 
empiricism or of heuristic description. Moreover, one obtains directly the 
relation of statistical quantities to other statistics, which also reveals an 
analytical dependence upon external parameters. 

It is to be emphasized that this article is organized along lines of 
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STATISTICAL GEOFLUID MECHANICS 93 

methodology ; no effort is made to provide a systematic treatment of the 
phenomenology of geofluids, for which a number of reviews and textbooks 
are available. 

2. GEOFLUID EVOLUTION IN PROBABILITY 

Consider a typical geofluids problem. The problem will often be expressed 
in the form of a nonlinear partial differential equation with boundary 
conditions, symbolically 

!JH� = 0 on C, (1) 

where fe, fl, and !JH are operators on a vector field e. Here fe and !JH are 
taken to be linear, while fl is a bilinear operator. Components of � might 
include velocity components, density, pressure, elevation, concentrations, 
or whatever else is of interest. The vector It represents external forcing. 
Nonlinearity in (1) is only of second degree, such as is often introduced by 
advection. Boundary conditions are given as homogeneous for simplicity. 
More general cases than (1) may be considered; here we assume only that 
(1) is illustrative of many problems. 

We seek to represent the solution �(x, t) on a basis set as 

M 
�(x, t) = L Yi(t)<Pi(X), (2) 

1=1 

where the <Pi are chosen in some convenient, orthogonal way, perhaps as 
eigenfunctions of!l' satisfying !JH (although this need not be the case). An 
important remark is that (2) has been truncated at some large but finite M. 
If the dimension of each amplitude vector Yi is R, then the total number of 
degrees of freedom is RM. 

The truncation in (2) raises difficult issues. An argument that is often used 
is that variations across short length scales, which tend to be less energetic 
than larger scale motions, might be ignored or else "averaged over" so as to 
be represented by "eddy diffusivity," for example. However, such heuristic 
"averaging," when performed at synoptic or mesoscales of atmospheres and 
oceans, has won notoriety for generating wrong results. In principle we 
might suppose M so large as to express scales of motion down to the scales 
of molecular diffusivity. 

Substituting (2) into (1) and enforcing the truncation at M produces 

M MM 

YI+ L LijYj+LLNijkYjYk= ei, 
j= 1 j k 

(3) 
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94 HOLLOWAY 

where Yi is the time rate of change of amplitude vector Yi' We may 
conceptualize (3) as describing the motion of a point Y tracing a trajectory 
in a phase space of very large dimension RM spanned by coordinates {Yi}' 

There are two attitudes that we may adopt toward (3). One approach is to 
pick YeO) and solve for Yet). Unless expressions for L, N, and e are especially 
simple, a solution for yet) requires resorting to numerical integration. 
However, both a practical and a theoretical difficulty arise. The practical 
difficulty is that for large M the computer demand can become excessive. 
Moreover, in the case of weather forecasting or, especially, in the case of 
ocean-circulation calculation, a condition for sufficiently large M is not 
known. The resulting Y(t) may be grossly unfaithful to a "true" Y according 
to (1). 

The theoretical difficulty is a greater problem. Even if yet) as calculated is 
close to "true" Y, Equation (1) may still have the property that two 
solutions commencing from slightly different initial conditions, but subject 
to the same PA and Iff, will move off along rapidly diverging trajectories, 
becoming as dissimilar from each other as two randomly selected Y. Since 
initial conditions for real geofluids are hardly ever known precisely in all 
details, the different initial conditions may be practically indistinguishable, 
whereas the ensuing evolution produces very distinctive conditions. Similar 
sources of uncertainty may enter through PA and Iff. Under such circum­
stances any particular solution for yet) becomes useless after some "pre­
dictability time." 

Given that exact trajectories of geofluids are neither practically nor even 
theoretically available, it is appropriate to pose such problems differently. 
Consider instead a time-evolving probability density p(Y, t) for finding a 
geofluid in the neighborhood of Y at time t. One may think of p as a number 
density in a large ensemble of realizations. Then "conservation of 
trajectories" provides the evolution equation for p: 

8 . 
8tP+Vy'(PY) = 0, (4) 

where Vy is the RM-dimensional gradient operator on the phase space and 
Y is the rate of displacement, or "phase-space velocity," of a geofluid at Y. 

In some cases the equation of motion may satisfy 

VY'Y = 0, 

whence (4) becomes 

[) . -P+Y'V p=O 
at y ,  

(5) 

(6) 

so that p "flows" as an RM-dimensional incompressible fluid in the phase 
space. If the representation (2) is such that the Yi are canonical coordinates, 
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STATISTICAL GEOFLUID MECHANICS 95 

then (5) is the statement of Hamilton's equations. Assurance of this property 
may motivate a development in Hamiltonian dynamics; in many cases 
though one may prefer to test (5) directly under a representation chosen for 
some other convenience. Indeed for most cases, including those with forcing 
and dissipation, (5) and (6) will not hold. When (6) holds, the system is said 
to have the Liouville property. 

Now we might contemplate assigning an initial p(Y, 0) and then solving 
(4) for p(Y, t), from which we could evaluate the expectation of yet) or 
moments thereof. However, for any realistically complicated expression for 
Y and any RM larger than a few, direct solution for p(Y, t) is usually 
infeasible. Moreover, beyond such practical difficulties, there is a theoret­
ical reason why p(Y, t) might not be sought. 

Recollect that we introduced p in part on account of the inability to 
observe Y precisely. Thus p(Y, 0) would be distributed over some phase 
volume that represents the minimum volume element within which we 
might discriminate different Y. Although p(Y, 0) occupies such a volume, 
subsequent straining-shearing-stirring of p by Y following (4) will produce 
smaller phase-space scales in p. To be consistent, we must identify such 
small scales in p to be unobservable with regard to, say, calculations of 
expectations of Y. Therefore we consider instead a probability density p, 
which represents an averaging of p over the smallest observable phase 
volume. 

Here we subscribe to the classical concept of "coarse graining" (cf. 
Tolman 1950). It can be seen that pwill evolve differently from p. Consider, 
for example, an evolution of p satisfying the Liouville property. If p is 
initially highly concentrated, it must remain so while, perhaps, being drawn 
out into ever thinner filaments. Individual filaments become too thin to be 
resolved by any observing system, and hence pperforce must average p over 
the minimum observable phase volume. Such averaging represents an 
irretrievable loss of information and introduces time irreversibility into a 
dynamical system that otherwise might satisfy time-reversal symmetry. 
Geophysical fluid dynamics (GFD) researchers are reminded that plane­
tary rotation needs also to be reversed in time-reversal arguments. 
Although p remains concentrated, it often appears to dilute, thereby filling a 
larger phase volume. The reader may be amused that this description of 
probability evolving in phase space is so like an initially concentrated 
pollutant dispersing in some geofluid system [see, for example, Haidvogel 
& Keffer ( 1984) or Holloway & Kristmannsson (1984)]. 

3. EQUILIBRIUM STATISTICAL MECHANICS 

This section concerns the exercise of the "maximum-entropy principle," or 
(effectively) the Second Law of Thermodynamics, with regard to macro-
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96 HOLLOWAY 

scale geophysical flows. We are not concerned here with usual thermo­
dynamics such as might describe an equation of state of seawater. Indeed, 
we can avoid some areas of confusion by proceeding more from the view 
of information theory (Khinchin 1957, Jaynes 1957, Katz 1967, Levine & 
Tribus 1979) than from conventional statistical mechanics. 

The central concept is the system entropy, which we regard as a measure 
of the uncertainty, or "missing information," in the inability to observe or 
forecast Y precisely. This entropy may be distinguished from the thermo­
dynamic specific entropy of the fluid, although it is noteworthy, follow­
ing Jaynes (1957), that the dynamical account developed here may be 
extended to include the thermodynamic entropy. However, we do not 
include thermodynamic entropy except indirectly as manifested, for 
example, through viscous heating. 

Let us recall the concept of entropy as developed by Shannon (Shannon 
& Weaver 1949) and Wiener (1948). Suppose a random process A may 
select one of n discrete states with probability Pi for the ith state. We seek a 
function H that measures the uncertainty of outcome of A, subject to two 
conditions: 

1. The greatest uncertainty is when all outcomes are equally probable. 
Thus H is to be a maximum for Pi = lin. 

2. If a second random process B is independent of A, then a measure of 
uncertainty of joint outcome is the sum of the separate uncertainties. 
That is, HAB = HA +HB· 
Given these conditions, Shannon showed that, uniquely within a 

multiplicative constant, 

H = -L: Pi In Pi· (7) 

Some corollaries of (7) are noteworthy. If the outcome is certain, say Pi 
= c5ik, then H takes a minimum value of zero. (We evaluate Pi In Pi = 0 
when Pi = 0.) If processes A and B are partially dependent, then HAB 
behaves reasonably, including the case when B is an identical copy of A 
(for which HAB = HA). 

For processes yielding continuously distributed outcomes, e.g. the 
coordinate values of Y in phase space, (7) becomes 

H = -f dY p(Y) In p(Y ), (8) 

where the integration is over all phase space. It could be assumed that an 
undetermined measure m(Y) multiplies the integrand in (8); however, 
Salmon (1982b,c) argues that preservation of the Liouville property, apart 
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STATISTICAL GEOFLUID MECHANICS 97 

from forcing and dissipation, requires that m be independent of Y. Also to 
be noted in (8), we consider the observable (in principle) p rather than p; 
thus H is the experimental entropy (Jaynes 1957). 

Given an isolated system in which forcing and dissipation are excluded, 
the Second Law reads 

(9) 

where we consider continuous evolution in time and it is understood that (9) 
holds as an ensemble average. It is remarkable that the Second Law enters 
axiomatically, defining an "arrow of time," unanticipated by the other laws 
of dynamics. The central concept of equilibrium statistical mechanics 
follows directly : p(Y, t) is expected to approach a condition giving a 
maximum value of H. 

Evaluation of p that maximizes H is performed under certain constraints. 
One constraint is the normalization condition 

f dY P = 1 .  (10) 

For most systems, some representation of total energy E(Y) will be 
conserved. Thus E(Y) = Eo as given by initial conditions, and we might 
constrain p to satisfy 

<E) == f dY pE = Eo- (1 1) 

Other invariants, such as total mass or angular momentum, may provide 
further constraints. Of particular GFD importance is the conservation of 
potential vorticity following fluid elements. Defining potential enstrophy 
Q(Y) as the square of potential vorticity integrated over the flow domain, 
we often have the constraint that Q(Y) = Qo. 

The manner in which constraints such as Eo and Qo are imposed admits 
some possible choices. If we strictly require E(Y) = Eo and Q(Y) = Qo, then 
the p yielding maximum entropy is 

P(Y) = c t5(E(Y)-Eo) t5(Q(Y)-Qo), (12) 

the "microcanonical ensemble." However, calculations of moments of Y 
(for example, the energy spectrum) can be difficult. Equilibrium spectra for 
two-dimensional turbulence have been calculated from (12) by Basdevant 
& Sadourny (1975), revealing the complexity of such calculations. 

An alternative to (12) that proves easier to manipulate is the "macro­
canonical ensemble." For positive-definite invariants such as E or Q, 
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98 HOLLOWAY 

exercise of the method of Lagrange multipliers to maximize H subject to 
(10), (1 1), and a like condition on Q yields 

P(Y) = C exp [ -ct1E(Y)-ct2Q(Y)], (13) 

where C is a normalization, and ctl and ctz are Lagrange multipliers. 
Under (13) we note that each trajectory is not required to lie on the 

surface E = Eo, Q = Qo. This may be a point of consternation, since 
(dynamically) each trajectory preserves E and Q. The algebraic forms of(12) 
and (13) appear to be quite different, and so a choice of one or the other 
should have significant consequences. However, for most of the questions 
one might ask regarding most GFD systems, differences between (12) and 
(13) prove insignificant following a calculation given by Khinchin (1957) 
and extended by Salmon et al. (1976; hereafter SHH). Usually we are 
concerned only with marginal probability, often for a single mode as, say, 
Pbi)' Asymptotic methods for integration over (12) then yield 

(14) 

where Ei and Qi are single-mode contributions to E and Q. Validity of (14) 
requires that Ei and Qi be small compared with E and Q for all i. Since 
(14) would result also from (13), differences between (12) and (13) are 
not important as regards Pi' If we are interested in calculating expectations 
such as (E) or (Q), then we are only concerned with (14). 

The interesting results to be obtained from equilibrium statistical 
mechanics methods depend upon specific expressions for E(y), Q(Y), or 
other constraints. There are surprises, such as cases when predictable, 
steady, large-scale flow rises from chaotic initial conditions while expres­
sing the tendency to increase entropy. These and other cases are described 
in Section 5. 

For now we recognize two deficiencies of equilibrium statistical mech­
anics. Firstly, while a state of maximum H can be described, no information 
is given concerning the rapidity with which a system approaches maximum 
H. Secondly, and more fundamentally, the atmosphere and oceans and the 
life systems that inhabit these environments are not isolated, closed 
systems. Rather, these systems receive and release energy, exchanging 
information with a larger universe. In particular, earth-atmosphere-ocean 
life systems receive high-temperature (low-entropy) solar radiation while 
collectively reradiating low-temperature (high-entropy) earth radiation. It 
is thus natural to seek a statistical geofluid mechanics that makes explicit 
the generation of entropy. For a quantitative treatment of systems that are 
maintained far from maximum H through the roles of forcing and 
dissipation, we turn to the less well-developed field of disequilibrium 
statistical mechanics. 
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4. DISEQUILIBRIUM STATISTICAL MECHANICS 

Among various methods that might come under the heading "dis­
equilibrium statistical mechanics," only moment-hierarchy closure 
methods have found significant geophysical application to date. We 
limit our discussion here to such moment closures. The relation of these 
moment closures to entropy generation is explicit and consistent with 
the Second Law ; cf. (9). However, alternatives are certainly possible-for 
example, methods based upon the direct approach toward solving the 
Liouville equation (4) (cf. the exploration by Thompson 1983). 

To retain a tractable problem, we limit our interest to describing the 
evolution of second-order correlations (YiYj). Calculations prove practic­
able in the homogeneous environment for which (YiYj) is diagonal in (i,j). 
The limitation to homogeneity is severe. However, statistics (YiYi) contain 
much geophysically relevant information, including energy spectra, tracer 
transports, and buoyancy flux. 

The connection between second-order correlations and entropy has been 
developed by Carnevale et al. (1981). Defining H 2 as the maximum of H 
from (8) under prescribed (YiYj), they found that 

or, if (YiYj) is diagonal in (i,j), 

H2 = L in det (YiYi)· 
i 

(15a) 

(15b) 

In (ISb), the determinant is of the component matrix (yy) in mode i. For 
many applications, this may be the total energy Ei in mode i. Then 

H2 = L in (Ei), (ISc) 
i 

a form that has been used by Montgomery (1976). 
We seek to develop equations for the evolution of correlations (yy). 

Previous developments in the hydrodynamic context have addressed 
separately problems of weakly nonlinear wave-wave interaction 
(Hasselmann 1962, 1967, Benney & Saffman 1966, Benney & Newell 1969) 
or fully developed turbulence [Kraichnan 1959, Edwards 1964, Herring 
1965, and works reviewed by Leslie (1973) and Orszag (1977)]. For many 
GFD problems a separation between waves and turbulence is untenable 
and, moreover, may prove unnecessarily frustrating. At the level of a 
conceptual overview, it is easy to adopt a unified approach to waves and 
turbulence. Some detailed results are made more apparent in Section 5. 

There are various methods for developing moment hierarchy closures. 
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100 HOLLOWAY 

Here we sketch one of the simpler schemes, referred to as the "eddy­
damped quasi-normal Markovian" (EDQNM) method, which may be 
viewed as an abridgment of more formal systems such as the "direct­
interaction approximation" (Kraichnan 1959). In abbreviated notation, 
recall Equation (3) : 

o 
ot y+Ly+Nyy = e. (16) 

Let us here take (y) = 0, hence omitting mean-motion fields. In some of 
the illustrations to follow, this limitation may be lifted or, in other cases, 
relaxed somewhat. We also return to this point in Section 6. 

From (16), it follows that 

o 
ot (yy) +L(yy) +N(yyy) = (ey), (17) 

where Land N are considered to be deterministic and e is stochastic. Even if 
we suppose that < ey) is given, (17) is not suitable for calculation, since 
(yyy) is not determined. 

Continuing from (16), we have 

o 
ot (yyy) +L (yyy) +N(yyyy) = (eyy). (18) 

Throughout this review, arguments ofy are considered to be simultaneous; 
that is, we treat only single time statistics. Apart from (eyy), a solution for 
(yyy) is still not possible on account of (yyyy). Continuing to write 
equations for successively higher moments only leads to an unclosed 
hierarchy-hence the "closure problem." 

Closure is usually effected by considering fourth-order correlations, 
which (for (y) = 0) can be expressed as 

(yyyy) = (yy) (yy) + (yyyy)'. (19) 

If the different modes of motion were statistically independent in their 
evolution, then the residual or fourth cumulant (yyyy)' would vanish. 

One means of closure is called fourth-cumulant discard, which involves 
setting (yyyy)' = 0 in (19). Weak-wave interaction theory can be achieved 
as a synthesis of fourth-cumulant discard together with a two-time-scale 
expansion such that, if L describes purely free wave propagation and e = 0, 
then for t -+ 00, 

(yyy) = �L -IN(yy) (yy). (20) 
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In (20), L- 1  has singularities on  a resonance manifold where the natural 
frequencies of the three modes sum identically to zero. For large t, L- 1 is 
dominated by such singularities and can be approximated by 

(21) 

where W1, W2, and W3 are the three natural frequencies. 
Turbulence theory has followed other routes, since if L is given only by 

viscous dissipation, discard of (yyyy)' in (19) is known to lead to 
unrealizable solutions of( 1 7) and ( 18) [yielding, for example, predictions of 
negative energy spectra (Ogura 1963)]. One approach is to attempt to 
replace N (yyyy)' by a term J.L(YYY), where J.L is a third-order matrix of 
undetermined coefficients. If the coefficients in J.L are positive, the effect is to 
induce relaxation of (yyy) toward zero. An assumption of quasi­
stationarity in time is made such that a nearly steady solution to (18), 

(yyy) = -(L+J.L)-1N(yy) (yy), (22) 

is achieved on a time scale shorter than the slow evolution of (yy) 
according to (17). In (22) we have also ignored (eyy ), as is customary but 
perhaps not always justified. Substituting (22) into (17) yields the desired 
evolution equation for <yy): 

a 
at 

(yy)+L<yy)-N(L+J.L)-1N(yy) (yy) = (ey). (23) 

Differences among EDQNM treatments arise from different methods of 
determining J.L, which is assumed to depend upon the (yy). Some of these 
differences are described in Section 5. 

Two noteworthy features of (23) are the following: First, if nonlinear 
interaction is strongly dominant relative to, say, wave propagation, then J.l 
[which is presumed to increase with increasing energy E (y)] will dominate 
L + J.L. Thus we will have (L + J.L) -1 � J.L -1, which is the form that occurs in 
EDQNM turbulence theories. At the other limit, when nonlinearity is very 
weak relative to wave propagation, L dominates and L 1 is approximated 
by the resonant interaction condition (21). Thus (23) provides a smooth 
bridge from waves to turbulence (cf. Holloway 1979). 

The second important feature of (23) is a property proven by 
Montgomery (1976) and Carnevale et al. (1981). The effect of the term 
-N(L +J.L)-lN(yy) (yy) is to yield dH2/dt � 0, where H2 is from (15), 
with dH 2/dt = 0 only at equilibrium as in (13). Dissipation and forcing, 
which can be represented in Land e, may either increase or decrease H 2 ; 
they represent external couplings in open systems. 
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5. ILLUSTRATIONS 

Whereas the foregoing discussions have been broad and conceptual, the 
remainder of this paper consists of a gallery of specific illustrations. The 
intent is to explore a diversity of GFD applications and to demonstrate 
the quantitative as well as qualitative utility of the resulting calculations. 

A number of the following geophysical applications derive from an 
equation of motion appropriate to quasi-geostrophic, multiple-layer flow 
that we here record as 

(24) 

where qi is the potential vorticity in layer i; 'l'i is the stream-function 
representation of the nondivergent, quasi-horizontal velocity field in layer 
i; J is the Jacobian determinant with respect to horizontal coordinates; �i 
is a dissipation operator acting on '1';; and cff; is any external torque, such as 
wind-stress curl, acting upon the uppermost layer in an ocean model. The 
potential vorticity qi includes relative vorticity 

(25) 

as well as planetary vorticity and any potential stretching terms due to 
layer-thickness fluctuations or bottom topography. Specific definitions of qi 
are given where needed. 

5.1 Two-Dimensional Turbulence on a Plane and on a 
Sphere 

This example has been thoroughly reviewed previously, especially by 
Kraichnan & Montgomery (1980) with interesting comments also by 
Rhines (1979), Salmon (1982b), and McWilliams (1983). Since many of the 
illustrations that follow may be seen as embellishments upon this simplest 
case, we recall briefly the principal results from the equilibrium and 
disequilibrium statistical mechanics of two-dimensional turbulence. 

In planar geometry with either closed or periodic boundaries, invariants 
of the unforced, nondissipative motion include kinetic energy E = !IV'I'12 
and enstrophy Z = ,2 as well as any V = v (O, where v may be any function. 
(Overbars denote integration over the flow demain.) The role of a possible 
V is sometimes a concern. However, the nature of a possible V, other than 
Z, appears not to restrict observable probabilities p(Y). Furthermore, 
spectral truncation destroys the invariance of most V. An interesting 
remark also is made by Thompson (1982), who shows that, subject to 
certain restrictions, conservation of only a few invariants may determine 
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the equation of motion, so that further invariants provide only redundant 
constraints. 

Maximum-entropy solutions for p subject to specification of E and Z 
yield either (12) or (13), the difference being immaterial, since either tends to 
lead to (14) (cf. SHH). If we assume periodic conditions in coordinates x, a 
natural expansion in (2) is 

'I'(x, t) = L 'l'k(t) eib', 
k 

(26) 

where 'l'k is the expansion coefficient at wave vector k. Ensemble-averaged 
modal energy and enstrophy are 

Ek = !k2<'Pk'P -k>, 

Zk = <'k'-k> = k4<'¥k'P -k>' 

The equilibrium marginal probability (14) at k is (IX +IX k2)1/2 
Pk('¥k) = 1 

1t 2 exp (- (1X1 + <X2k2)'I'k '¥ -J, 

from which 

(27a) 

(27b) 

(28) 

(29) 

as obtained by Kraichnan (1967) and verified repeatedly in numerical 
experiments by Fox & Orszag (1973), Carnevale (1982), and Bennett & 
Haidvogel (1983), among others. Moreover, Carnevale (1982) has calcu­
lated the evolution of entropy (15c), showing its rise to the anticipated 
experimental equilibrium value. The evolution of the energy spectrum and 
of the entropy is shown in Figure 1 .  

The equilibrium distribution has been calculated in spherical geometry 
by Frederiksen & Sawford (1980). Expansion (2) becomes 

m n 
(30) 

where A is longitude, Jl is latitude, and r:: are associated Legendre functions. 
The sums on m and n may be truncated according to various schemes. 

If a variable Xmn is defined as 

Xmn = ![(2-Dmo)n(n+ 1Wf2'1'mn> 
then the modal energy and enstrophy are 

Emn = <IXmnI2>, Zmn = n(n+ 1)Emn. 

(31) 

(32) 

In addition to the above invariants, motion on the sphere also conserves 
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'P 01 and I'P 11 1 in the absence of any surface friction or topographic 
roughness. This is a consequence of angular-momentum conservation 
but does not affect the equilibrium distributions for Emn and Zmn. 
Corresponding to (29), we have 

E = 
1/2 

mn <Xl + <X2n(n + 1) 
(33) 

Here it is interesting that the mean rotation of the fluid does not affect the 
equilibrium spectrum (33). A similar outcome is seen in the following 
illustration regarding p-plane motion, where it is found that the value of p 
does not affect the equilibrium statistics. 

k 

-2·5 .------,.------�---___._---""1-

- 2,7 
., 
Q 
>-g. -2'9 
... .... " 

w 

-
3·

' 

-3·30�--�O�·�O�5--��--�=--�O�·20 

Figure 1 Evolution of inviscid two-dimensional turbulence toward absolute equilibrium is 
seen from direct numerical simulation. (Top) Kinetic-energy spectra are shown for the initial 
conditions and at two later times. The equilibrium spectrum is shown dashed. (Bottom) 

Entropy rises quickly to the equilibrium value for an isolated realization (Carnevale 1982). 
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Disequilibrium treatment of two-dimensional turbulence has been ex­
plored mainly for the case of planar geometry. Early, more-or-Iess heuristic 
accounts by Kraichnan (1967) and Batchelor (1969) reveal the dominant 
phenomenology. Kraichnan's account especially' emphasizes the dual­
cascade scenario in which excitation forced in a wave-number band near, 
say, ko decomposes to a uniform spectral fiux of enstrophy toward higher 
wave number together with a uniform spectral flux of energy toward lower 
wave numbers, with the latter process referred to as a "reverse cascade." In 
the asymptotic limit of very wide ranges of available wave number, energy 
transfer tends to vanish on the enstrophy-ftux subrange, while enstrophy 
transfer tends to vanish on the energy-flux subrange. Dimensional argu­
ments anticipate power-law behavior as k-5/3 on the energy-flux subrange 
k < ko and as k-3 on the enstrophy-flux subrange k > ko. Corrections for 
wave-number nonlocal effects may be applied to the k-3 subrange. 

Some support for these accounts was soon obtained from numerical 
experiments by Lilly (1971,  1972) and others. The extent of similarity to 
observed transfer processes in the Earth's atmosphere is discussed by Boer 
& Shepherd (1983). 

Detailed closure-theoretical accounts such as (23) were developed by 
Leith (1971), Orszag (1970, 1977), Kraichnan (1971a,b), and others. 
Evolution of the closure studies, including careful testing against numerical 
experiments, has been examined by Herring et al. (1974) and Poquet et al. 
(1975), with a thorough review given by Kraichnan & Montgomery (1980). 
Closure-theoretical treatment on the sphere is more algebraically tedious 
and has been pursued only to a limited extent (e.g. Legras 1980), with 
numerical experiments having been performed by Tang & Orszag (1978) 
and Basdevant et al. (1981). Here only the briefest mentions have been made 
as a prelude to the extensions from these studies that are reviewed in the 
following sections. 

5.2 Beta-Plane Turbulence 

Rhines (1975, 1977, 1979) obtained insight into this problem for the case of 
fJ-plane flow, periodic in x (east) and y (north), for which the equation of 
motion in one layer is (24) with q = C + fJy. This problem interests us here 
for two reasons : (a) There are striking differences between the equilibrium 
and disequilibrium statistical mechanics, and (b) the problem is a simple 
prototype for waves/turbulence interaction. 

Under periodic boundary conditions, without forcing or dissipation, 
integral invariants are IV'¥12 and (2, where overbars denote integration 
over the periodic domain. Invariants are just as in the case of two­
dimensional turbulence. It is also the case that q2 is conserved, but this 
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proves redundant insofar as (y may be set to zero by statistical homo­
geneity. Thus for f!) = 0 = iff and finite spectral truncation, the flow field 
approaches (29), which is independent of the value of p. In particular, (29) is 
isotropic. This would app ear to contradict numerical experiments by 
Rhines (1975), Williams (1978), and others that reveal a marked propensity 
for the flow field to evolve toward anisotropy-favoring zonal velocity 
components over meridional components. Such anisotropy is also evident 
in the larger scales of atmospheric observations (Boer & Shepherd 1983). 

A seeming discrepancy with regard to anisotropic tendencies is resolved 
by showing that p enters only in the disequilibrium phenomena. A closure­
theoretical treatment by Holloway & Hendershott (1977; hereafter HH) 
explores this waves/turbulence problem. The evolution equation cor­
responding to (23) is 

(:t + 2V k)Zk = � 0kpq[a kpqZpZq-2b kpqZpZk], (34) 
k+p+q=O 

where Z k = < eke - k), ( kis the Fourier coefficient of ( at wavevector k, and V k  
A 

is a function of Ikl resulting from f». Symbol L in (34) and hereafter indicates 
a sum over p and q such that k+p+q = O. 

Expression (L + Ji) -1 in (23) becomes 

f) - Jik + Jip + Jiq 
kpq -(J1k + J1p + J1q)2 +(Wk + wp + Wq)2 ' 

where Wk is given by the Rossby-wave dispersion relation 

Wk = -Pkx/lkI2• 

(35) 

(36) 

Coefficients akpq and bkpq are algebraic factors resulting from contractions of 
type NN in (23). Finally, the particular treatment by HH has 

A 

Jik = V k + g2 L OkpqbkpqZp, (37) 

where 9 is an undetermined empirical factor, and b kPq is another algebraic 
coefficient following Kraichnan (1971a). 

A controversial point arises in this particular treatment by HH that also 
concerns finite-amplitude wave-wave interactions in general. In (35), HH 
used the free-wave frequency (36). This is called the "bare" frequency in the 
terminology of renormalization methods. Whereas nonlinear interaction is 
represented in (35) by J1 (essentially a frequency broadening), it might also 
be assumed that a mean frequency W be systematically shifted from the free­
wave relation (36). This problem is discussed by Kadomtsev (1965) and 
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Holloway (1979), with prescriptions for obtaining a renormalized, or 
"dressed," frequency given by Legras (1980) and Carnevale & Martin 
(1982). The calculations by Legras (1980), carried out in spherical geometry, 
showed that the shift of the "dressed" frequency away from the "bare" 
frequency is not too great for planetary waves and that results from HH 
ought not be significantly disturbed. However, very recent results from 
direct numerical simulations indicate some unexpected surprises. Both in 
planar geometry (D. Ramsden, unpublished) and on the sphere (J. Tribbia, 
unpublished), the simulations show large systematic frequency shifts in the 
sense of rapid westward phase propagation, especially among the shorter 
waves. For reasons that are not understood, the nonlinearly induced 
frequency . shift is nearly proportional to kx in planar geometry. 
Consequently, the restriction to k + p + q = 0 means that the frequency shift 
nearly identically drops out of (35). It would appear that HH were 
approximately correct for reasons that were not at all suspected! 

It is noteworthy that wave propagation or p enters (34) only through (35), 
affecting the efficiency of variance transfer. Absolute equilibrium (29) yields 
an identical zero on the right-hand side of (34) and is thus indifferent to p. It 
is also for expressions such as the right-hand side of (34) that Carnevale et 
al. (1981) have proven dH21dt > O. However, the rate of increase of entropy 
will be depressed by wave propagation. 

For what values of p is wave propagation significant compared with 
nonlinear interaction? An estimate can be based upon (35) by asking when 
terms in W become significant. As a rough cut we may ignore the nearness to 
frequency resonance, i.e. to Wk + wp + Wq = 0, and just compare rep­
resentative W with representative /1. For a flow with an rms velocity u' and 
an rms vorticity ( ', a representative length scale is 1 = u'/( ', for which a 
representative w is pu'le. HH show that at scales near 1, one obtains roughly 
Jl = C. Hence the relative importance of /3 is given as a nondimensional 
number 

(38a) 

A condition P = 0(1) may be seen as a threshold for "overturning" of 
potential vorticity contours when q = C + /3y. 

Rhines (1975) described the evolution of the energy spectrum as an 
"arrest" of the two-dimensional turbulent reverse-energy cascade toward 
low wave number (Kraichnan 1967) near a wave number kp = (/312u')1/2. A 
heuristic basis for this k(J was obtained by comparing representative wave 
phase speed with u'. The argument leading to (38a) implies that w be 
compared with ( ', suggesting that a transitional wave number be defined as . 

(38b) 
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Then the cascade arrest is seen theoretically to result from small values 
of (}kpq over Ikl < kp, suppressing transfer into these scales. In practice tl,1ere 
is little distinction between kp and kp, which become equivalent when 
p = 0(1). 

More striking is the evolution of anisotropy on the p-plane. Moderate kx 
and small ky are associated with large OJ, whereas moderate ky and small kx 
are not. Thus the reverse cascading energy continues to transfer into 
Ikl < kp for modes with small or zero kx-hence the zonal flows. Evaluation 
of (34) confirms the evolution toward anisotropy at smalllki but also pre­
dicts persistent anisotropy favoring zonal motion at all higher Ikl as well. 
The latter result would not be anticipated from simpler waves/turbu­
lence heuristics after Rhines (1975). Numerical experiments confirm the 
closure-theoretical prediction for anisotropy across the spectrum, as seen 
in Figure 2. 

5.3 Geostrophic Turbulence Above Topography 

This problem is one of special fascination, since it is characterized by the 
emergence of organized, predictable, large-scale flow from random initial 
conditions. Classically, such organized motions might be associated with 
dissipation (Prigogine 1980) or, in some instances, with evolution into 
solitons (Rizzoli 1982, 1984). In the present problem, such organized flow 
arises solely as a direct manifestation of nondissipative absolute 
equilibrium. 

In the simplest case, we consider one-layer flow on an J-plane in which 
the depth of fluid H(x, y) varies in some complicated way suggestive of 
terrestrial topography. If we write 

H(x,y) = Ho(1-J-1h(x,y», 

then (for h2 «f2) the equation of motion is (24) with q = ,+ h. Without 
forcing or dissipation, the invariants are kinetic energy and total enstrophy, 
t.e. 

!IV'¥12 and «( + h)2, 

leading to absolute equilibrium statistics 

k2 a�k4<hkh_k) 
«k ( -k) = + kZ + 

( + kZ)Z' �1 �Z �1 �Z 

« h ) = 
_ azk2<hkLk) 

k -k 
�1+�2kz ' 

(39) 

(40a) 

(40b) 

where hk are Fourier coefficients of h, and �1 and �2 are determined in order 
to satisfy invariants (39). Corresponding solutions for barotropic flow on a 
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Figure 2 Disequilibrium anisotropy of p-plane turbulence is shown from numerical 
simulation (heavy trace) and from closure theory (light traces). The anisotropy measure R(k) 
denotes a predominance of zonal over meridional velocities at any scale k - 1. The light traces 
show dependence upon a "test-field model" parameter (Kraichnan 1971a), which had 
previously been estimated by Herring et al. (1974) to take a value near g = 0.65. Closure theory 
here permits analysis of mechanisms controlling anisotropy. A dashed curve shows a source 
term S(k), which gives the direct induction of anisotropy due to p, divided by a return-to­
anisotropy coefficient v. Nonlinear transfer of anisotropy is governed by a kernel K(k, p) and is 
seen to account for persistent anisotropy at large wave number. Negative transfer under 
K(k,p) is also seen to be an effective restraint upon anisotropy induced by p at small k 
(Holloway & Hendershott 1977). 

sphere including topography have been noted by Frederiksen & Sawford 
(1981), Frederiksen (1982), and Sawford & Frederiksen (1983). It is 
noteworthy that we may permit here nonvanishing first moments. We then 
consider a specific realization of h, taking ensemble averages over S for 
given h. Resulting first moments [cf. (40b)] are 

<Sk) = - a,2k2hk 2 
lXi + 1X2k 

(41) 
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or, in configuration space, 

(:: - V2) <'I') = h .  (42) 

For most geophysical values of(39), it is the case that rxt!rx2 < 0, so that (42) 
is a forced Helmholtz equation. 

This may seem surprising: that from randomly chosen initial ( charac­
terized by <0 = 0 there arises a steady, deterministic, macroscale flow 
given by (41 )  or (42). In addition to the steady component, there will occur a 
time-dependent part whose variance is given by the first term on the right­
hand side of (40a). 

The spontaneous emergence of such large-scale, organized flow has been 
noted for some time in numerical simulations (Holloway & Hendershott 
1974, Bretherton & Haidvogel 1976) and is seen in Figure 3. In most cases, 
such numerical simulations have included dissipative effects and, some­
times, external forcing. Indeed, Bretherton & Haidvogel attribute the 
organized, steady flow to the following argument (here abbreviated): 

If dissipation acts selectively on the highest wave numbers, then it is 
argued that total enstrophy decays more quickly than does energy. A 
solution is obtained that minimizes enstrophy subject to constant energy 
and given h. This solution describes a steady flow having many features 
qualitatively similar to (42), which become identical to (42) if one considers 
just the case where enstrophy in (39) is given its minimum value. 

A controversy has ensued between advocates of the minimum-enstrophy 
principle and proponents of the maximum-entropy principle. Physical 
arguments for minimizing enstrophy may be intuitive and have been further 
advanced by Rhines (1979) and Leith (1984), whereas the maximization of 
entropy seems foreign to many researchers in GFD. However, in the 
absence of any dissipation and hence with no decay of ens trophy, evolution 
toward maximum entropy including the steady component (42) is readily 
seen in numerical experiments. 

To go beyond extremal principles into the forced/dissipative or statisti­
cally time-evolving cases requires the treatment using disequilibrium 
methods. This has been done by Herring (1977) and by Holloway (1978), 
with the latter author obtaining a pair of equations for the coupled 
evolution of «k( -k) and «kh -k): 

(:t + 2Vk) «k(-k ) = Fk-21fk«k(- k)+20"k«kh-k),  

(:t + Vk) «kh-k) = -1fk «( kLk) +O"k( hkLk), 

(43a) 

(43b) 
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Stream f unction at t = 0 

STATISTICAL GEOFLUID MECHANICS 111 

Topography 

Stream function after t � 24/f8 
Figure 3 An initially random eddy field, shown as a stream function at t = 0, is permitted to 
decay freely in the presence of realistically complex topographic relief. After a time of 
approximately 24/ f 0, where f is the Coriolis parameter and 0 is characteristic relief as a 
fraction of total depth of fluid, it may be seen that the stream function bears a striking visual 
resemblance to underlying topography (Holloway & Hendershott 1974). 

where Vk expresses dissipation and Fk, 11k' and Uk are expressions involving 
weighted sums over spectra of , and h and may also include any external 
forcing. 

Some important points concerning (43) should be noted. Firstly, these are 
the equations for which Carnevale et al. (1981) showed that dH2/dt ;;::: 0, 
which leads to (40) in the absence of forcing and dissipation. Secondly, 
evolution according to (43) has been tested and found to give very good 
quantitative agreement in comparison with direct numerical simulation, as 
seen in Figure 4. 
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Figure 4 Closure theory is tested against numerical simulations of geostrophic eddies above complicated topography for a variety of choices of 
topographic interactions and different strengths of eddy fields. Spectra of topography are marked H(k). Theory predicts spectra of total vorticity 
variance Z(k) and of variance Z(k) for the steady part of the vorticity field. Also predicted is the vorticity-topography correlation, here marked R(k). 
Crosses mark values of Z(k) and R(k) collected from simulation experiments. (a) Topography has a broad, shallow spectrum; (b) topography has a 
narrow-band spectrum; (c) topography is given a steep "red" spectrum. (d) topography has the same spectral shape as in (c) but is reduced in amplitude, 
so that the ratio of vorticity to topography is about four times greater than in (c) (Holloway 1978). 
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5.4 Closed-Basin Circulation and Western Intensification 

A synthesis of the preceding illustrations is seen when we consider one-layer 
flow in a closed, flat-bottomed, p-plane basin. Consider a case with no 
external forcing, no internal dissipation, and free-slip sidewall conditions. 
Integral invariants are kinetic energy, total enstrophy, and circulation, i.e. 

(44) 

where the overbars indicate integration over the basin. 
_ The maximum-entropy solution is characterized both by a large-scale 

steady flow and a spectrum of time-dependent eddies. The spectrum of 
transient eddies is given as before by (29), while the steady component, after 
(42), is represented by ((Xl 2) (X2 - V ('I') = P(y - (X3), (45) 

where /Xl, /X2' and (X3 are chosen so as to satisfy (44). 
That (45) is an exact solution to the inviscid, nonlinear equation of 

motion had been observed by Fofonoff (1954). However, there was no 
reason to believe that oceans should "prefer" (45). Now we see that (45) is in 
fact selected by the maximum-entropy principle. This may seem re­
markable : that deterministic, large-scale, steady flows arise spontaneously 
from random initial conditions as a manifestation of eqUilibrium statistical 
mechanics. 

Taking a value for OC3 somewhere between the maximum and minimum 
values of y within the basin, (45) will be characterized by broad westerly 
flow in the interior, with return easterly flow in boundary currents of 
approximate width IOCt/OC211/2 at the northern and southern boundaries of 

-the basin. A tendency toward westward interior flow was noted by 
Bretherton & Karweit (1975) in numerical experiments including rough 
topography on a p-plane. Bretherton & Haidvogel (1976) argue that the 
minimum-ens trophy principle may indicate flows qualitatively like (45). 
Similarly, Rhines (1979) proposes that the enstrophy cascade leading to 
enstrophy dissipation at small scales may cause the establishment of such 
basin-scale flows. Here we observe that the large-scale mean flows arise 
with no topographic roughness nor with any dissipation. 

The disequilibrium statistica l mec h anics of closed-basin flows have not 
been worked out. However, a qualitative evolution can be described. Note 
that in a basin whose geometry is east-west symmetric, equilibrium 
statistics for «(k( -k) and ('¥) [from (29) and (45)] are also east-west 
symmetric. On the other hand, one of the more prominent features of real 
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1 14 HOLLOWAY 

oceans is a tendency for currents to be more intense near western basin 
boundaries than near eastern boundaries. Various explanations for 
this phenomenon have been proposed over decades of theoretical oceano­
graphic research. Here, we propose yet another explanation. 

Imagine an initial-value problem in which vorticity is randomly 
distributed in an ocean basin, so that r = O. The initial state is characterized 
by t IV'P12 and � from which (l( 1> (l(2, and (l(3 are determined. Without forcing 
or dissipation, we anticipate evolution toward (29) and (45). However, for 
typical geophysical values of t1V'P12 and e, values of OCl' OC2' and OC3 will be 
such that (29) will have larger e with correspondingly smaller (y (hence 
(y < 0) than are given initially. Disequilibrium processes must cause the 
changes in [Z" and (y in order to satisfy dH/dt > O. The rate of change of [Z"is 
given by 

d iY2 IW -d (2 = P dyIV'P12 , t Yl E 
(46) 

where the integral runs over the meridional extent of the basin, and the 
integrand is the difference of IV'P12  evaluated at western and eastern 
boundaries. Adjustment toward maximum-entropy requires that (46) be 
positive and thus that IV'P12 be larger at western boundaries. The western 
intensification follows in the most natural way as a Second Law manifes­
tation (Holloway 1975). When absolute equilibrium is finally approached, 
western intensification must relax. 

Recently this scenario has been tested by M. Smith (unpublished) using 
an energy /enstrophy-conserving finite-difference simulation of barotropic, 
quasi-geostrophic, inviscid flow in a square, p-plane basin. In addition to 
observing the emergence of (45), Smith noted the development and 
subsequent relaxation of western intensification, as shown in Figure 5. 

5.5 The Shape of the Thermocline 

Whereas we have considered barotropic motion in a closed p-plane basin of 
limited latitudinal extent such that py is small compared with 10' Salmon 
(1982a) has extended this treatment to a two-layer system on the equatorial 
p-plane. The goal is to anticipate the equilibrium form of (h), where h(x, t) 
is the thickness ofthe upper layer. Only the equilibrium statistical mechanics 
problem is examined. 

Although equations of motion are set out in primitive form, it is 
convenient to calculate entropy on the assumption of nearness to 
geostrophy, with the equatorial singularity removed by requiring that fields 
remain sufficiently smooth. If the lower layer is considered to remain at rest, 
then the state of the system is defined approximately by h(x, t). Without 
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o +-4-��-+-+-+-4�����+-4-�� 
o 500 1000 1500 

Timestep 
Figure 5 Time evolution of the ratio of velocity variance along the western basin margin to 
velocity variance along the eastern basin margin is shown from a numerical simulation of 
inviscid flow in a square, flat-bottomed, p-plane ocean. Western intensification occurs as a 
disequilibrium phenomenon associated with entropy generation and relaxes in the approach 
to maximum-entropy circulation (M. Smith, unpublished). 

forcing, dissipation, or property exchange between layers, the system 
possesses four integral constraints : 

Upper layer mass M = fdX dY h, (47a) 

Energy E = f dx dy h{(;�r IVhI2 +glh}, (47b) 

Potential vorticity P = f dx dy ( V • ;� Vh + pY), (47c) 

Enstrophy Q = fdX dY (V .;� Vh+py)\-l .  (47d) 

Rather than expanding upon a basis set as in (2), Salmon (1982a) 
discretizes by assuming a grid-point representation on which differentials in 
(47) become difference operators. The upper layer is treated as a freely 
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1 16 HOLLOWAY 

evolving "blob" that covers some subset of the available grid points. The 
number of grid points covered or, effectively, the location of isopycnal 
outcrops (i.e. "blob" edge) is to be determined. For a number Ny of points 
covered in configuration y, the entropy is determined by the set of 
thicknesses {hi} at the grid points : 

N 
I H = f In (h). (48) 

i 

However, maximization of (48) subject to (47) is difficult. A recourse is to 
assume approximate constraints in which each hi is replaced by (h;) each 
time it appears in the discrete representations of (47). 

By considering configurations that are symmetric about the equator, it 
follows that P = 0 and thus (47c) may be omitted. Intuition may be gained 
by applying the remaining constraints (47) successively. Thus, if only mass 
(47a) is constrained, the maximum-entropy thermocline is simply flat 
(h = ho) and covers the entire domain. Next, in addition to mass, the 
constraint (47d) on enstrophy is applied in a simplifying approximation 

p2y;-
� <hi> = 

Qo
, 

(49) 

which leads to 

(50) 

where a and b are constants determined from mass M 0 and enstrophy Qo. 
It may be seen that (50) is an equipartition form that recovers the 

previous case of mass constraint only when b = O. To preserve positivity of 
hi at all i, one has a > 0, b < O. Then Equation (50) already has a satisfying 
shape : It is relatively shallow and flat near the equator and deepens with 
increasing latitude to either side of the equator. However, the solution 
suffers in that the greatest depths are attained at the highest latitudes y 
permitted by each Ny. This defect is ameliorated when the energy constraint 
(47b) is taken into account. 

Inclusion of energy conservation proves tedious. Salmon (1982a) obtains 
a nonlinear, fourth-order equation for (h>. If a solution is attempted as a 
power series in y, the quartic truncation yields 

2 [ p2 2c 2 ] 4-
<hi> = Ao + A2Yi + - 8g' + b AoA2 Yi ' (51) 

where c ¥= 0 enters on account of the energy constraint. Constants Ao and 
A2 depend upon boundary conditions at "outcropping latitude" Y = Ymax, 
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which the fluid is free to establish. However, if these boundary conditions 
are 

h = 0 and � (!L dh)+py = 0 dy py dy 
at y = ± Ymax, then it is required that c = O. To retain c i= 0, a term y6 must 
also be retained in (51). 

It may be surprising that the double-lobed thermocline shape (thin and 
shallow across the equator and then achieving maximum depth at higher 
latitudes before turning upward at yet higher latitudes) follows from 
eqUilibrium statistical mechanics alone. To illustrate the process of 
adjustment, Salmon (1982a) also integrated a Lagrangian finite-element 
numerical model in which an initially quiescent lens of upper-layer fluid 
was released over the equator. Although the numerical model included 
friction, spontaneous evolution toward the higher-entropy thermocline 
shape was noted. 

5.6 Baroclinic Turbulence; Eddy Heat Transport 

Charney (1971) realized that the heuristic approach to two-dimensional (i.e. 
barotropic) turbulence was readily extensible to three-dimensional quasi­
geostrophic turbulence in an unbounded, uniformly rotating, uniformly 
stratified fluid for which the equation of motion is 

(:
t 
+ U ·  V ) V2'P = forcing and dissipation. (52) 

In (52) 'II is now in three dimensions ; V2 is the three-dimensional Laplacian 
in stretched coordinates such that vertical z is replaced by N z/ f, where N is 
the VaisaHi frequency ; and u is horizontal velocity given by z x V'P. 

Herring (1980) considers both the equilibrium and disequilibrium 
statistical mechanics of (52). Without forcing or dissipation, motion 
conserves total enstrophy 

(53) 

where q = V2'P is potential vorticity, Qk = qkq-k, and k refers to the three­
dimensional wave vector in the stretched coordinates. Total energy is also 
conserved as 

(54) 

where Ek = QJk2 includes both kinetic and available potential energy at k. 
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Then just the arguments leading to (29) apply, yielding 

1 
(E ... > = 

k2 ' !Xl + !X2 
(55) 

It should be noted that (55) is isotropic in the stretched coordinates and that 
E ... here is total (not just kinetic) energy. 

Disequilibrium study of the three-dimensional quasi-geostrophic 
evolution under (52) was pursued by Herring (1980) with the goal of 
discovering to what extent nonlinear transfer enhances the degree of 
barotropy at larger scales. 

Motion-fields in the Earth's atmosphere tend-to approximate quasi geo­
strophy only on the larger scales for which the presence of a rigid lower 
boundary is significant. In the oceans, however, the quasi-geostrophic 
approximation may be satisfied on much smaller scales. Although one 
would not anticipate observing the form (55) on account of forcing and 
dissipation, oceanic observations at subinertial frequencies tend to support 
"stretched isotropy" or N / f scaling. 

The relation between geostrophic equilibrium (55) and the equilibrium 
statistics of the full primitive equations has been examined by Errico (1984). 
Under primitive equations, only energy is a quadratic invariant ; hence, one 
anticipates energy equipartition among all retained modes of both 
geostrophic and ageostrophic or gravity-wave types. In numerical simu­
lations, Errico observed the evolution as a two-stage process, with an early 
period of evolution toward the geostrophic equilibrium (55) followed by a 
more gradual evolution toward energy equipartition among all modes. 

The equilibrium statistical mechanics of a two-layer quasi-geostrophic 
system was considered by SHH. The equation of motion is (24) with i = 1 
and 2 and 

(56) 

where j = 3 - i, Pi = J'5Ig'Di, and Di is the average thickness of layer i. 
Without forcing or dissipation, and given either closed boundaries or 
periodic boundary conditions, invariants are total energy 

E = IV'P112/Fl + IV'P212 /F2 + ('Pl - 'P2)2 

= L [k2(1'P 1 . ... 1 2 Fl 1 + 1'1' 2 , ... 1 2F;: 1) + 1'1' I ,'" - 'I' 2,l<12J 
... 

and total enstrophy in each layer 

Qi = qf = L Ik2'Pi.k + Fi('Pj.k - 'Pi, ... W, 
... 

(57) 

(58) 

Maximum-entropy distributions for 'I' l ,k and 'I' 2,'" subject to constraints 
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E, Qi> and Q2, with arbitrary assignments of F t and F 2, are given by SHH. 
The algebra may be considerably simplified if attention is limited to the case 
of equal layer depths (hence F I = F 2 = F). This restriction is not necessary 
but does render more intuitive the results, which are readily seen as 
extensions from the one-layer case. For the equal layers, it is convenient to 
substitute 

'I' = ('1'1 + 'I' 2)/2, 1: = ('1'1 -'I' 2)/2, (59) 

so that 'I' is the barotropic or transport stream function and 1: is a vertically 
averaged buoyancy (and hence is temperaturelike). Defining barotropic 
and baroclinic modal energies as 

(60) 

absolute equilibria (after SHH) simplify to 

1 
< Vk) = 

(Xl + (X2(k2 + ki) 
, (61) 

where ki = 2F. The expression for Uk is just as with the one-layer 
equilibrium (29). 

It may be seen from (61) that for large k2 > ki, there is approximate 
equipartition between barotropic and baroclinic energies. However, at 
small k2 < ki, Vk tends toward a constant value, whereas Uk (for 
geophysically appropriate OCt and O(2) tends toward further increase with 
decreasing k2• This is much the same surprising conclusion as that seen in 
Sections 5.3 and 5.4 : the condition of maximum entropy is characterized by 
very well ordered (here depth-independent) flow at the large scales. 
Numerical-simulation results agree closely with the theoretical result 
implied by (61). Such a tendency toward barotropy is observed, as 
discussed, for example, by Rhines (1979). 

The tendency toward large-scale barotropy in layered flow may be 
reconciled with the three-dimensional "stretched isotropy" (55). Essentially 
kR 1 is just the largest horizontal length scale at which the three-dimensional 
potential vorticity q can satisfy NIJ scaling. At larger horizontal scales, 
"stretched isotropy" is prevented by the imposition of rigid boundaries. 

The disequilibrium statistical mechanics oflayered flow have been treated 
by Salmon (1978, 1980), with further discussion by Hoyer & Sadourny 
(1982) and by Salmon (1982b,c). A restriction to equal layer depths permits 
an especially simple account even apart from quantitative details of a 
closure calculation. Salmon (1978) points out that for each triad of wave 
vectors satisfying k + p + q = 0, interactions are constrained to satisfy 

(62) 
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120 HOLLOWAY 

and 

Uk + �+  Vq = 0, (63) 

where overdots indicate time derivatives. For the barotropic triads UUU, 
Equations (62) are identical to those of two-dimensional or one-layer 
turbulence, whose behavior has been extensively studied. It has been noted 
that constraints upon UUU triads are such as to retain energy in large 
scales of motion and to tend toward transfer to yet larger scales. These 
constraints are broken by U V V  triads because of the role of kR• In 
particular, for k2 � p2 :> ki » q2, triads of type U V V  support the classi­
cally studied "baroclinic instability" in which large-scale baroclinic energy 
Vq may be transferred to smaller-scale baroclinic and barotropic energies � 
and Uk. Wave-number local (k2 � p2 � q2 � ki) triads of type U V V  may 
then "occlude" or convert baroclinic to barotropic energy, which is 
subsequently transferred to larger scales under UUU triads. 

Closure calculations for the joint evolution of U and V were performed 
by Salmon (1978) to reveal quantitative details of the UUU and U V V  
interactions just described ; these calculations yielded results in  agreement 
with previous numerical experiments and inferences by Rhines (1977). In 
this, Salmon achieved a synthesis between classical baroclinic instability 
analyses and a theory offully developed turbulence. However, the problem 
considered assumed statistically isotropic large-scale baroclinic energy and 
constant Coriolis parameter. 

A more difficult problem is posed when one prescribes a horizontally 
uniform flow with mean vertical shear such that the upper layer translates 
westward at a rate S faster than a uniform translation of the lower layer. By 
geostrophy, S is proportional to a mean meridional gradient of depth­
averaged temperature. Horizontal anisotropy in eddy statistics must be 
considered, and Salmon (1980) adopts an angular harmonic expansion after 
Herring (1975). Since anisotropy is already included, Salmon further 
includes variation of Coriolis parameter in p-plane approximation. Equal 
layer depths are assumed, as in Salmon (1978). However, since a coefficient 
of surface Ekman drag is assumed in the lower layer, the layers are not 
statistically identical and difference variance arises, which may be expressed 
as 

(64) 

Importantly, a correlation determining the meridional eddy heat flux, 
with corresponding conversion from mean-flow energy to eddy energy, 
now occurs and is given by 

(65) 

The closure calculation here becomes most tedious, involving com-

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

98
6.

18
:9

1-
14

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 M

ar
in

e 
B

io
lo

gi
ca

l L
ab

or
at

or
y 

- 
W

oo
ds

 H
ol

e 
O

ce
an

og
ra

ph
ic

 I
ns

tit
ut

io
n 

on
 0

4/
18

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



STATISTICAL GEOFLUID MECHANICS 121 

plicated expressions for the co-evolution of UI<, v;., DI<, and II<' There occurs 
moreover a difficulty in principle-namely, that the determination of the 
coefficient matrix Jl leading to (22) is ambiguous, especially if the mean flow 
is such as to support linearized instability. Somewhat arbitrarily, Salmon 
(1980) adopted Okpq from (35) as a triad-interaction time scale. It is remarked 
that the calculated results are not strongly sensitive to specification of 0kpq' 
Salmon (1980) further carried out an extensive sequence of direct numerical 
experiments that were compared with closure calculations ; some of the 
results are shown in Figure 6. Similar results have been reported from 
numerical experiments by Haidvogel & Held ( 1980). 

Eddy heat flux is an illustration in which the closure calculation is both 
tedious and, in part, uncertain. In comparison, the numerical empirical 
approach may be more straightforward and more confident if the problem 
is one such as "For given S, find the statistically stationary I k'" However, for 
each different S, p, kR' or friction, a new Ik would be found by another 
numerical experiment (or experiments if ensemble averaging were in­
tended). On the other hand, closure expressions, though complicated, are 
written algebraically and thus admit possible systematic approximation 
procedures. Salmon ( 1980) has sought such a simplifying approximation for 
I k by writing 

i k = linear terms + nonlinear terms + friction, (66) 

where the linear terms are straightforward : 

linear terms = - [kxPkiJP(k2 + kinDk 

+ kxSv;. + kxS(k� _k2) (k� + k2)- 1 Uk' (67) 

After evaluating the full closure expressions for nonlinear terms, Salmon 
(1980) found some terms to be small and others to be nearly canceling, such 
that contributions tending to dominate Ik are derived from triads such as 
q2 « k2 ;::::: p2. Expanding in powers of small q2 jk2 leads to a diffusion-type 
approximation : 

. n [1 0 01 ] 
nonlInear terms ;::::: O(k, k, 0) "4 0 k ok P ok -

31 , (68) 

where 0 = St" dq q3U(q), and k and q refer to continuous wave numbers. 

5.7 "Equatorial Funneling " 

Consider quasi-geostrophic flow with stratification N(z) and nonuniform 
Coriolis parameter ICy). We may rewrite the equilibrium spectrum (55) as 

(69) 
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Figure 6 Spectra of barotropic energy U{k), baroclinic energy V{k), and poleward heat flux 
I{k) are predicted from closure theory (solid curves) and obtained from numerical simulations 
(crosses). Dissipative, statistically stationary turbulence is maintained by a supercritical mean 
meridional temperature gradient. Upper panels : p = O. Lower panels : P # 0 ;  mean tempera­
ture gradient has been increased so as to provide supercriticality (Salmon 1980). 
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where k here is a horizontal rather than a three-dimensional wave vector, n 
is a vertical mode number, and k;; 1 is the nth internal deformation radius. 
The y-dependence of f enters parametrically through k;, which is an 
increasing function of n and of f2. Thus, for given horizontal scale Ikl - l, 
higher vertical modes are expected to have less energy. This tends to be 
observed. However, the extent to which higher-mode energy is depressed 
depends upon f2. In particular, as f2 ---+ 0, one has k; ---+ 0 for all n. The 
implication is that as one approaches the equator, higher vertical modes 
become relatively increasingly energetic, although quasi geostrophy begins 
to fail. Indeed, Luyten & Swallow (1976) document the surprising amount 
of low-frequency energy in high vertical modes in the near-equatorial 
ocean. Salmon ( 1982b,c) further explores this "equatorial funneling" effect 
by employing constant N on an equatorial p-plane and comparing 
equilibrium statistical theory with direct numerical simulation. The 
simulation results shown in Figure 7 clearly show the tendency toward 
accumulation of energy in higher vertical modes near the equator (y = 0). 

5. 8 Predictability 

By "predictability," we refer to the sensitivity of flow evolution to the 
precision of initial conditions (Thompson 1957). This issue is one of great 
importance in relation to practical forecasting of geophysical fields, since 
(for any given precision of initial condition) forecast skill cannot be 
improved above a theoretical predictability limit. Research may also be 
directed toward identifying those areas in which improved resolution of 
initial conditions might best raise the predictability limit. A number of 
studies addressing these and related issues are collected in the volume 
edited by Holloway & West ( 1984). 

Theoretically, the question is posed by considering the evolution of pairs 
of solutions begun from nearly identical initial conditions. Recalling the 
discussion in Section 1, we consider pairs of trajectories emerging from a 
phase volume that is smaller than our presumed resolving power. Denoting 
the individual trajectories as (1 and (2 with Fourier representation (1 ,k and 
(2,k' we seek to describe the evolution of second-order correlations 

Zk « i,k(i, -k)' 

Rk = Re « i,kC, -k)' j = 3-i, 
(70) 

where the ensemble average is over all pairs originating from the prescribed 
phase volume. 

Entropy for the system of pairs follows from ( 15a) : 
1 ", 2 2 H2 = "2 'i;' In (Zk - Rk)' (71 )  
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Figure 7 Meridional profiles of kinetic energy in vertical modes n = 0, 1, 2, 3, 4, and 5 are shown at 0, 10, and 30 weeks from a numerical simulation of 
layered quasi-geostrophic motion in an equatorial p-plane ocean. The equator is at y = O. Mter 30 weeks, high-vertical-mode energy is collected near 
the equator (Salmon 1982b,c). 
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Initially the two realizations are highly correlated (Rk � Zk) and entropy is 
small. As time unfolds, trajectories usually will diverge, Rk will diminish, 
and H 2 will increase for cases where Zk is stationary. Thus H 2 naturally 
measures the developing informational uncertainty when, say, '1 is used to 
forecast '2' 

Absolute statistical equilibrium for this problem is a relatively trivial 
extension of previous results and yields Rk = 0 and Zk = z�q), where zLeq) 
is the equilibrium spectrum for each realization 'i' In the condition of 
absolute equilibrium, 'i retains no predictive skill relative to, say, '2' 
Interest in this problem is therefore directed to the question of approach to 
statistical equilibrium, i.e. to the rate at which , 1 loses predictive value with 
respect to (2' The problem is then one of disequilibrium statistical 
mechanics, which may include also the influences of dissipation and of 
external forcing. 

Closure-theoretical models of type (22) have been evaluated for systems of 
pairs of realizations as expressed in moments (70). Lorenz ( 1969), Leith 
(1971), and Leith & Kraichnan (1972) have so treated the case of 
predictability of two-dimensional turbulence. Numerical simulations by 
Basdevant et al. (1981), McWilliams & Chow (198 1), Vallis (1983), and 
Holloway (1983b) have extended the earlier results to include the effects of 
Rossby-wave propagation and of baroclinicity. 

Carnevale & Holloway (1982) have considered explicitly the rate of 
change of entropy (71)  in predictability experiments, obtaining 

(72) 

Here Okpq is a nonnegative quantity that might be given as (35), and Q�pq is a 
nonnegative expression involving products of Zk and Rk across the 
spectrum. Nonnegativity of the first term on the right-hand side of (72) 
reflects the basic result of Carnevale et al. (198 1). Entropy decreases 
through dissipation, where Vk > 0 are expansion coefficients of a dissipation 
operator. External forcing enters through Fk and w.., where Fk is the 
variance of forcing acting upon 'i,k' However, just as we cannot prescribe 
initial , precisely, we possibly cannot prescribe precisely the forcing upon 
different realizations of C. Thus, w.. is taken to be the cross-correlation 
between forcings of two realizations. If the forcing realizations are 
uncorrelated, then Wk = 0, whereas identical forcing has w.. = Rk• In either 
case external forcing increases H 2, where forcing is considered to derive 
from an unknown stochastic process. 

Derivation of (72) clarified an earlier theoretical dilemma. Usual 
measures of predictability have consisted of measuring the difference or 
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Figure 8 Entropy provides a measure of the degradation of forecast information with 
increasing forecast period for the case of barotropic motion on a p-plane. Entropy is observed 
here from specific realizations, and hence it suffers fluctuations, whereas entropy growth would 
be monotonic on ensemble average for unforced, nondissipative motion. Three values of p are 
indicated, from P = 0 up to P = Po (approximately terrestrial). It is seen that p suppresses 
entropy growth, thereby yielding enhanced predictability (Carnevale & Holloway 1982). 

distance between two realizations of , according to some metric. Resulting 
measures might be variance of 500-mbar height fields (effectively If), 
variance of difference velocity, or variance of difference vorticity. A 
theoretical dilemma was that none of these measures demonstrably 
satisfied the intuitive property that "uncertainty" should monotonically 
increase, on average, with increasing time apart from direct influences of 
forcing or dissipation. Entropy (71)  as an information-theoretical measure 
of uncertainty satisfies the intuitive Second Law expectation. Nonetheless, 
(71) appears not to be so useful as a measure of forecast skill, since it tends to 
be dominated by forecast information concerning small scales of motion, as 
discussed by Carnevale & Vallis (1984). 

Evolution of experimental entropy, i.e. (71) as determined from a single 
pair of realizations rather than as an average over the ensemble of pairs, is 
shown in Figure 8. Three cases are shown in which f3 ranges from zero up to 
a value that is approximately terrestrial. It is seen that larger f3 suppresses 
the growth of H 2, enhancing predictability. 

5.9 Stirring of Tracer Fields 

The preceding examples may be extended to include advection of passive 
tracer fields. By passive, we mean that the tracer concentration has no direct 
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influence on the velocity field. The statistical mechanics of the velocity field 
are therefore unaffected, and we are concerned only with the statistical 
mechanics of the tracer. 

For a tracer concentration field ¢(x, t) advected by nondivergent, two­
dimensional flow, the equation of motion is 

a at ¢ + J(\}', ¢ + G ' x) + �t/>(¢) = St/>. (73) 

Here ¢ is the departure from a large-scale background field < ¢ > = G '  x, � 4> 
is a dissipation operator, S", is any external source for ¢. and 'II is the stream 
function from a velocity field that might satisfy (24), for example. 

In the simplest case, we consider (73) with G = � 4> = Iff 4> = 0 and 
boundary conditions consisting either of a closed, impermeable basin or of 
periodicity for '¥- and ¢-fields. Spectrally truncated equations conserve ¢2 
and ¢q, where q is potential vorticity under the assumption that qfi = S = 0 
in (24). In particular, if we consider the uncorrelated case cPq = 0, then 
absolute statistical equilibrium is simply equipartition 

(74) 

independent of the statistical distribution ofthe advecting velocity field that 
brings about (74) ! 

Even in this simplest case, one may entertain an apparent paradox. 
Consider an unforced, nondissipative evolution from initial conditions in 
which ¢ and q are given identical probability distributions. Fields ¢ and q 
only evolve under advection by the same stream function 'II. One might 
therefore suppose that distributions of ¢ and q will evolve similarly. On the 
other hand, evolution of q is constrained by conservation of energy as well 
as of qr, and so q should evolve to a statistical distribution different from 
that of cPo Evolution from identical initial probability distributions to 
different equilibrium distributions is indeed what happens, as seen in Figure 
9. 

The disequilibrium statistical mechanics of tracer stirring in statistically 
homogeneous, isotropic, two-dimensional turbulence have been con­
sidered by Lesieur et al. (1981) and by Lesieur & Herring (1985), with the 
latter authors considering also the case with tracer-vorticity correlation 
q;( =1= O. Introduction of /3 induces anisotropy in the vorticity field (as 
discussed in a previous illustration). However, the effect of /3 is even more 
marked with respect to the tracer field. This is seen both in numerical 
simulations (Haidvogel & Keffer 1984) and in theory (Holloway & 
Kristmannsson 1984). In addition to /3, one may also impose a uniform 
background gradient G in the tracer concentration, which allows investi­
gation of the phenomenon of net turbulent transport of tracer substance. 
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102 

Figure 9 Spectra oftracer variance and of 
vorticity variance illustrate the evolution of 
unforced, nondissipative llow. One­
dimensional spectra shown in the figure are 
the sums of modal variances <Ilk and Zk in 
circular wave bands of radius k = Ikl. 
Initial spectra oftracer {Ill..} and of vorticity 
(Z..) are identical (shown shaded). At a later 
time, <Ilk and Zk (shown as solid curves) 
have approached their separate equipar-

' 

tition or maximum-entropy solutions 
(shown as dashed curves) (Holloway & 
Kristmannsson 1984). 

The mean spatial flux of substance is given by 

k x z  
<u<p> = L � 1m rk, (75) 

k 

where rk = <'k<P -k>' Disequilibrium evolution of <l>k and rk is then given 
by Holloway & Kristmannsson (1984) as ( d ) 2z · (G x k) 

dt 
+ 2Kk + 2Yk <l>k = Qk- k2 1m rk 

and (d ) . z · (G x k) 
Z 

dt 
+ iWk + Vk + Kk + '1k + Yk rk = - I  k2 k' 

(76a) 

(76b) 

where Yk and 11k are expressions given by weighted sums over spectra of , 
only, while Qk involves products of spectra of , and of <p. Also, Kk is the 
transform of the dissipation operator � 4" and Vk is the transform of 
dissipation acting on the vorticity field. Wave dispersion such as (36) 
appears explicitly as iWk in (76b). Equations (76a,b) are evaluated together 
with an equation such as (34) for the evolution of the vorticity spectrum. 
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An item to note is that G appears as the inhomogeneous part of (76b), in 
which quantities Yk and 11k do not depend upon ct>k or r k and are thus 
independent of G. The result is that the statistically stationary, dis­
equilibrium solution for r k is linearly dependent upon G. Consequently we 
may express (75) as 

(77) 

where Dk are spectral contributions to an overall "eddy diffusivity" tensor 
D. 

"Eddy diffusivity" is a popular notion in many practical applications but 
is usually perforce introduced in an ad hoc, often suspect, manner. The 
development given above permits systematic theoretical derivation ofD. In 
particular, Holloway & Kristmannsson (1984) examine the role of P in 
inducing anisotropy into D such that meridional diffusivity Dyy may be 
greatly reduced relative to the zonal diffusivity Dxx. The theoretical results 
concerning anisotropic D were demonstrated to emerge as well in 
numerical experiments. 

A very important remark should be made here. What we have just 
described is a systematic derivation of eddy diffusivity D as regards a 
passive tracer. This must not be construed as lending broader support to ad 
hoc application of eddy-diffusion ideas. In particular, one ought to be 
cautioned against the very popular idea that eddies necessarily support 
down-gradient mixing of potential vorticity (Green 1970, Welander 1973, 
Rhines & Young 1982). 

Indeed this illustration provides a clear counterexample. A meridional 
component of G will drive a meridional transport of passive tracer (i.e. the 
eddies exhibit Dyy > 0 with respect to the tracer). For the same problem, P is 
the meridional gradient of q that one might imagine driving a meridional 
vorticity flux. However, in the absence of an external source for mean 
momentum, nonzero meridional vorticity flux would violate zonal momen­
tum balance. Thus we observe that the same eddies that support down­
gradient tracer transport are unable to transport potential vorticity. In 
other circumstances, gradient transports of vorticity may occur ; the point 
emphasized here is that ad hoc supposition of gradient transport of 
vorticity is a haphazard proposition. 

Differences between vorticity and a passive tracer are also seen in their 
transport in k-space. Recall the systematic differences that appeared 
between passive tracer and vorticity with regard to absolute equilibrium (cf. 
Figure 9). Corresponding differences can be identified in the disequilibrium 
evolution of the two fields. Holloway & Kristmannsson (1984) dem­
onstrated that the coefficient Yk in the passive-tracer variance equation 
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(76a) is systematically larger than a coefficient 11k that occurs in vorticity­
variance equations. This results in more efficient transfer of passive-tracer 
variance to small scales. A visual display of the difference in behavior is 
shown in Figure 10 from a numerical simulation. The cause of the difference 
is wave-number local interactions, which are most efficient at transferring 
passive-tracer variance but which become vanishingly inefficient at trans­
ferring vorticity variance under the idealization of two-dimensional 
geometry. The different behavior is also evident at large scales, for which 
two-dimensional turbulence tends to produce a reverse cascade of kinetic 
energy toward still larger scales yielding asymptotically a kinetic-energy 
spectrum as k- 5/3 (Kraichnan 1967). On the same large scales, classical 
arguments since Obukhov's (1949) discussion apply ; these indicate a direct 
cascade of tracer variance toward smaller scales with a tracer-variance 
spectrum also asymptotically approaching k- 5/3• On the same subrange, 
tracer and velocity variances cascade in opposite directions ! The dominant 
transfer mechanisms on such scales tend to be fairly local in wave number. 
Only for widely scale-disparate interactions such that small-scale features 
are strained directly by large-scale flow is it admissible to consider vorticity 
approximately as a passive tracer. 

5. 1 0  Plankton Patchiness 

An extension from the preceding section is to consider the role that 
horizontal advection plays in maintaining the patchiness of the field of 
primary productivity in the upper ocean. In fact a vast wealth of biological 
dynamics and of vertical exchange processes are believed to be involved. 
However, it is interesting to consider to what extent horizontal differential 
advection might dominate other sources of variability. 

Consider only the simplest kind of biological dynamics, consisting of 
exponential increase or decrease of populations. Let ¢(x, t) be the vertical 
integral of the logarithm of biomass concentration. Logarithms are useful 
here both because concentration is nonnegative and because actual 
populations are observed to be approximately lognormally distributed. Let 
the vertically integrated horizontal velocity in the upper ocean be described 
by a transport stream function '1'. Then a plausible model for evolution of ¢ 
is (73), where & q,(x, t) is taken to be the vertical integral of the rate coefficient 
for exponential increase or decrease. Effects of vertical shear in the velocity 
field are not included explicitly but are treated as a shear-dispersion effect 
(Kullenberg 1972, Young et al. 1982) expressed as a diffusion �q,. 

If we consider fff <I> to be some random field with prescribed spatial and 
temporal statistics, then, given the statistical evolution of '1', we seek the 
statistical evolution of ¢. Forcing on account of the biological dynamics fff <I> 
and dissipation by shear dispersion f2q, are essential, so that only the 
disequilibrium treatment is of interest. 
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( b )  �(15 .0) 

( c )  </>(X.2.5 �-:ms )  ( d )  � (X. 2.5 �-:ms) 
Figure 10 Spatial fields of passive tracer r/J and vorticity ( are shown from a spinning-down 
numerical experiment. At t = 0 (a. b) the two fields have identical spectral distributions. At a 

later time (c. d) the passive-tracer field has evolved higher-wave-number features than the 
vorticity field. Thus it is hazardous to think of vorticity as a passive tracer (Holloway & 
Kristmannsson 1984). 

Suppose that iff</> has structure only on large scales, i.e. iff</> has variance 
only for, say, k < k1• The temporal variability of iff t/> is another matter ; we 
may consider two extremes : 

1 .  iff t/> changes randomly over time scales that are short compared with 
eddy-advection time scales. 

2. iff t/> is constant over time. 

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

98
6.

18
:9

1-
14

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 M

ar
in

e 
B

io
lo

gi
ca

l L
ab

or
at

or
y 

- 
W

oo
ds

 H
ol

e 
O

ce
an

og
ra

ph
ic

 I
ns

tit
ut

io
n 

on
 0

4/
18

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



1 32 HOLLOWAY 

The extremes are selected because they span the range of interesting time 
dependences and because each is tractable under closure theory. 

Case 1 yields essentially (76a) without G :  

(:t + 2Kk + 2Yk)<I>k = Qk + Sk, (78) 

where each of the terms is as previously (for details, see Holloway & 
Kristmannsson 1984) except for the inclusion of Sk, which is the variance of 
the temporal fluctuations in is;p. 

Case 2 requires that we consider the cross-correlation Ak = (4)kr -k) 
between the plankton burden 4> and the "frozen" rate-coefficient field 
is ",(x, t) = rex). Closure equations are 

(:t + 2Kk + 2Yk)<I>k = Qk + Ak' (79a) 

(:t + Kk + Yk)Ak = Sk = (rkr -k) ' (79b) 

Numerical experiments have been performed by D. Ramsden (un­
published) for cases 1 and 2 and have been compared with a theoretical 
evaluation using (78) and (79). Some of these results are seen in Figure 1 1 . 
We have posed the plankton-patchiness question in terms of the horizontal 
wave-number spectrum of the logarithm of plankton burden. For the 
simple biological dynamics assumed here, it is seen that there is agreement 
between theory and numerical experiment for the shape of the spectrum 
and the growth dynamics, nonlinear transfer, and shear dispersion that 
maintain that spectrum. 

It may be noteworthy that certain questions about patchiness can be 
answered from (78) and (79) by inspection. For example, it has been 
speculated that the very different time dependences assumed for tff 4> in cases 
1 and 2 might lead to very different characteristics of patchiness. How­
ever, in terms of the shape of spectrum <Dk, such differences are slight. 
If we assume approximate statistical stationarity, then Ak from (79b) is 
SJ(Kk + Yk)' If Sk is given the same form as Sk' then Ak on the right-hand 
side of (79a) will be more red than will Sk in (78) when it is taken into ac­
count that Kk + Yk tend to be increasing functions of k. Therefore, in case 2, 
<l>k will be slightly more red on the scales subject to direct biological forc­
ing. Over all k not directly forced, Sk and Ak vanish and no discernible dif­
ference between cases 1 and 2 is expected. Numerical simulations have been 
performed that indeed demonstrate no significant difference between 
cases 1 and 2 as regards the shape of <Dk over scales not directly forced. 
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o 5 10 15 20 25 30 

5 10  15 20 25 30 
k 

Figure 11 Horizontal wave-number spectra of plankton patchiness are compared from 
numerical simulations and from closure theory. Case 2, in which random rate coefficient field 
S", is constant in time, is considered here. Upper panels : Plankton spectra from numerical 
experiments are shown at successive times, becoming essentially stationary after a nominal 
time t = 4. The spectrum of the rate field S", is shown hatched. Instantaneous traces of the 
turbulent transfer function T(k) are shown. Lower panels : Stationary spectra and transfer 
function are evaluated from closure theory using (79). In this figure, T(k) > 0 indicates 
turbulence providing a source of patchiness variance at wave number k ;  T(k) < 0 indicates 
turbulence removing variance. The simple balance is that "biological dynamics" S", is here 
assumed to generate patchiness at large length scale (low k). which is transferred by turbulence 
to short length scales where variance is dissipated by explicitly modeled diffusion (D. Ramsden, 
unpublished). 
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5. 1 1  Internal Gravity Waves/Buoyant Turbulence 

A final illustration is included to demonstrate different space and time 
scales and different dynamics that are amenable to the statistical-mechanics 
approach. A most striking observation, first suggested by Garrett & Munk 
(1972), is that internal oceanic fluctuating fields on length scales from 
0(10 m) to 0(1000 m) and time scales from the inertial frequency f to the 
buoyancy frequency N exhibit remarkably reproducible variance spectra 
from many different locations in different oceans during different seasons. If 
the fluctuating fields are attributed to a random superposition of internal 
inertial-gravity waves, then the result is to observe a seemingly "universal" 
spectrum of internal-wave variance, commonly denoted the GM spectrum. 
In fact, some departures from universality are observed. The problem is 
being actively researched and is discussed in recent reviews by Garrett & 
Munk (1979), Munk (1981), and Olbers (1983) ; page space requires that the 
present recount be extremely superficial as regards the observations. 

The GM spectral model assumes linearized internal-wave modes, to 
which a variance spectrum is empirically fit. No further dynamics are 
assumed in setting the empirical form of the variance spectrum. This 
empirical form has evolved through a number of revisions and was recently 
listed by Munk (1981) in terms of vertical modes j of an exponentially 
stratified ocean as an energy spectrum 

with 

H( ·) = H ( ·2 + ·2) - 1 ) * ) J* , 

(80) 

(Sla) 

(SIb) 

where b is a scale depth of 1 .3 km, No = 5.2 X 10- 3 S- 1, and Eo andj* are fit 
parameters taking values near Eo = 6 X 1O- 6, j* = 3. A depth-dependent 
vertical wave number may be assigned to j under WKB approximation 
as kz = jN(z)/bN o. On the assumption that underlying dynamics 
are linearized waves [hence satisfying precisely a dispersion relation 
co = ± Q(kh,j)], and with a further ad hoc assumption of statistical iso­
tropy in the horizontal, one may convert spectral density in (co,j) as in 
(80) into spectral density in (kh' kz). 

The intriguing property of (SO) is that it is specified not only in form but 
also in absolute amplitude per Eo. (One is cautioned that this result is 
empirical and hence subject to continuing update.) Reproducibility of (80) 
has attracted a great deal of theoretical attention. 
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An overall account of  the oceanic internal-wave field would entail 
analyses offorcing and dissipation mechanisms (cf. the reviews cited above). 
However, a simple remark is that apparent energetic sources are non­
uniformly distributed in space or in time, and thus do not simply account 
for the universality of (80). 

An early consideration was whether the GM spectrum might represent 
an equilibrium distribution. Observed internal dissipation rates in the ocean 
are highly intermittent but tend to be small, yielding estimates of energy 
residence times of 0(10 days). Perhaps such times would permit an 
approach to absolute equilibrium. Nondissipative invariants ofthe motion 
are total energy and net horizontal wave momentum. Under horizontal 
isotropy, net momentum vanishes, leaving only the energy invariant. Then 
simple energy equipartition would anticipate spectral density 

(82) 

where kh is the magnitude of the horizontal wave vector. 
One sees that (82) is far from (80). Most investigators have therefore 

sought to explain (80) by including essential roles offorcing and dissipation. 
However, Allen & Joseph (1985a) have examined the detailed dynamics 
leading to absolute equilibrium among internal waves. Depending upon 
how one elects to impose high-wave-number cutoffs to prevent ultraviolet 
catastrophe, Allen & Joseph show that some marginal spectra calculated 
from (82) may resemble some of the observations from which (80) 
was constructed. Nonetheless, other significant discrepancies remain. 
Moreover, these considerations have not taken account of a spectrum of 
geostrophic turbulence [cf. (55)], which would be in equilibrium with the 
internal-wave spectrum. Further efforts by Allen & Joseph (1985b) seek to 
address this question. (See also Errico (1984), as discussed in Section 5.6.) 

Much greater effort has been expended in exploring a disequilibrium 
account. Here there was hope, based upon the GM assumption of 
underlying linearized wave dynamics, that one might proceed perturba­
tively in smallness of wave amplitude. Then the spectral evolution might be 
guided by weak wave resonant-interaction theory [essentially (17) with (20) 
and (21)]. Detailed calculations of this type have been examined by Muller 
& Olbers (1975), Olbers (1976), McComas & Bretherton (1977), McComas 
(1977), and Pomphrey et aL ( 1980). Analytically derived approximations to 
the spectral evolution equation are given by McComas & Bretherton (1977) 
and McComas & Muller (1981a) ; these provide clearer insight into some of 
the mechanisms involved and lead to an overall scenario for energy balance 
as proposed by McComas & Muller (1981b). 

However, there are two main reasons to doubt the validity of calculations 
to date. The first concern is for finite strength of interaction. In usual 
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derivations, weak wave-interaction theory depends upon multiple time 
scaling, such that systematic energy transfer is only effected on time scales 
long compared with the wave period [cf. Benney & Saffman (1966) or 
Benney & Newell (1969)]. At GM amplitudes, the above-cited calculations 
appear to violate this premise by anticipating energy transfer on time scales 
much shorter than the wave period (Holloway 1980). Since this result is self­
contradictory, it should not be used to estimate actual interaction time 
scales. There are further ambiguities concerning the notion of "interaction 
time," as argued between McComas & Miiller (1981a) and Holloway 
(1 982). Moreover, it is not clear that criteria based solely upon wave period 
are appropriate. Finite-amplitude theory (Holloway 1979) suggests the 
importance of a "group period" given by a characteristic packet length 
divided by the group speed, whereas the theory of stochastic differential 
equations (Van Kampen 1981) indicates the role of a Kubo-number 
criterion, as further discussed by Miiller et al. (1985). 

The second concern may prove even more troublesome. It has been 
recognized for some time that oceanic observations contain fluctuations 
that are other than internal waves ; these are sometimes referred to as 
"contaminations" (Muller et al. 1978). Laboratory studies (as reviewed by 
Lin & Pao 1979) and three-dimensional numerical simulations (Riley et al. 
1981) show that collapsing, stably stratified turbulence readily sorts into 
nonlinear internal waves together with quasi-two-dimensional vortices, 
sometimes called "pancake," "blini," or "vortical" modes. Holloway (1981 ,  
1983a) points out that when one considers incompressible, stably stratified 
flow including a background component of uniform rotation, a complete 
eigenfunction representation requires three fields, two of which are the 
upward- and downward-propagating internal waves, while the third field is 
geostrophic motion as considered in Section 5.6. The problem is seriously 
compounded by the necessity of calculating not only energetic exchanges 
among the internal waves but also exchanges between the geostrophic and 
internal-wave branches, along with the geostrophic turbulence considered 
previously. At higher wave numbers, nonlinear interaction will broaden the 
frequency distributions associated with the separate eigenfunctions, leading 
to overlapping frequency distributions. This picture is sketched in Figure 
12. Here. we imagine spectra of internal waves and of geostrophic 
turbulence entwined on all scales. 

The difficulties just described are daunting. As a means of exploring 
finite-amplitude effects on the purely internal wave-wave interaction, 
Carnevale & Frederiksen (1983) have considered an idealization in which 
motion is restricted to lie in a vertical plane and the Earth's rotation is 
neglected. Equations of motion can then be given in terms of the horizontal 
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component ( x, z ,  t)  of a vorticity field and a density-anomaly field p(x, z ,  t) : 

a a 
at ( +J('P, () + ax 

p - vV2( = 0, (83a) 

(83b) 

where 'P is the stream function in the vertical (x, z) plane and V2 is the two-

Figure 12 Solution surfaces for the linear dispersion relation (i) = ± n and the surface (i) = 0 
are shown as hatched surfaces in (i), kh, kz -space. For a particular aspect ratio kz/kh = tan cp, the 
natural frequencies (i) = ± (i)o and (i) = 0 are given by the intersection of the dispersion 
relations (hatched surfaces) and the plane kz/kh = tan cp. These intersections are the straight 
lines labeled w = + wo, w = 0, and w = - Woo Because of nonlinear interactions, energy will 
be distributed about the natural frequencies. This relative distribution of energy is sketched as 
fanlike curves, which may be regarded as contours of relative energy density, decreasing away 
from the natural frequencies. At large wave numbers, the fans become very broad, with the 
different branches overlapping. This figure emphasizes the presence of three interacting modes 
at all scales, as well as a continuous transition from more wavelike dynamics at small wave 
number to more turbulent dynamics at higher wave numbers (Holloway 1983a). 
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dimensional Laplacian. Two linearized wave modes are then given by 

(84) 

where 'Pk and Pk are wave-vector expansion coefficients for 'P and 
p. Carnevale & Frederiksen (1983) then consider both equilibrium 
and disequilibrium [i.e. closure equations such as (23), differing from 
weak wave-interaction theory on account of fl i= 0] distributions for 
Ak = <akas_ k> .  Furthermore, Frederiksen & Bell (1983, 1984) have per­
formed numerical simulations of (83), testing the theoretical results from 
Carnevale & Frederiksen. 

6. SUMMARY AND OUTLOOK 

The methods reviewed in this paper tend to lie outside the mainstreams of 
GFD research. Many calculations (not shown explicitly in this review) are 
complicated and laborious as well as uncertain on some points. A reader 
may wonder why one ought to bother. There may be two reasons why. 

1. The statistical mechanics of macroscale geophysical flows provides 
a synthesizing point of view. Observations of atmospheric and oceanic 
fields as well as output from high-resolution numerical simulations tend to 
place us in a role of onlookers in a seemingly chaotic landscape of 
overlapping/competing flow mechanisms. Explosively mounting volumes 
of field observations and of simulation output threaten to overwhelm an 
empirical attitude toward either nature or computer. Statistical mechanics 
here suggests at least a sense of direction, i.e. we perceive processes of 
entropy generation and a tendency toward entropy maximization. 

2. Point of view, as such, may be only a matter of taste. It is just as 
important that the methods described here provide a prescription for 
quantitative calculation and that these calculations have been repeatedly 
tested for a variety of problems against empirical results collected from 
numerical simulations. 

Throughout we have sought to compare results from equilibrium and 
disequilibrium methods. The two methods are related by entropy, which we 
understand in terms of probability distributions for macroscale flows. In 
this we proceed from the view of information theory, noting that entropy as 
(7) or (8) may be extended to include the specific thermodynamic entropy of 
the fluid. Novelty is seen in that the same entropy functional accounts for 
establishment of planetary-scale flow regimes. 

Exercise of equilibrium methods requires an artificial idealization. We are 
obliged to represent a continuous flow in a system of finite degrees of 
freedom while neglecting external forcing or dissipation. Should one throw 
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out such problems as unphysical? There are at least three reasons why the 
answer is no. 

Firstly, although physical systems are unable to achieve absolute 
equilibrium on account of forcing and dissipation, the disparity between 
equilibrium statistics and physically realized statistics indicates the direc­
tion in which nonlinear interactions will tend to move a physical system. 
The physical systems seek to establish the highest entropy states available 
subject to externally imposed forcing and dissipation. 

Secondly, certain quite physically realistic features emerge with absolute 
equilibrium. Essentially, it is the distribution of variances across wave 
number that is most affected by dissipation, which is usually presumed to 
act selectively at high wave number. Cross-correlations such as the degree 
of barotropy at different scales, the correlation of flow with underlying 
topography, and even the establishment of basin-scale circulation are not 
sensitively dependent upon a presence of small-scale dissipation. 

Thirdly, how close a physical flow comes to absolute equilibrium may be 
characterized by a ratio of time scales : an energetic "residence" time 
compared with a "mixing" or entropy-generation time. 

In comparison with equilibrium methods, disequilibrium calculations 
(closure methods) are more tedious and depend upon procedures that are 
not rigorously established. However, the calculations permit forcing, 
dissipation, and time-evolving statistics. In comparing closure calculations 
with the empirical approach based upon numerical simulations, it is 
noteworthy that closure equations deal directly with statistical quantities 
and hence do not require averaging across numerical experiments. 
Relationships among statistical quantities are revealed directly. 
Dependence of statistical quantities upon external parameters such as f3 is 
made explicit so that, for example, derivatives of statistics with respect to f3 
may be evaluated analytically rather than depending upon differencing 
among sequences of numerical experiments. In many cases, complicated 
closure expressions permit analytical reduction by systematic approxima­
tion procedures. 

For the most part, this paper has illustrated the application of 
equilibrium and disequilibrium statistical mechanics for a variety of geo­
physical flows. Let us recap just a few points : 

1 .  Maximum-entropy solutions indicate the emergence of predictable, 
mean, ocean-basin-scale circulation from random initial flow. This result 
contradicts a popular notion that maximum entropy implies "complete 
disorder" and hence no large-scale mean flow. 

2. A novel account of western intensification is suggested, whereby 
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intensification of oceanic currents near western basin boundaries acts as 
a mechanism for entropy generation. At maximum-entropy equilibrium, 
western intensification would vanish. The readily observed physical 
phenomenon is thus viewed as a natural disequilibrium process in ocean 
circulations. 

3. The shape of the main thermocline is seen to emerge spontaneously as a 
maximum-entropy result. 

4. Persistent correlation between geostrophic eddies and underlying 
topography results from entropy maximization. Disequilibrium calcu­
lations extend the maximum-entropy results, producing good agreement 
with dissipative numerical experiments. 

5. Equilibrium arguments provide a basis for anticipating NIJ scaling 
in stratified, geostrophic flow. For bounded flows, the result is to antici­
pate a tendency toward barotropy on scales larger than the internal 
deformation radius. 

6. Disequilibrium theory provides a unifying treatment ranging from 
small-amplitude baroclinic instability up through fully developed 
baroclinic turbulence. Under an imposed meridional temperature 
gradient, theory predicts both the form and amplitude of a spectrum of 
poleward eddy heat flux. 

7. An extension of equilibrium results for baroclinic flow suggests the 
enhancement of high-vertical-mode, low-frequency oceanic currents 
near the equator, as indeed is observed. 

8. Disequilibrium study of the transport of passive tracers by geostrophic 
turbulence obtains the basis for a gradient flux while revealing the role of 
p-inducing anisotropy among the components of a horizontal eddy 
diffusivity tensor. Marked differences between transport of vorticity and 
of passive tracer are identified. An extension to nonconservative tracers 
provides a simple model for horizontal plankton patchiness in the upper 
ocean. 

9. Entropy provides an information-theoretical measure of the intrinsic 
degradation of forecast skill with �ncreasing forecast period. Closure 
theory provides a quantitative account of how geophysical effects such 
as those due to p may enhance predictability. 

Exercises of equilibrium and disequilibrium statistical mechanics pro­
vide a wealth of insights, along with detailed quantitative calculations, over 
a wide range of geophysical fluid phenomena. The reader may foresee 
further applications. Already we have anticipated that the difficult three­
dimensional problem involving interactions among internal inertial­
gravity waves and geostrophic modes will be solved. On other points, 
methodology for disequilibrium calculations admits continuing improve-
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ment. For example, a question concerning the induction of systematic 
frequency shifts among interacting finite-amplitude waves remains open. 

Although the methods discussed in this paper have been illustrated 
with regard to Eulerian field statistics, corresponding implications for 
Lagrangian particle statistics have been considered by Kraichnan (1966) 
and Larcheveque & Lesieur (1981). 

In closing it is appropriate to mention two areas in which caution should 
be observed. The first is the problem of spatial statistical inhomogeneity. 
Disequilibrium calculations, in particular, are so tedious that they are really 
only practicable when spatial fields can be expanded upon particularly 
simple basis functions as exp (ilk . x). One approach to extending such 
problems is a quasi-homogeneity expansion, such as that of Carnevale & 
Martin (1982) or Carnevale & Frederiksen (1983), in which one supposes a 
two-length-scale separation so that the field fluctuations occur over shorter 
length scales while the fluctuation statistics vary over a longer length scale. 
In the limit of infinite scale separation, this kind of inhomogeneity has been 
included in the baroclinic heat-transport or tracer-stirring illustrations 
given previously. With limited vertical resolution, Salmon (1980) included 
vertical inhomogeneity in his studies of two-layer geostrophic turbulence. 
However, for most cases, if statistics are inhomogeneous on lengths 
comparable to the energetic eddy scales, then disequilibrium calculations 
are not yet feasible. 

The second point of caution concerns intermittency effects. Both the 
equilibrium and disequilibrium statistical distributions that have been 
considered are only up to second order in correlations. If one further 
supposed distributions to be joint-normal, this description would be 
complete. At absolute equilibrium such joint-normality is indeed predicted. 
Numerical experiments for tracer stirring permit a test of this prediction. 
Holloway & Kristmannsson (1984) have examined various derivative 
kurtoses, e.g. Kv(¢) = IV¢14/IV¢12, of tracer fields. For normally dis­
tributed ¢, we have K = 3 for all such K. From an experiment without 
forcing or dissipation, initialized with normally distributed 4> but with 
spectra far from equilibrium, Figure 1 3  shows various K(¢) rising to 
supranormal values during the early disequilibrium stage of rapid entropy 
generation. However, as a maximum-entropy condition is approached, the 
K(4)) are seen to relax toward K = 3. 

Although intermittency vanishes at absolute equilibrium, it is a persistent 
feature of disequilibrium flows and thus is of concern for realistic 
applications. Numerical experiments on two-dimensional turbulence 
(Fornberg 1977, Basdevant et al. 1981, McWilliams 1984) show a charac­
teristic tendency for a vorticity field to "condense" into a collection of 
relatively isolated vortices. Measuring intermittency by vorticity kurtosis 
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K" McWilliams (1984) reports values of K, up to 40 in some spin-down 
experiments. Basdevant et al. (1981) suggest that such intermittency effects 
may account for a steepening in the high-wave-number portions of spectra. 

It remains a matter of controversy as to what extent non-joint-normality 
threatens the exercise of closure theory as in (23). Such theories, which are 
termed "quasi-normal" are often supposed to depend upon proximity to 
joint-normality. The fourth cumulant discard in a weak-wave theory, which 
leads to (20) and (21), is usually argued on a basis of "random-phase 
approximation" or joint-normality. However, the fact that one calculates 
an energy transfer because (yyy> '" 0 already requires a violation of 
random phase. Introduction of the coefficient matrix Il leading to (22) 
further recognizes the violation of random phase. Thus it is in the nature of 
these closure schemes to suppose nonnormality. The danger is that there is 
not a deductive basis upon which to determine that departures from joint­
normality are being treated approximately correctly. In an effort to assess 
the skill of closure theory, Herring & McWilliams ( 1985) make direct 
comparisons between closure calculations and very high resolution 
numerical simulations of decaying two-dimensional turbulence. It is found 
that simulations indeed produce steeper high-wave-number spectra, as also 

K(.p) 

o 20 25 

Figure 13 Time evolution of various derivative kurtoses of tracer field c/> are shown from an 
unforced, nondissipative numerical experiment. Traces are labeled to show kurtoses of the 
following quantities : (a) rjJ itself, (b) orjJ/ox, (c) orjJ/oy, and (d) V2c/> (Holloway & Kristmannsson 
1984). 
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indicated by Basdevant et al. (1981), and that departures of simulation 
results from closure-theoretical results tend to be larger for larger vorticity 
kurtoses (near Kr; � 9 in the comparisons by Herring & McWilliams). It 
may be encouraging with regard to geophysical applications that inclusion 
of even a very modest value of p has been shown to contain Kr; at values near 
3 (Holloway 1984). Nonetheless, disequilibrium flows are seen to exhibit the 
qualitative impression of intermittency or of "phase-trapping" in coherent 
structures. Such behavior is not precluded by second-order correlation 
closure methods but neither is this possible behavior explicitly considered. 

Clearly there are limitations, as well as points that are in open doubt, 
with regard to the statistical mechanics of complicated geofluid systems. 
However, there are also many applications in which statistical-mechanics 
methods provide not only insight but also good quantitative skill. The way 
certainly is open to further application. Resolving some points that are in 
doubt and overcoming present limitations remain as powerful challenges. 
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