Evolutionary Models

Models of the ocean biology generally attempt to mimic the structure of the ocean as
we understand it from a very sparse data base. For example, suppose we have constructed
an NPPZ model, apply a seasonal cycle, and find one species appearing in spring and the
other in fall (figure 6.1a). But it is quite possible that another species with characteristics
intermediate bewteen the two could end up outcompeting, resulting in a single type present
for the whole year (figure 6.1b). The two species model, then, may provide a description
of the phytoplankton assemblage, but cannot explain it. Rather, we have to find what
physiological constraints and tradeoffs (as well as the circulation and mixing) determine
spatial and temporal biogeography.
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Figure 6.1: a) Time series with just two types with seasonal mixed-layer depth
variations b) Time series with the two types perturbed by others with different
uptake rates and grazing vulnerability. P/* is plotted to enhance the contrast.

This example indicates the importance of going beyond models with fixed traits and
beginning to consider models which populate a wide range of trait space or which allow mu-
table traits. The former were discussed briefly in previous chapters, but will be expanded
upon here. However, the context is different; rather than trying to see how a complex sys-
tem with many species could be represented, we are now exploring how evolution/ natural
selection, in conjunction with advection and mixing, will structure oceanic ecosystems.

“Natural selection” occurs when phenotype (observable charateristics) variations lead
to individuals which are more likely to reproduce and survive than others with less favorable
characteristics. These traits must be inheritable, but with the possibility of alteration by
mutation. Thus a model which includes evolutionary processes would have:

e a set of variables s = {sq, s2,...} which specify the phenotype of the organism. in
the model, these “trait variables” will set all of the vital rates (e.g., growth rates,
half-saturation constants, vulnerability to predation, etc.). The biomass density can
be treated as a function over space, time, and this “trait-space”

b(x,t|s1, sa, ...)



e rates of survival and reproduction which depend on the environmental conditions and
vary with phenotype

R=TR(s|[E) , R(s1|E)# R(s2|E)
e inheritance of traits, implying new organisms have the same values of s as the parents

0

—b(s) = R(s|E)b(s) ...

£b(s) = R(s|E)b(s)

e and the potential for mutation. For a continuous trait space, we could think of this as
a random walk or diffusive process, though that is undoubtably a great oversimplifica-
tion. If we associate mutation with reproductive events (occuring at a rate proportions
to g), then we could write

2409~ [ a0 .

with the expectation that the probability distribution M is very narrow; expanding
then gives an alternative form

0 b(s) = b o b

g (s) = g(s)b(s) + 552mb- -

with m being half the standard deviation of M. The differential form has the disad-
vantage, common to diffusion problems, of having a finite albeit tiny probability of
transforming a trait into any possible value. Discretizations slow the process; however,
if that’s a concern, the integral form can be used to bound the changes. We could also
consider a nonlinear form expressing the likelihood of offspring of type s arising from
parents with types s’ and s”. But we should also expect that, even without nutation,
offspring will have some spread in characteristics around that of the parents, so that
m above includes both natural variability in traits and changes induced by mutation.
For simplicity, we use a standard diffusion in trait space, with the expectation that it
will give a sense of the effects of mutation and trait variability.



MATH NOTE
The approximation of

F(s) = /ds'M(s|3’)f(s')

when M (s|s’) is strongly peaked around s = s’ but with properties depending on s and/or
s’ is closely related to the Fokker-Planck problem in chapter xx. We split the kernel

M(s|s') = A(s,s’)D< s’ —s )

o(s,s") “o(s,s)

where D /o is a peaked function with order one moments and o(s,s’) is small. s is a
parameter, so we can leave it implicit and look at

[ A s
r= [ o Py

with f = A(s')f(s'). Changing variables to z = (s’ — s)/o(s') with dz = ds(1 —
xo'(s")/o(s") gives

F = /da:D(a;)l —13:0’A(8 +x0o)f(s+ zo)

recalling throughout that o = o(s’) ~ o(s) + 20’ (s)o(s) + .... Now we expand for small o
keeping to quadratic order.
A 2A A
F~ /dJUD(SC) {Af—f— 0 f T+ 288 2f02332 + aasf ‘'ox? | [1 +z0’ + 2%00” + 20"

In terms of the moments of D (D,, = [ dz2™D(xz)), this becomes

F = DoA(s)f(s )—I—DlgAfO'—l—DQ[AfO'O'H—f—AfO'Iz—|—(Af) oo’ + = (Af)" 24+ (Af)o0']

0 1 02
= D()A(S)f( )—|— D1 a—AfO' + D22 Js 2Af0'
Putting back the first argument gives
0 , 1 82
F = Als,8)f (s, 8)Mo+ 55 A(s, ) f(s,8)Ma(s,87)| | +555 "

with the moments defined as

AN ZL', m ]'
M”(S’S>_/d O’(S,S/>D(O'(S,S/)>

(s and s’ being constant for the integral).
Another way to think about this is that we are representing

M (s,s") =~ My(s,s")o(s" —s) — My(s,8)d' (s — s) + Ma(s,s")d"(s" — s)




6.1 — Dynamics in trait space

We can extend the quadraic (Lotka-Volterra) model to discuss the movement of
biomass in a trait space s:

%b(s,t) = |:L(S,E) +/ds’ [a(s)G(s,s') — G(s',s)]b(s) | b(s, 1)

where the linear term L includes uptake of abiotic resources (F) and death rates while the
nonlinear terms represent the rate at which organism s grazes upon s’, G(s,s’), and the
rate a(s) at which grazed material is assimilated.

We can include food limitation by using the Monod form, both for uptake and grazing,
replacing the latter by a functional of b with a kernel

/ _ gm(s>q)(s’ Sl)
G(s, S ,b) = Fh(S) T fds”CID(s, s”)b(s”)

which is itself a functional of b. As a mathematical note, we reiterate that the vital rates
must give numbers for the possible values of the arguments; thus any nonlinearity must
involve functionals of b(s) which map a function b(s) to a real number. Integrals like those
above do precisely that: if we plug a function b(s") into [ G(s', s)b(s")ds’ we get some real
number (with units 1/7") given a value of s. We are then able to use this as part of the
rate calculation for 2 In b(s, t).

To represent these kinds of forms, we include the function b as an argument in the
various terms (including in L where it can represent intra-species competition for resources)

%b(s,t) = [L(S,E,b) +/ds’ la(s)G(s,s',b) — G(s',8,b)]b(s', t) | b(s, t) (6.1)
Note that L(s, E, b) is a function of s and E but a functional of b, as in the Monod example.
In 6.1, autotrophs have traits s such that L(s, E') can be positive and G(s,s’) is zero for all
s’, while heterotrophs have strictly negative L and regions of prey traits s’ with positive
grazing kernels G. Mixotrophs have the potential for both L and G to be positive given
the right mixes of biotic and abiotic food sources.

We can include the forms above under the notation R(s, F, b) and incorporate advec-
tion and physical diffusion to arrive at

%b — VrVb=bR(s, E,b) + /gMb (6.2)

(with E also potentially a functional of b) to determine the “evolutionarily stable strategies”
(i.e., what s values are selected for), how this is related to stability theory, and the effects
of mutation, diffusion, and advection.

At this point, it is worth re-examining continuum vs. discrete representations. Our
function b measures density in trait space; if we discretize that space, we expect the biomass

in some interval .
/ b(s)ds
S0
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should become independent of the discretization. In the simplest form, an integral such as
the grazing function

/ds'G(s’,si)b(s') — ZG(sg,si)b(s;)ds'

a matrix multiplication with the ds’ ensuring the convergence.

The basic variables in the common discrete models, lA)i, represent in some sense bds
so that adding new types will result in a decrease in the b; values. In this chapter, we will
deal with singular solutions (in the absence of mutation) which look like

~

b(s) =b;6(s — ;)

Integrals again becomes sums
/ ds'G(s', 5:)b(s') — 3 G5, 5)b(s))
J

but no longer have the ds factor. The amplitudes will be sensitve to the number of types
and their separation in s space.

Numerically, if the solution tends towards a singular one, the values of b will become
very large, since b(s;) ds ~ b; with the right-hand side having a well-defined, finite value.
In addition, if s; does not fall on a discretization point, we may have non-zero values on one
or both of the neighboring points with their sum times ds giving the equivalent amplitude
of the delta function. Thus we need to compare b to the local integral (sum times ds) of b.

These remarks caution against thinking of a point in trait space (or a discrete lA)l)
as representing a “species.” Instead. it occupies a small, but finite, volume in the space
implying that the biomass would not depend on the resolution and exact placement of
points if it is fine enough. By dealing with variability in the traits or phenotype — variability
which affects survival and reproductive success — we are not able to assess gnetic variability
and actual species diversity.

Mutation and reproductive variability will also lead to spreading of the delta function,
suggesting the continuum representation will be more appropriate in that case. Indeed,
the mutation integral is fine in the discretized sense

%b(si) = R(s;)b(s;) + /ds'M(si, s")g(s")b(s") — %bi = R;b; + ; M (si,s5)g(sj)bjds

but fails with the singular or discrete solutions

%Bié(s — ;) = R(s)bid(s — s;) + /ds'M(si, s)g(s")b;d(s — s;)

= Rli)la(s — Si) + Z M(3i7 Sj)g(3j>bjd8
J



The singularity on the l.h.s. can be cancelled with that on the growth rate, but the
mutation term does not generally match. The discrete form will pose problems as more
types are added; nevertheless, we find that for small mutation rates, the solutions often
have rather narrow sharp peaks so that delta functions still provide a useful approximation
to the other parts of the dynamics. We can solve with M = 0 and then assess the shape
of the peaks a posteriori and determine the rates of leakage into regions which might not
have been populated with the initial set of s; values.

6.2 — A Simple Example

Suppose the organisms have a 1D trait space and use a common resource, F', so that
the amount available per individual is
bo

Fr= Ffds b(s)

Growth will occur when F; > F,.; but saturates to a maximum value g,, when the
resources are plentiful. For example, we’ll use

. <FI_Fcrit)
g=9m 3 s

as in our discussion of the logistic equation; we end up with a similar system

0 02 (b)
ab—(g—d)ber@gb . 9=0m (1_b—c)+

with (b) = [ds b. The coefficients g,,, d, and b, = Fby/F,.;+ are generally functions of
s. The + subsript indicates application of the Heaviside function (A); = maxz(A,0). The
same form is obtained in an NP model assuming conservation among a dissolved nutrient
pool and all of the phytoplankton, N + (b) = Np, with quadratic uptake

o, N - (b)

For the logistic form, then, the growth rate

be(s)

has a relatively simple structure. The environment here is the density of competitors for
the resource as well as the value of F' or Ny implicit in the carrying capacity.

Here the functional of b(s) is the simplest one, (b), the integral of b. In later examples,
we will have kernels with structure; e.g. if the competition is local we might have something
like

R(s,E,b) = R(s,be(5),0) = gm(s) (1 — () ) —d(s) (6.3)
+

mwmwwgé—&@/w5%4Wﬁmw)—a@ (6.4)
c +



6.2.1 — Quota model

While the traits determine the vital rates, and thereby the fitness, the constraints or
trade-offs organisms must make are equally important. Even a single-celled organism has
specialized pieces it can use for transporting nutrients across the cell membrane, or pieces
for using light energy, or ones which make swimming possible. The amount of cellular
material allocated for the different functions will determine the rate at which it can grow
and divide in a particular environment. (Organisms can adapt to different conditions and
change the allocation of material, but we shall not deal with that.) As an analogy consider
an oversimplified view of the oil industry. If all its equipment is intended for extracting
oil and none for refining it, the income will be zero. Likewise, if all the equipment is for
refining, the industry cannot survive. Some effort must be assigned to each of the functions
to get income; with profit maximized for a particular division of effort. Furthermore, since
the initial investors have provided finite funding, the industry cannot just increase the
rates of extraction and refinement without bound.

These kinds of trade-offs and limitations apply in the case of organisms; they can-
not simply increase their growth rate without bound, and different species allocate their
machinery differently and are optimized for different environmental conditions. We shall
use a version of Droop’s(19xx) quota model to illustrate tradeoffs and the now indirect
relationship between the trait variable s and the growth rate g,,.

Droop proposed a two-stage model in which the required resources are taken into the
cell to make up the “cell quota” @Q; the production of new cells then depends on the ratio
of this quota to the minimum requirements @,

Div. rate (1 — %)+

In the case of multiple required resources, this becomes

Div. rate o« min (1 — %)
Q] +

giving a division rate (e-folding)

. Qm J (S>

[ = ioo(S) min <1 — = (6.5)
Qj (S7 t) +

with 1o (s) describing the effects on reproduction of the trade-offs in various parts of trait

space. With this form, the population numbers n(s,t) grow according to

0

Erii [ —d(s)] n (6.6)

The cell quota increases by uptake of resources, with a saturating function, and de-
creases as the cells divide. Using the Monod form for uptake gives
0 N,

a@j = Vj(S>N]+—]\‘7[h’j(s) — uQj (6.7)
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The Droop formulation suggests using a normalized excess quota Q' = (Q —Q,,)/ @, while

the uptake form can be usefully written with a normalized resource value N’ = N;/Nj, ;.

The growth rate then depends on Q’/(1+ Q') and the uptake on N'/(1+4 N’). In addition

to clarifying which parameters govern the behavior, the manipulations carry along fewer

constants. However, it is not really necessary, so we shall leave the more familiar forms.
If the quota equations are in quasi-equlibrium

The limiting resource will have the smallest 1.h.s. as well; for this one, (indicated by 0

subscript)
No

Vo——— = = oo — m
ONo—i-Nh,o Qo = oo (Qo — @m.0)

so that the growth rate also has a Monod form

Qo —Qmo _ y vNy
Qo *(v+1)No + Npo

= fhoo (6.8)

with vg = Vi/Qm,oftec measuring the growth time compared to the time to increase the
internal resource quota by ), 0. In terms of the populations, the specific growth rate is
UN/(N + K) with

Vo ~ Nnp
1 —+ Vo ’ N 1 —+ Vo

To explore trade-offs, we use two resources, nutrients (N) and light (I), with both
excess nutrient and stored energy being required for growth. The growth rate will depend
on the minimum of ¢y and ¢;. In essence, we can calculate the growth rates for each
resource separately using 6.8 assuming the others are not limiting; the actual growth rate
will be the minimum of these. To express the advantages or disadvantages of increased
ability to take in nutrients or light, we postulate that some amount of cell surface can be
allocated for transporters which bring in nutrients or for chloroplasts but not both. If s is
the fraction of that area devoted to light-gathering,

U= o

vy = (1 —s)oy and vy = s0;

(The trade-offs do not affect the maximum division rate p.) For fixed N and I, the
equilibrium gy and g; will have the same (1 — s) and s factors. So the growth rate when
light is limiting looks like

S @]NI
Nr+ Ny, 1+ s0rNy

B = Hoo

and has a Monod shape as s varies. Likewise, u, when NN is limiting, has a similar form
in the variable 1 — s. The growth rate as a function of s is the smaller of two Monod
curves, one for energy extending up to the right and one for nutrients extending up to
the left (figure 6.2). As the light decreases, the peak in growth rate decreases and moves
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towards larger s — the cells need more light-gathering machinery. Likewise, an increase in
N also moves the peak towards larger s, since they can take up enough nutrients with fewer
transporters and can increase their growth by increasing the number of photoreceptors.

Growth rate vs. s
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Figure 6.2: Division rate v/u vs. s for Uy =5 and Uy = 10.

For analytical convenience, we use a smooth form
= pmds(l —s)

6.2.2 — Quota model for predators

We can also view predation as a two-step process, leading to a Monod form. We
consider the intake of food as proportional to the concentration and the empty volume in
the gut. This could come about, for example by selecting only the smaller and smaller
prey fraction as there is less and less room in the gut. Then the effective available food
is roughly proportional to the total concentration F' over all sizes times the empty gut
volume. As food is processed, the gut empties and the biomass grows:

0
—G =~F maxr -
8tG ~F(G G) — \G
0
ab =)\Gb— ...
If the gut is in equilibrium,
_ ’)/FGmax
YE + A
and 5 7
ab: )\Gmammb— (69)



For tradeoffs, we can take s to be the ratio of GG,,4, to the animal’s volume, \ to be
proportional to the gut surface area s2/3, and the abililty to gather food, v, proportional
to the non-gut volume, 1 —s. Then we again get a growth rate curve (now smooth) which
vanishes at s = 0 and s = 1 and which has an intermediate maximum

F
F+ (Aos?3/70[1 = 5])
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Figure 6.3: Growth rate (divided by AoGp) vs. s for Fyg/Ag = 1.

6.2.3 — Evolutionarily Stable Strategies

Consider first the problem without advection or diffusion. When m = 0, we have
many possible singular solutions of the form

b(s,t) = b(t)d(s — 3)

with b satisfying

d - -
5,0 =RED)D

since E' = (b) = b. In our case, this is just the the logistic equation and steady solutions
R(3|b) = 0 have

p— be(3) gm(;l(_g;l(g)

Let us introduce a different organism with phenotype s’: b = b(t)§(s—35)+b'(t)d(s—5');
if its biomass is very low, it satisfies

5O = R(s'IB) = {gm<s'> (1 - bc(’_’s,)) - d<s’>}
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When the coefficients are time-independent, we can write this in the simpler form

lg / gm(‘S,) gm(‘S,) _ d<5,)b ( /) . gm<§) _ d<§)b (—) _ ( I) b(sl) _ b<§)

vor T b(s) L ogn() T am® LTI
where b(s’) is the equilibrium population for s = s’. The population with the largest
value of b(s) will exclude all others. (This is by no means a general result.) Alternatively,
this populaion is the one which reduces the available nutrient the most, minimizing F7.
The idea (Tilman, 19xx) that the ESS is the one which survives on the minimal resource
level and drives the resource down below the value the others require will appear in more
complex problems as well.

Figure 6.4 illustrates the process, taking g,, = 4s(1 — s); we begin with a random b(s)
such that R is positive in some range. These grow and reduce the value of R until only the
plankton near the maximum can continue to thrive. Then the slow process of excluding
the neighbors with very slightly negative R values continues, with b(3) increasing as the
width narrows, tending towards a delta function (or proportional to 1/ds in the numerical
implementation). This case illustrates the “sharing’ of a delta function at s = 0.5 among
two neighboring grid points; by the symmetry in the location of these at % + %ds, the
values reach a limit such that their sum is (b./ds) [1 — d/gm (3 £ 3ds)].

Figure 6.4: b and 5xR at t =[0:10:50, 100:100:500, 1000:500:4500, 5000:5000:75000]
with each profile offset upwards and to the right.

Another illuminating example comes from starting with a population centered around
a non-optimal value (figure 6.5). R again decreases rapidly as the population grows;
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however, for short times it now approaches a state where it is nearly zero averaged over
the group but has a noticeable slope so that the ones closer to the ESS are growing and
the ones further away are decaying. On longer times, this generates a drift towards the
ESS. As we shall see below, the rate of drift depends on the pulse width, so that in the
absence of mutation it slows dramatically.

Figure 6.5: like the previous figure but with a different starting condition. Profiles
are not offset to the right here.

6.2.4 — Local case

Competition is usually local in space, but it can also be local in time or in trait-space.
For example, if the trait s is related to weight (or log weight), the resources (prey) for
organisms with widely different s values will generally not utilize the same F', whereas
rather similar organisms will overlap in the food supply. We adopt the form

RO00) = n(s) (1= 5 [ 560 = 00 ) = o)

with d and b. constant, G gaussian (as in 6.4) with width ws = 0.1, and g,, quadratic
as before, and we start with a broad, off-center population. It quickly settles, but now
the growth rates at small r are not suppressed as the original population equilibrates.
As a result, new phenotypes branch off and move towards the peak R values until an
equilibrium with 6 species appears. At longer times, the peaks will narrow and steepen,
keeping the same biomass, with the long-time state having 6 delta functions (again spread
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numerically). Note the evens in which one rather spread out peak splits into two distinct
types.

25

15 -
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Figure 6.6: Local competition.

The solution here satisfies the Fredholm integral equation of the first kind

/ "Gl — (") = bels) {1 () }

s0 Im(8)

For the singular solutions b = b;d(s — s;), this turns into a matrix equation; we can search
for the set of s; values such that all the b;’s are positive and R < 0 over the domain. We
can also use the techniques of adaptive dynamics (below) to find singular solutions.

As the competition becomes more and more local (w, smaller), the solution has more
peaks until, in the delta function limit when each organism competes only with others
of exactly the same type, b becomes continuous and equal to the right-hand side of the
equation above. Interestingly, cusped kernels such as G = exp(—|s — s’|/ws) also have
continuous solutions. Such a form seems less reasonable, since we would expect a smooth
peak for competition; however, this is the structure of the correlation function for a first-
order autoregressive process, so it could be relevant for a different problem. In any case,
it does indicate the sensitivity of this kind of problem to assumptions about the kernel.
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6.2.5 — Time-dependence

For time-dependent problems, we can take a time-average to find

1, ()

7" 5(0)

= (R(s',t|b(3,t)) = R(5|3)

Then s will represent an ESS if
R(3|s) =0 [definition] and R(s'[s) <0 for s'#5
Organisms with a non-optimal phenotype will die out. Locally, these conditions become

32
68/2

0

S R(S5)

R(s'[3)

=0 |,

- , - <0

s'=s s'=3s

For the logistic-type model with periodic forcing, we can evaluate R(s’|3) as follows: given
s we find the periodic solution b(S, t) by writing the equation in terms of 1/b. We can then
integrate

0 - e

b= R(s[b)b
J 4 / . 1 AFN
ER(S ) = TR(S |b)

A

over a period T' with the final value being R(s'[5) = R(s’,T). As an example, we let the
point of maximum growth with respect to s to migtrate back and forth over the season as
well as adding a modulation in its amplitude (figure 6.7).

Gm = 24(1 — d4 cos(wt))[r — 0, cos(wt)][1 — 7 + 6, cos(wt)] — 5

when positive.
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Figure 6.7: ¢, (r,t) with contours from 0 to 1.4 with §, = 0.1 and ¢, = 0.25.

When we look at R(s’,3), it turns out to have local ESS conditions for two values of 3,
but neither is globally stable (see example in figure 6.8). Instead, the global ESS (figure
6.9a) has two separate species, one optimized for summer, and the other for winter (which
peaks in late winter because it has to recover from very low values) (figure 6.9b).
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Figure 6.8: R(s|s) for one of the local ESS states.
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Figure 6.9a: R(s|s) for the global ESS state.
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Figure 6.9b: b(t) for the global ESS.

Seasonal succession is sometimes ascribed to “temporal niches” associated with different
s values being dominant at different times of the year if the conditions remained steady.
This example has that character; however, we shall see that it seems less likely when the
growth rate variations depend on light and nutrients.

6.2.6 — With mutation

When m is not zero, we can still look for steady solutions

2
m%gb:db—gb: {3_1] gb

This is a form of Schréedinger’s equation with d/g playing the role of the potential; a local
maximum in g results in a potential well, and we can find “bound states” with localized
solutions for gb. Indeed, if g = go/(1+ (s — s0)?) with go = gim (1 — (b)/bc), gb will have
a Gaussian form .

gb = AGXP(—§(8 — 50)° /w?)

with w? = 2[v/m2 + 8ma+m)]. The solution requires a particular value of g = 4[va?m?2 + 8am+
am + 4] which then determines the population level A.
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6.2.7 — Relationship to stability theory

To understand the relationship to stability theory, look again at the linearized model

9., -, OR _,

with the basic state having B 3
b(s)R(s|b(s)) =0

For standard problems, the mean state is non-zero b(s) # 0 = R(s,b(s)) = 0, the first
term vanishes, and we deal only with the second term. For multiple species, this would
become

0 - OR;

Y = bi— b
ot " 8[)] b=b

as in chapter xx.xx.

In the case of an ESS, b(s) = 0 for s # 3 so that R(s|b) # 0 and the first term is the
important one. This case seems less familiar, but is similar to showing that a state with
only N and P will be unstable to adding Z. Likewise in the weight-structure models, we
have seen that the analogues to both terms must be included (xx.xx).

In the case with mutation, the base solution is non-zero everywhere

bR(s|b) + V.mV, g(s|b)b = 0
and the perturbation equations

0 ’ N\ 7/ -OR / /
8tb = R(s|b)b +baE<b>+VsmVsb

clearly have both terms entering. Near the “hotspots” where b is large, R is relatively
small, the second term dominates, and the problem looks like a standard stability system
modified by diffusion. Far away, however, b is small, and the basic state has a decaying
form with R nonzero. If R changes and becomes positive in that region, the population
can “tunnel” into the local maximum and grow. The amount of time this will take depends
on distance and the mutation rate.
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6.2.8 — Mixing

To analyze the effects of mixing on this kind of system, we consider a system with
diffusion and spatially variable properties favoring different s values at different latitudes

s, o 0
Eb = bR (s,x|(b)) + VEVb + gugb

Figure 6.10 shows an example solution for the R (s, y|0) pictured with
gm = [24(1 — s+ s0)(s — so) — 5](1.4 = 0.8y/L) , so = —0.25cos(my/L)

The population has isolated, overlapping bands, with each band having a sharp peak at a
particular s value and extending over a limited spatial range.

b

25 b
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0 I I I I
o] 0.2 0.4 0.6 0.8 1

S

Figure 6.10: Contours of b(s,y) with k = 0.01.

To understand this solution, consider the case neglecting mutation. We can find
single-species solutions b = bd(s — ) satisfying

%5 _ bR(5. x[B) + VAV (6.10)

This type can develop from a seed population if the eigenvalue o from
O’()bo = boR(S,X|0) + V/‘\',Vbo (6.11)
is positive. This is a form of Schrodinger’s equation, with —R playing the role of a

potential; “bound states” correspond to growing solutions, although we are only interested
in the gravest mode which has by everwhere positive. Such states can exist if the region
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where R (3, y|0) > 0 is big enough and strong enough to overcome diffusive losses into the
region where the death rate dominates (Kierstead and Slobodkin)

growth x L? > k

Likewise in regions where the population is dying, it will decay over a scale
Ldecay ~ ’i/ d

If the growth rates are small, we can estimate the final state amplitude and struc-
ture by multiplying eqn. 6.10 by by, subtracting b times 6.1, and integrating over space.
Assuming boundary fluxes vanish leads to

% / Bbo = o / Bbo — / Bho [R(x.5(0) — R(x. 5[

Now we add the assumption of small growth rate implying the amplitude is also small and
the structure is close to the eigenfunction by so that b ~ a(t)by. Then « satifies the logistic
equation

0 2
—Qa = 0pa — Y«

ot

SOESIE

allowing us to estimate the population amplitude. When the growth rates are larger, we
can still solve 6.10 numerically to find the equilibrated b(y).
Perturbations at a different point s’ in trait space will grow if the eigenvalue problem

with

o(sh =R(s,x|b)b/ + V&V (6.12)
has a solution with the real part of o(s’) positive. If js = s’ — 5 is small, the solution will
be v/ = b+ bés with o

ob~ R(3,x|b)b+ VkVb + gz‘; (6.13)

Using the self-adjoint property of 6.12-13, we find

_ OR 2 —2
(54 ds) _5s/dxgb //dxb
so that a local ESS will satisfy

OR -2

In the small growth rate case, this occurs when the growth rate from 6.10 is maximal, but
this is not a general result. As in the zero-dimensional case, the ESS still represents the
point at which the available nutrient is insufficient for plankton with any other trait value.
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The situation is more complex, because the nutrient is reduced differently at different
spatial locations. Other traits may be favored at other points in the domain, but cannot
offset the diffusive losses.

As the growth rate increases, or the death rate decreases, the trait corresponding
to a local ESS cannot suppress growth at a more distant s value. We can show this by
comparing og with o (figure 6.11). When the positive o region appears, we expect to find
a new solution with both traits appearing. Each one has peak populations where the local
growth rate is maximal, but they extend into the other region because of the diffusion.

Figure 6.11: xx

The example in figures 6.10-11 has a simple growth rate pattern

R = [Ro _ %Rg(s _ so(y»?L - ;ﬂ} _d

with
S = B — Js cos(wy/L)] [1 — 0y(y — L/2)]

By varying d, we can see the successive appearence of different groups, each having a “home
region” in which it can grow well with the other groups having only a small damping effect
because they are only sustained by diffusive input balancing the death rate; i.e., they are
multiple decay lengths Lgecqy from the region of growth . This shows up when we plot the
population of each type against its growth rate (figure 6.12).

Figure 6.12: xx

6.2.9 — Advection

If we have a steady circulation, the parcels moving on each streamline encounter time-
dependent forcing. As an example, we take the Stommel circulation model, which has a
rapid western boundary current (1m/s with width ¢ = 75m in a L = 5000 km square box.
The streamfunction (to a reasonable approximation when ¢ << L) is

v =Vol[l —x/L — exp(—z/l)]sin(wy/L)

Circulation times range from a few years for parcels staying near the western boundary to
a decade for those passing near the center of the box and several decades for those closer
to the outer edges. We assume that R varies with y in the same way as above (figure 6.13).

Because the time scales are long, nothing can survive on the outer trajectories; all
types are subjected to prolonged periods during which they are unable to grow. On
the innermost trajectories, conditions do not change much, so a dominant type becomes
established, close to that which would exist at the central latitude in the absence of motion.
Further out, we have a few trajectories with low s values in the inflow and the western
boundary current, a transition to an intermediate type in the outflow, a high value ocean
interior which then steps down in low latitudes.
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Figure 6.13a: Values of (b) along streamlines.
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Figure 6.13b: Values of (sb)/(b) along streamlines.
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Figure 6.14b: Values of (sb)/(b) along streamlines.



With a small spreading/ mutation rate (1079 d=1), the transitions smooth out (figure
6.14). We still see low s types in the western boundary current with a drop in the biomass;
these both recover in the outflow region.

If we include both advection diffusion, using a 2D numerical code with the same
Stommel circulation, we find much of the domain is dominated by diffusion, some of it
numerical.

Figure 6.15: xx

6.3 — More general cases

The previous section used a simple example to illustrate the main principles; now
we need to examine some of the complications which arise even in a model having only
autotrophs. If the PP rely on a single nutrient

0
ab = R(S, N)b

we can see that a local ESS will also be an extremum for N. The singular solution has
b= b(3)6(5—3). The nutrient level will be adjusted to N (5) such that R(5, N) = 0. Taking
a first derivative gives

OR ORON

o5 T ON o5
For a local ESS, the first term vanishes; since R is most likely monotonically increasing
with N, we see that N(s) has an extremum also. The second derivative at the critical
point

0

0’R n OR O*N
95> = ON 05°
implies a local maximum or R with repsect to s will be a local minimum in N(s) as

Tilman(19xx) argues.
Expressing the conditions

R(s',N;,b) <0

(with the zero obtained only for s = §) can also be done explicitly in terms of the vital
rates. For example,

N
= ———d
R = () gy~ 40
has the steady resource level L
pogal)
n—d

with the overbars indicating evaluation at s =3. The ESS condition
uN < dNj, + dN

implies

=
|
al

= (6.14)

I
F
= -
l
=



Thus the ESS occurs at the s which maximizes (1 — d)/dNy (and not in general at the
point where the growth rate p is highest) and minimizes N. In this case, the nutrient
equation (e.g. a chemostat model with

9. Nb(s) .
EN_ —/dsu(s)m-i-)\(N—N)

where N is the nutrient level of the inflow) plays no role in the selection process; instead,
it determines the population level

UPTAKE/ ASSIMILATION TRADE-OFF

Klausmeier, et al.(20xx) suggest a trade-off in which cell machinery can be allocated
either to nutrient uptake (Vy = Vi (1 — 5)) or the building of cell mass (fioo = Sfioo),
giving vy = s0,/(1 — s). If the quota is in equilibrium, then the growth has the form
UN/(N + H) with the coefficients being

U pVo fises(l—s)on
pQm +V s+ (1—s)oy

and N
_ PQm N hS _

T uQm+V T s+ (1—s)iy

The function we need to maximize

Hd N,

Rle) = pd  Qm

_U-d_ 1 l“_d v 1} (6.15)

has a peak — the ESS — at 5 = \/d/fico.
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TWO REQUIRED RESOURCES

When the organism has two required resources for growth or has alternatives, with
trade-offs between the two, the optimal value of the trait parameter regulating this trade-
off depends on the strength of the forcing (e.g., N; and NQ) If we use the same quota
model and consider d to be constant, the ESS will have both nutrients limiting simultane-
ously; otherwise the population n will be centered on a region where p is an increasing or
decreasing function of s. The only point where it can settle thus has

Qm,l Qm,Z
The number equation
1 (9 . Qm 1 Qm 2)
——N = lloomin | 1 — —,1— =) —d
n ot K ( Q1 Q2
implies
Q' = Qm L
J »J ILL _ d
The quota equations then give us the uptake rates
ViV, piood
~ i = Q@m,j
Nj + Nh,j Moo — d

If the trait parameter s sets the relative efficiency of uptake V; o< (1 —s) and V5 o s, these
equations give N; and N, as M-functions of s. Using the uptake expressions in the ratio
of the two (equilibrium) nutrient equations gives another expression

N1 - N1(S) _ Qm,1
NQ — NQ(S) Qm,Z

(6.17)

which will leads to a quadratic expression for s with coefficients depending on N; /Qm1 —
N3/Qm,2. Clearly, changing the inflow nutrient levels will change the value of s; the
optimal type will depend upon the environmental conditions (Figure 6.16).

ESS

. . . .
0.8 0.9 1 11 12
ny supply level

Figure 6.16: Predicted s value in a simple case.
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ALTERNATIVE RESOURCES

For another case, consider an organism which can use either of two resources, though
they may different nutritional value. It can tradoff the effort to acquire one or the other;
the food intake could be represented as

F=5sRi+ (1—s)aRy
with
0y, ¥
ot MFIR

0 sb A
aRl = —,uRl / F+F0 + )\(Rl - R1>

b—db

J ., (1—s)b .
aRQ = —,uozRQ/ F+ Ry —+ )\(RQ Rg)

For this problem, the resource values approach Ry = aRs = F, in which case, F' becomes
F, = dFy/(pn — d), independent of s, and we can have a continuous b(s) solution (figure
6.17). The b function is weakly constrained such that

a+1

[p=S-r) . [o=Shs R TR
d d

otherwise, the shape depends on the initial conditions. This is an example of Hubbell’s

“neutral evolution” having multiple coexisting types, none of which have a selective ad-

vantage over the others. If we start with a single type which equilibrates b = bi(s — 3),

with 5 given by the ratio of the two integrals above, F' — F, becomes independent of s so

that the growth rates for all s # 5 are zero.
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Figure 6.17: evolution of b for the alternative resources model.
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As in Barton, et al. (20xx), time-dependent forcing selects a single s value. To see
this, let us non-dimensionalize the equations, scaling time by 1/d, b and F' by F,, Ry by
Ry, = F,, and Ry by Ry, = Fi/a. The equations

0 F-1

= B

ot (m )F-l-m—l
QR——_R/——ﬂ——+MR—R)
T B p— L
g (1—s)b LA
ERQ——mOéRQ/m'i‘)\(RQ—RQ)

with m = p/d, N = \/d, and F = sR; 4+ (1 — s)R3. The condition for neutrality is

F-1 m 1 1

_—) = 1—7: - ) = —
i) =0 o e T

If we use (1) > ﬁ,T we find that

(F) > 1 or in dimensional terms (F) > F,

with equality holding only when F' is constant. Organisms faced with a fluctuating food
supply require higher mean levels than the value which would suffice for a steady supply;
this is true for all s values. (Indeed this will hold in general for type II intake and mortality
is independent of time.) If the needed increase in average food levels varies with s, we could
expect exclusion of all the species except for the one with the minimum (F). If we look at
the weakly fluctuating case F' =1 + f’, the growth rate is

o 1 1 1

1- (m) ~ E<f/> - W<f/2>

T m—1"
with f/ = sR} + (1 — s)Rj. The ESS will occur at some 3 where both ¢ and 22 are zero.
We find this point by taking b = b(t)d(s — 5) and solving the time dependent equations to
find the cycles of R} and R),. We can then evaluate
ds 1 0f 2 ,0f
2 ~m'os! w55

;o
with %’; = R} — R),. Since the second derivative of f’ is zero, we have

25 2 ,(af\°
FER _W<<E) )

(V@i - vai@)] ) = 0

T expand out
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The second derivative is negative, so that we indeed expect to find a singular solution at
the 5 point. Figure 6.18 shows the development of an isolated peak with seasonal forcing
of Ry and Rs; the exclusion times are long, depending on (R} — R})?). Note one special
case: for a particular type of forcing, R} = R) and b = by(t) B(s) giving again a continuum
solution. This requires [sB/ [ B = a/(1 + «) and Ry = R,. In dimensional form, the
latter condition just implies Ry = Ry — the time-variable resource supplies are always in
the ratio required by the organisms’ preference or nutritional value.
b:yr 10-1010

4

400

250

200

150

100 -

0 0 - 0.2 0.4 0.6 0.8 1 l.‘2 l‘.4
Figure 6.18: Year-to-year changes, tending to a singular solution in the period-
ically forced case. Snapshots do not show the yearly cycle, since only one was
taken each year.

The latter suggests that perhaps a could also evolve. Assuming it is a decreasing
function of s —i.e., that organisms which prefer R, also gain more from using it than those
which prefer R, — seems to lead to a split in the population with peaks at s = 0 and s = 1.
The organisms which can use both are excluded.

TWO-D TRAIT SPACE

For trait spaces with higher dimensionality, locating the global (or local) ESS requires
solving coupled nonlinear equations (when looking for the vanishing gadient of R in s
space) or maximizing a complicated function of several or many variables. If they just
interact to modify the uptake of a single resource, we may just have to maximize a function
like (4 — d)/dNy, but with respect to multiple trait variables. For example, suppose we
take our predator model and assign fractions of the animal to sy devoted to necessary
functions (assumed constant), s; gut volume as before, and sy defense mechanisms. The
rates of biomass increase by growth and reproduction are proportional to 1 — sg — s1 — So,

2/3

Gmaz < 81, and A o< 57" as before. The death rate will be taken to be proportional to
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exp(—ass), reflecting increasing efficacity but never perfect defense. As in the nutrient
uptake example eqn. 6.14, the ESS will maximize

)\Gmam —d
Ad /v

(i.e., p = AG, N, = A/~ from 6.9) shown in sy, s9 space in fig. 6.19.
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Figure 6.19: R.do/v0Go for do/AoGo = 0.1 and o = 5.

While this figure shows the optimal state when the resources can be dpleted to a
steady value, it is not sufficient when they or the parameters are varying in time. We can
gain some insight for a system like

0

R = pl(t) N+N, ¢

———— —d = pl(t) — uN
A pl(t) — pNp
where both the uptake and nutrient level will be time-dependent, by regarding the steady
nutrient level R, = Npd/(p — d) and u = p/d as the coordinates (figure 6.20). The
transformation of coordinates is not one-to-one, as can be seen by the crossing lines, each
of which has constant ss.

L L L L L L L
0 05 1 15 2 25 3 35 4
R.

Figure 6.20: R,, u/d curves.
If we use Nj, = (u — 1)R., we can rewrite the net growth rate

wl R,
N — R, +uR,

1 u(l—1)N+(u—-1)(N-R,)
ER_ N_R fur =u(l—-1)+(u—-1)|1-
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The time-averaged growth rate is

G= <1R> = u(l) =1 = (u— DuR(5— Rf+ uR,

) (6.18)

Suppose we start with a singular solution at a particular 5 value and integrate to a periodic
(or, depending on the nature of the variability, statistically steady) state. If the resource
reacts to the b, then we also find the cycle of N. Now we can find a line in (R,,u) space
for which infinitesmal populations will neither grow nor decay. To see this, define

Nh = (u — 1)R*

(the half-saturation constant); the neutral line satisfies

Given N;, and knowing #(t), N(t), we can average in time to find u and then set R, =
Np/(u—1). By using a range of N}, values, we map out the neutral line. Organisms with
traits such that they fall to the left of this line will be able to utilize lower resource values
and will grow, This shows clearly in the simple steady case ¢ = 1, N = const when the
growth rate is

N — R,
N — R, +uR,

which is zero for a constant value of R, = N. Thus the neutral line exending from the
chosen type is vertical, and organisms with a lower R, value will grow and exclude the
original type. Therefore the types in the interior of the nose in figure 6.20 will be excluded.
The surviving type will be the one for which the neutral curve is tangent to the boundary
of the allowed region. For the steady case, with vertical neutral curves, this is the same
as the type with the lowest R, value. But when the resource is varying, the neotral lines
curve down and off to the left, so that the tangent point occurs at larger v and R,; figure
6.21 shows an example of this when the resource satisfies

%N:_/bR+)\(NN(t)—N)

G=(u-1)

L
0.4 0.405
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Figure 6.21: close-up of the possible states in R, u coordinates, and the neutral
curve from a particular s value. The points arise from a discretization in s space.
N varies from 1 to 9 sinusoidally with a period of one year, while A = 1/100d.

For this example, the changes are not dramatic, but the example illustrates the point
that the ESS depends on the temporal characeristics of the environment, not just the
mean. If the variations in N and ¢ are weak, we can expand the G = 0 condition using
6.18 to find

R*:<N)—<<x;3+<£’N’> , '=(—1, N =N—(N)

so that the neutral curves will indeed look like the one in figure 6.21.

As a second example, suppose the organism can allocate effort to acquiring nutrient /Ny
or nutrient Ny or to growth so that V; o< s; and poo o< (1—51—52). f Q1/Qm,1 < Q2/Qm, 2,
the expression which will be maximized (from 6.18) is

which will increase as sp and correspondingly Q2/Q., 2 decreases. Therefore the ESS
should have colimitation with Q1/Qm 1 = Q2/Qm,2. Secondly, we can maximize R at a
given s9 to show that the ESS must lie on a curve

d
81:1—82— N—(]._SQ)

As before, colimitation leads to 6.xx; therefore, we can scan along the line above, solving
for Ny = Hd/(U — H), then using

Q1/Qm 1 _ 5101 Ny Ny + Np 2 _ 1 (6.19)
Q2/Qmz2 S22 N1+ Np1 Ny ’

to find N5. We can then search for the value of so such that 6.xx is satisfied. Figure 6.22
shows the line relating s; and ss, the line from 6.xx with the appropriate Ny value, and
the distribution of n(s) arrived at after xx years (beginning with a uniform distribution).
The centroid of the population numbers has not reached the ESS point and th progress
towards that has slowed significantly; the approach to the ESS takes long enough that we
can doubt if it will reach that point before other environmental conditions change.
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Figure 6.22: contours of n superimposed on the lines relating s; and so; the small
circle marks the ESS point. The value of Na/Qpm 2 — N1/Qm,1 is about % the
predicted value from 6,xx, yet is changing by only 2 parts per thousand in 10
years.

6.4 — Adaptive dynamics

Dieckmann and Law (19xx) point out that the dynamics may be approximated by
equations for the net population and the rate of movement in trait space. As a simple,
but analytically tractable example, consider a system with

R = [RO - %Rg(s - 30)2} oW

C

|—d

where Ry, Rs, b., d, and sg could be functions of time as the population or other processes
alter the resource. We can find a time-dependent solution

b = bo(t) exp {—% s ;f(g)q
when 0.
Fridie —R50™ +2m
%5 = —R30%(5 — s0)
= Ry — R 0)* = 5y —d

with R} = R;(1 — ov2mbo/b.). The center of the distribution moves towards the peak in
the growth rate curve at a speed which depends of the slope at the current center location
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[—R%(5—s0)] and the square of the width of the distribution. The width asymptotes to the
value (2m/ R;)l/ 4 which narrows as the growth rate curve becomes more sharply peaked.
The population will increase or decrease depending on the sign of of R —m/o? — d; the
dynamics of the resource will adjust Rj until it reaches the equilibrium value.

The dominant species trait s will move up the gradient at a speed proportional to the
gradient in R and to the covariance. The covariance increases because of mutation, but,
if R ig negative, it will settle to a finite width.

052
For the more general problem, we define the net population biomass

Bz/drb
ng/drbr

aijl_):/drb(ri—ﬂ)(rj —Tj)

the mean r value

and the variance

These evolve according to

o —

gb—/drbR

0_ -1 _
an—b /dr (r; —T7;)bR
0

——1 _ _
aO‘ij =b /dr [(TZ — 7“1)(1“]' — Tj) — O‘ij}bR-l- 2m¢5ij
If the distribution b(r) is narrow, we can, at any given time, expand R around the current
mean

OR 1 _ . O’R

+—(7“i—ﬂ)(7“‘

R=R(F)Hri—T) 543 i) Grers
1 7 J

1
= RQ‘FR;(TZ‘—T@')'F?R% (Ti —71')(1“]' —Tj>

giving approximate equations

gl_) = {'Ro + %R;,‘Jij} b

ot J
a— / 1 " — — —
a?“i :O'iij,j—f—%'R,jk (T’i—Ti)<T’j —T’j)<7’k—7“k)b
0 —
0 s =Ry 1/dr ((rs —73)(ry —73)(ri — )b
1 -
+ 5 ;clmb ! /dI‘ [(7‘2 — FO(T’J‘ — Fj)(?‘k — Fk)(Tm — Fm)]b — O'ijO'k;m + 2m2<5w
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If we make the quasi-normal approximation, assuming that b is close to a Gaussian function,
these simplify to

0 - 1 _
—b = |:7—\),0 -+ 572;;01]} b

ot

9 _ :

it = oul (6.20)
20':1 o [Tk jm + CimO k] + 2m;6;;
ot 1 2 km |YtkOjm imYjk 1015

1
= ik RigmTmj + 2m;0i;

(using the fact that both R}, and o;; are symmetric). The dominant species traits T will
move up the gradient (even though R(7) = 0) at a speed proportional to the gradient in R
and the covariance. The covariance increases because of mutation, but, if R} = is negative,
it will settle to a finite width as in the simplified case.

The environment will be time-dependent because of many external factors, so that R
itself has a whole spectrum of variability. The velocity for movement in trait space will
therefore be fluctuating, and we cannot expect the system to be in equilibrium. If the
external changes are very slow compared to mutation times, the system will be very close
to the ESS for current conditions:

OR(s,t)

~0
(951-

s=8(t)

In contrast, if the environmental fluctuations are fast, the center of the distribution will not
be able to keep up, and the mean trait value will settle at the point where the time-averaged
< OR(s,t)

velocity is zero
—_— ~ 0
0s; ls=s >

For intermediate time-scales, comparable to mutation times, the center of the distribution
will partially, but not completely, track the variations. The population dynamics is implicit
here, basically maintaining R (S, t); as we shall see, it may play a much more active role
with multiple trophic levels.

When w have local competition as in Fig. 6.6 or, as we shall see, loalized predation,
we need to define a localized form of adaptive dynamics. We represent b as a sum of
near-delta functions

b= bi(t)p(s —s;)

where ¢ is symmetric, has integral 1, and is localized in a small region around argmuent
0. Keeping only the first terms in the Taylor expansion or R gives

o _
—=;0i = R(si, N)b;
6tb R(s;i, N)b

0 OR

8t “J 8sj s=s;

(6.21)
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The functionals of b implicit in N will turn into functions of the b;’s. If we are concerned
with finding steady end states, the value of o will affect the approach time, but not the
final values. These equations can be stepped forward; when two “species” get too close,
they can be merged into one. As an example, we show the case considered in Fig. 6.6,
showing that indeed the stable final state has biota with six distinct traits; if we start with
fewer, the final equilibrium shows that neighboring types can grow, whereas starting with
more leads to mergers until the six remain.
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Figure 6.23: Adaptive dynamics solutions for the r values in 6.6 plotted against
log(t). The upper panel starts with 5 types and the lower with 8. The growth
rate vs. continuous r at the end of the integratio is shown with the vertical line
being the zero value and positive values to the right. The case with 8 types settles
to an ESS with 6 distinct points.

These solutions show that a steady state for the lowest order adaptive dynamics solution
with NV types may nevertheless be unstable to the introduction of biomass with a different
trait.
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6.5 — Predation/ food webs

We now consider predation, which transfers biomass from one region to another in
an enlarged trait space which, for organisms with trait s, includes information about their
prey and their predators. For simplicity, we begin with a generalization of the QNPZ
model; the biotic part can be written

R = L(s) + /ds' M (s,s")b(s) (6.22)

where the linear term L includes uptake of abiotic resources (N) and death rates while
the nonlinear terms represent the rate at which organism s grazes upon s’; M(s,s’) > 0,
or s is eaten by s’, M(s,s’) < 0. The trait variable s here can be partitioned into a set of
values corresponding to autotrophs (L(s) > 0, M(s,s’) < 0) and heterotrophs (L < 0 and
M (s,s’) > 0 for some prey s’). In terms of a discretized version, the pure QNPZ matrices
would have a block structure like

e (5) (2 0) e ()

But this more general structure also permits mixotrophs which can have both L and M
positive. We also note that intra-species competition can enter as M(s,s’) < 0 for s’ in a
small enough neighborhood of s so that the organisms resemble each other clearly enough
to compete.

Our autotroph example 6.3 has

L =gm(s) —d(s) and M(s,s') = —gm(s)/be(s)

(independent of s’ so that the integral just yields —g,,(b)/b.). Now, however, we turn
to the QNPZ system. We partition s, into two segments r = rgSorig for 0 < 54059 <
0.5, representing the phytoplankton and s = so(serig — 0.5) for 0.5 < 54050 < 1 for the
zooplankton. With N = Ny — [drP — [ dsZ, the linear and nonlinear terms become

I - (u(r)flle;(—S;lp(r)) and M — <G(S;gg?r,) —p(r) —OG(S’J‘)>

with the integrations occuring over the primed variables and G(s, r) giving the rate of Z(s)
grazing on P(r). Writing these out less compactly makes the similarity to Moloney and
Fields (19xx) discrete model obvious:

9p
ot
%Z(s) = [a(s) /dr G(s,r)P(r) — dZ<5)} Z(s)

(r) = {u(rw - [as25)60sr) - dpm] P(r) o

Both forms are useful; we shall work with the explicit one for simplicity, but comment upon
the somewhat more general one 6.22 when possible. To simplify the derivations further,
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we shall partition G(s,r) into a part giving the maximum rate for ZP with trait s and a
part depending on the ratio of the prey and predator weights. If we take the traits to be
log weight [or more precisely r = In(w/wo,), s = In(w/wp)], then

G(s,7) = gm(s)®(s —r)

with ® < 1. By choosing the wg factors appropriately, we can move the maximum to r = s;
if the preferred prey’s weight is % of the predator’s, then we just choose wgs = 10w,
We comment that food limitation can be included by making GG into a functional of
b; for example,
G(S, S/, b) — gm(S>q)(S, Sl)
Py (s) + [ds" ®(s,s")b(s")

(remembering that G represents grazing by type s on s’). Most of the approaches used
below in the quadratic case carry through in the M-function case, though results may

differ.
6.5.1 — Singular solutions

As usual, we can find singular solutions to 6.23 using
P=Pt)5(r—7) , Z=Z(t)d(s—73)

and recovering the equation xx.xx with the interaction coefficient being G(5,7). Now,
however, we focus on determining when this state is an ESS by postulating

P=Pt)5(r—7)+P't)5(r—7r") , Z=2Z(t)d0(s—3)+Z'(t)d(s—5')
The steady state for the ZP equation
al(5)90(5)B(s ~ )P = dz(3

can be combined with the equation for the growth rate at s’

leading to the condition that 3 be the ESS

a(s")go(s)P(s" —T) _ a(5)g0(5)2(5 —T)
d.(s') d.(3)

We assume that a(s)go(s) = dz(s)Py with Py constant; in the case of traits being log
weight, this gives equilibria with equal PP biomass in each log weight class (as in xx.xx).
For the singular solution, P = F,y. The condition above becomes

I\

b(s' —7) < P(s—T)
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We have the freedom in choosing the base weights so that we can make ®(x) to have be
maximal at z = 0 with a value of 1 (therebye setting go(s)). For the ZP, then, 5 = 7
represents the ESS.

For the PP, the situation is less simple. The criterion

pw(r'YN — go(5)®(5 — ') Z — dp(r') < u(F)N — go(3)Z — d,(T)
The local extremum condition is
@ (F)N —dp(F) =0

since ® = 0 from the ZP equation. We shall take dp to be constant or even zero, in which
case the extremum condition is just that p obtains its maximum value at 7. The case with
dp = 0 (all PP death occuring from predation), gives a growth rate for PP with different
traits

o |2
Rp = u(r)N — —P(s—r
O |45 a1
Both pu(r’) and ®(s — r’) are parabolic with maxima at " = 7. The growth rate will be

negative if
[2"O)] _ (@)
®(0) pu(T)
(both second derivatives being negative); the extremeum will be a local ESS if the PP
growth rate is more sharply peaked than the grazing function.

We parameterized the traits r» and s such that ®(s — r has its maximum at zero;
likewise, we can shift r such that the maximum of p is at r = 0.

_ 1 _ _
R ~ po(F)N —dp — go(3)Z + 5(90(3@22 — puaN)r?

The first three terms cancel, so that the r = s = 0 point will be stable or unstable
depending on whether go(5)Z®; is less than or greater than us N. A narrow grazing kernel
(P2 large) and a wide nutrient uptake function pg small) will tend to be unstable. The
net growth rate for PP, in the absence of ZP, is parabolic, with the peak above zero. The
grazing depresses this curve until the former peak rests at zero. When the grazing kernel is
wide, the whole parabola moves down enough so that the » = 0 point is an ESS. However,
when the grazing kernel is narrow, it only makes a dip in the net growth rate such the the
r = 0 point goes to zero leaving the growth rate positive on either size (figure 6.24).
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Figure 6.24: sketches of the net PP growth rate iwth a narrow Gaussian grazing
kernel, a wide kernel (dahed), and no grazing (dotted).

When dp = 0, the equilibrium has Z = 1oN/go, and the growth rate becomes
1
R~ =N (@2 - @) 2
2 Ho

The solution with 7 =5 = 0 is no longer stable when ®5 > 2/ 0.
With the slightly more general case

b= bz(t>5(8 — §¢>

(with the previous case having only two values for i), the steady state equations for b

become ~
M (5;,55)bj = —L(5;) (6.24)

can be combined with the linearized equations for the perturbations at different s’ values

10 =
yabé = L(s}) + M(s;5;)b;

= L(s}) — M(s},5;)M (5x,5;) " L(5%)
to determine the ESS condition:
L(s}) < M(s},5;)M(5,5;) " L(5k)

for s; # 5;. These must hold simultaneously for all values of i. It will generally be easier
to find the values of 5; by examining the condition for a local extremum
aL(Sl) B 8M(8¢,§j)
681 N 681

M (3k,5;) " L(3%) (6.25)

with the derivatives evaluated at s; = 5;. Once found, we can test whether they are
maxima or not.
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6.5.2 — Bifurcations

Weitz, et al. (20xx) examined the adaptive dynamics approach to analyze the behavior
when the 7 = § = 0 state is not an ESS. Like their equations, ours have the simplest
quadratic nonlinearity, although we use a continuous traait space rather than stochastic
mutation and sampling. In the siplest form, we have

%ﬁ = [u(F)N — ZG(5,7) — dp(7)] P
%7 = [a(3)GGE.NP - dz(5)] Z

0= onp [ - 72950 g5
S5 = oz | AT 5

with N = Ny — P — Z. Near the origin (in the simplest case with dp = 0 and gy, a, dz
constant), the last two equations for the mean trait values become

%F =opp [W'NT —go®"Z(T —3)]
d _
&g =07z [agoP(I)"(E — 7)}

The determinant is positive, so that instability requires

opp N <‘I’2 — %) > 072dzP2

If 077 /0pp is large enough, the origin is stable in the adaptive dynamics equations; oth-
erwise, the mean traits develop a limit cycle (fig. 6.25) The adaptive dynamics picture
seems clear: the PP mutate away from r = 0. If the ZP mutate slowly, the PP will find
a new ESS at some finite . But the ZP mutations will slowly decrease |s — r| and the
PP will begin shifting back until there is no local maximum and they move quickly to the
other side of the origin. For the case sketched in fig 6,24, we can find the 7(3) such that
the Z nd N are in equilibrium and %T =0. E.g., for

1 — 1 _
Rp = <M0 — 5#272) N — goexp <—§q>2[§—ﬂ2> Z

the equilibrium population balances the two terms, while the trait migrates according to

_ 1 _
%F — 3;?:3 —opp <_N2NF+ Oy [F — 5|go exp (—5(‘[)2[5_7]2) Z)
_ 1
:(Tpp,ltoN (—&T-l-(bg[?—g] { — —&72})
Ho 2 po
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The vanishing of the term in parentheses gives the relation superimposed on fig. 6.25; the
limit cycle is basically a relaxation oscillation around this hysteresis curve. When the ZP
mutate more rapidly, they keep up with the PP, so that the %E equation is inequilibrium
and S is nearly equal to 7" at all times. The second term in 5;7 is negligible, and 7 is driven
back to zero by the first term.

Limit cycle

0.25

L L L L L L
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 6.25: Limit cycle for opp = 250,, with pus = 2ug and 5 = 2.6. The
dashed line shows the realtionship between 7 and s in equilibrium.

Unfortunately, these scenarios do not agree with the full model even when mutation
included. Fig. 6.26 shows that for both small and large ratios of the ZP mutation rate to
that of the PP, the distributions settle to a steady state with two dominant P “species”
and one Z. The steady state is approached by dampled oscillations, as one or the other
PP stypes dominates and the ZP distribution shifts towards the dominant side, leaving
the other able to grow. Mutation enahnces this process, but does not permit continuing
oscillations.
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Figure 6.26: Two éxamples showing the decaying oscillations and the approach
to a state with two P types and one Z. The first has the mutation rate for PP

100 times larger than for ZP; the second has the opposite.

If we try an adaptive dynamics experiment with many initial types, merging them
when they approach closely enough, and using o pp = 07z for added stability, we reproduce
the 2 P, 1 Z final state with the growth rates showing all three points are local maxima
in growth rates, and the combination is a global ESS (fig. 6.27). Adaptive dynamics can,
indeed, give the proper answer, but starting from many types and sorting them out rather
than letting a single one evolve.
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Figure 6.27: Movement in trait space starting with 15 initial prey and 15 predator
types. The growth rates, Rp and Rz, are shown at the final time.

With this insight, we can look for solutions as ®, gets larger and larger, corresponding
to narrower grazing kernels. We find a sequence of bifurcations labelled by the number of
PP types and the number of ZP types: 1,1 — 2,1 — 2,2 — 3,2 — 3,3 etc. Odd numbers
have a type reappearing at the original maxima 7 = § = 0. Apparently, these states
are stable to invading species with other traits, as shown by the Rp and Rz curves. In
addition, the population dynamics shows that thes states are neutral, with some decaying
eigenvalues and some oscillatory ones. In the 2,2 case, the nonlinear terms do lead to
damping; however, the derivation is lengthy and difficult to do for higher ®5 cases. The
numerics, on the other hand, show that oscillations in the values of P and Z also damp
out.
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Figure 6.28: As in 6.27, but with a larger ®5 value, sowing the evolution to a 5,5
system.

6.5.3 — Continuum solutions

The results in the previous section are quite different from those in Chapter xx, where
we found smooth solutions to the coupled NPZ system. The difference lies in the form of
the grazing kernel. The steady states are solutions to the Fredholm integral equations of
the first kind

/ds’M(s,s’)b(s’) = —L(s)

Given the form of the uptake and grazing functions, and thereby of M and L, will there
be non-negative solutions and will there be regular solutions?

If we continue with the grazing of the form go(s)®(s — r) and the same allometric
scaling d.(s) = a(s)go(s)Py with Py constant, we require

/dr O(s—r)P(r)=F

for a finite range of s values. In Chapter xx, we looked at the same problem but as size-
spectrum models; in the current context, if the traits are again weight or its log, we are
asking whether particular weights would be favored.

As an example which can be solved analytically, we consider an exponential grazing
kernel with a cutoff for » > s. When the traits are log weight, this means predators prefer
prey smaller than some fixed fraction of their own weight, with the preference decreasing
as some power of the weight ratio

O(s—7r) x e_A(S_T)(s >r)

where the PP and ZP weights are scaled so that s = r corresponds to (for example)

wp = 1—10wZ. We can also choose the range of possible weights to correspond to trait
values between 0 and 1. When discretized, the miximum prey to predator size ratio cutoff

gives a lower trianglular matrix, ensuring the existence of solutions. We can also normalize
B(s—r)=n(s)e ) (s > )

with 7 chosen sothat the intergal of ¢ is one: n = (1 — e~**)/\. But we’ll retain the n(s)
notation for generality.
Using solutions to the integral equations

[ dr 0P = £6) = ) = @it = a) £ A0 + 50

/ ds e—A(s—r)Z(S) = f(r) = Z(S) — % = f(b)o(s—b) + Af(s) — disf(s)

(6.26)



The continuum solutions are

P = Py(ro)n(ro)d(r —ro) + APy(r)n(r) + %[Po(r)n(r)] (6.27)
where Py(r) =d.(r)/go(r)a(r) and
Z(s) = nls) Zo(s1)0(s — s1) + AZo(s) — iZo(s) (6.28)
90(s) ds

with Zy(s) = pu(s)N —d,(s). We choose the smallest value of 79 (the minimum PP weight)
and the largest value of s; (the maximum ZP weight) such that both of these are everywhere
positive. We can then iterate on the choice of N until N + [dr P(r)+ [ds Z(s) = Nr.
In the case of pure allometric scalings with exp(—/3’s) forms, P, constant, and a
normalized grazing kernel, the maximum wieght has ;1(s1)N = d,(s1) while the minimum
weight is zero with n(0) = 0. As a result, the amplitudes of the singular solutions are zero.
Now P = P, and
1— e—)\s

Z =7
Agoe=P's

[(A + B\ Ne P’ — Adp]

and we can find the relationship between N and Np explicitly. However, adding the
constraint p(s;)N = d, leads to a transcendental equation for N; this can be iterated to
a solution rapidly.

Equilibrium solutions
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Figure 6.29: Example of stable continuum solutions with A = g’ = 8, uo = 1.5,
go = 0.125, a = 0.6, dp = 0.01, dzo = 0.15, (Py = 2), and Ny = 5.

The sudden drop of Z to zero for s > s, although clear from 6.28, seems odd, since
the ZP for s slightly larger than s; still have a food supply very similar to that for s
slightly smaller. But they are being out-competed: their growth rate is somewhat smaller
because of the gg(s) factor and the fact that & is a little further down the exponential tail.
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A similar disadvantage appears ass s — s1, but it is offset by a new food supply at r = s
which the smaller ZP cannot tap. This no longer exists for r, s > s; since u(r)N < d, and
the PP cannot survive. Thus, some form of competitive exclusion persists even in these
continuous solutions.

6.5.4 — Mixed solutions

The general solutions above suggest we should also see mixed cases with singularities
and also smooth parts. As an example, suppose that p drops back to zero as s — 0. Then
Zy will be negative and %ZO will be positive for small s values, so that 6.28 will give
negative values for Z(s). Since the Z solution comes from the PP equation, the negative
values indicate the combination of low p and grazing pressure from the positive ZP at
higher S values prevents growth of the autotrophs. Therefore, r¢ will be greater than zero,
n(rg) will be positive, and the singular contribution in 6.27 will be non-zero.

To solve, we begin with an estimate of N. That gives us the value of s; where Zy =0
and rg where AZy = d/dsZy. P has the singularity as r; and the continuum solution in the
range 7o < r < s1 (6.27) and Z satisfies 6.28. We can then compute total N + [P+ [ Z
and adjust N until this matches Np; an example is shown in figure 6.30.

Mixed equilibrium
14 ‘ ‘

P(num) --------
12 - Z(num)

10 - / - J

0 // 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 6.30: Mixed solution superimposed on the numerical solution after 1000
years. Ar = 1/128. The growth rate is 6r(1—r)e~8". The singularity is integrated
over Ar in both curves.

If we do not normalize the grazing kernel, then 6.28 likewise has a singular contri-
bution, now in the smallest possible size, and a continuum distribution extending up to
the point where Zy vanishes. The ZP maximum occurs in the smallest size class, with Z
decaying weakly for larger s.
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Figure 6.31: As in 6.29 but for n(s) =1 and gy = 1.25.

6.5.5 — Peaked uptake and grazing kernels
We might expect that the grazing kernel is peaked with a smoot transition to 0.; e.g.,
®(s—r)=n(s)(s —r)e (s > ) (6.29)
If we normalize in the same way, the equation for P9R) is just _a% of the first equation

in 6.26; therefore, the solutions remain the same. However, the Z equation does change,
developing a singularity at the large s end:

2= |55 - 25w = F| s L 1) = Nulo)-dy = Nl (o)

gives the distributions shown in figure 6.32 in the case when p just decays exponentially.
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Figure 6.32: the case with ¢(z) ~ zexp(—Ax); here the numerical solution is
shown at 5000 yrs with dr = ds = 1/64.

When p is also peaked, the solutios become more complex, and analytic solutions are
less apparent. For example, figure 6.33 shows what happens with

p=(1—eye e

and the ® function 6.29.
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Figure 6.33: a case with both grazing and uptake having peaks. A = 16, a = 2,
B = 16; solid: P, dashed: Z, dotted: u, dot-dash ® (scaled).

We can examine the development of this kind of structure by starting with a wide
grazing kernel and a narrow uptake function and then broadening the latter (figure 6.34).
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Figure 6.34: a sequence with a = 96, 32,16, 8,4, 2,1 and 8 = 2« with solid: 5 x P,
dashed: Z. The offset of the plots to the right and upward somewhat obscures
the fact that the sigular P solution is shifting to lower r values. The continuum
solutions would settle to a constant curve like that for « = 16 given a long enough
time, although these were integrated for 10,000 yrs. The singularity in Z at low s
seems to disappear as the continuum solution broadens, but one develops at the
maximum s value, as in fig. 6.33.

However, the shape of the grazing kernel can make a significant difference. We have
also looked at the case with a ® which decays exponentially in both directions (though not
symmetrically) but does not cut off:

® = [1 4 tanh(58(s — r))][1 4 tanh(—B(s — 1))];

The resulting patterns are much more like the discrete solutins found in section 6.2.4. The
solutions in the case of an uptake function much wider than the grazing kernel appear to
be approaching a discrete set of P and Z values, but extremely slowly.
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Figure 6.35: a sequence with o« = 32,24,16,8,4,2,1 and § = 2« with the double
tanh profile.
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To illustrate this point, we plot results for two very similar grazing kernels. Even
though both sets are noisy, in figure 6.36. When the grazing kernel becomes narrow, many
of the traits become populated. The shape of the kernel still seems to matter: for one with
a cut-off (as used above), the distribution becomes continuous, albeit the time needed to
reach smooth curves is very long. But for a kernel which decays exponentially in both
directions, even nonsymmetrically, the distributions remain “spiky,” suggesting that the
final state might be a set of singular points. Here, they are smoothed out by the numerics
and the finite integration time.
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Figure 6.36a: Solutions with a kernel which cuts off when s > const xr (illustrated

by one example ¢ curve (t = 100, 000 yrs.
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Figure 6.36b: Solutions with a kernel which decays smoothly for s >> r (illus-

trated by one exaple ¢ curve.
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6.5.6 — Omnivores

We can include omnivory and carnivory by going back to equation 6.22 but using a
2D trait space, with r corresponding to log weight and n ranging from 0 for autotrophs to
1 for hetereotrophs

b(rl, m %b(r, n) = u(r,n)N —d(r,n) + /dr’[aG(r,n|r’,n’) —G(r',n|r,n)]b(r’",n’)

We begin with the simple case where n = 0 or 1 only (either auto- or heterotroph) and
assume that anything within the prey size range is preyed upon equally, with no distinction
between PP and ZP. Then we have

By = HOIN = dyfr) — [ ds 0G5~ r)gn()Z(5
%%Z = a(s)go(s) /dr (s —r)[P(r)+ Z(r)] — /dr (r — s)go(r)Z(r) — d.(s)

As an example, we show the structure for the (s — r)exp(—A[s — r])(s > r) form (figure
6.37) with the allometric terms proportional to exp(—10s); the ZP extend over a wider
range, and, as figure 6.37b shows, the ones at large s values are supported by consuming
the smaller ZP.

Omnivory
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Fig. 6.37a: Case with ominvorous ZP. Feeding does not depend on whther the
source is PPorSZ. The noise at the end is clearly discretization error; it is in
steady state.
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Fig. 6.37b: Fraction of food for Z(s) from the PP.

The very small ZP may only be able to capture and assimilate PP, while the largest
organisms are entirely carnivores. Of course, the world does not work this way, just as
feeding is not a strict function of the ratio of prey to predator weight. We can add a
preference, p(s), for ZP in class s for PP, with 1 — p(s) being the preference for ZP as
food. Figure 6.38 shows the not-surprising result — which will be quite sensitive to the
shape of the preference curve — that the zooplanton separate into two overlapping groups
depending on their food source.
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Fig. 6.38: P and Z vs. log weight with preference of small Z for P only and
large Z for Z.
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As a final example, we consider a case it which the grazing kernel starts when the
prey weight is some fraction of the predator weight, e.g.

P~ (s—r—a)e TV (s> 4 a)

Numerically, the previous version was posed with a very small negative offset so that the
bin with » = s had a non-zero value; this could be viewed as a form of competition rather
than cannabalism. But when « is positive and not small compared to the descretization,
the ZP distribution is no longer smooth (figure 6.39). Local competition appears to be at
work here: predators in one area seem to suppress smaller competitors until ® is too small.
But competitive exclusion acts very slowly when the traits are very similar, so the P and

Z distributions change noticeably on time scales of 100 years even after intergations for
108 years.

12 -

Fig. 6.39: Case with gap in size between predator and prey. Computations with
128 size classes (solid) and 64 classes (dashed) are shown.
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