From Individuals to Continuum Mechanics

In the previous chapter, we discussed the conditions under the density b;(x,t) of
particular organisms/ species/ groups of species is an appropriate representation of the
spatial distribution of individuals. But the same question arises in the dynamics: to what
degree do we need to calculate where each individual is, what it is doing, what it may
be eating, and what may be preying upon it? Or can we generate predictive equations
for %bi, and when might such an approach fail? Our previous derivation of equations for
the changes of the densities in time assumed that they were advected and diffused by the
fluid flow in the same manner as inert tracers such as salinity. But an organism — even
a “planktonic” organism — usually can move relative to the water, if only to sink or rise
buoyantly. These behavioral motions may be quite large: some zooplankton can migrate
up and down 1000 m vertically in a day, corresponding to a velocity several orders of
magnitude higher than the vertical velocities in the fluid. In this chapter, we shall revisit
the dynamics to see how the movements of organisms can result in aggregation, dispersal
and/or translation of a group. We shall also see how the quantities characterizing the
motion and spread (or convergence) of the density field are related to individual behavior.

The mathematics developed here apply to other problems where stochastic variability
can be significant; in particular, we shall use the same ideas to study structured population
models in Chapter xx.

2.1 — Importance of Movement

Currency-based reaction-advection-diffusion models in which motion and mixing are
purely physical share one property: no matter how many compartments or how complex
the interactions are, the total

br =) _b;
i

satisfies the same advection-diffusion equation as a passive tracer. By construction, we
have accounted for all the exchanges of, say, nitrogen so that
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summing the individual biological equations gives

%bT—i—u-VbT =V - -sVbr . (21)
Equation 2.1 has important consequences:
e Local maxima or minima are smoothed out with time.
e If the values of by at the boundaries are held fixed, the maximum and minimum values
will be found on the boundary.
e If there is no flux of material through the boundaries, by will become spatially and
temporally uniform.



We can prove the first assertion by looking at the integral of by over a small area (volume)

around a point xg
a/bT % u-fle-i-% /‘\',fl-VbT
ot 9A 8A

If x¢ is a local maximum, the last term will be negative definite, causing the peak value
to decrease and, likewise, a minimum to be filled in. Defining the boundary of the area to
be a contour of constant by allows us to show that the first term
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vanishes for non-divergent flow. Since the advection does not contribute, the integrated
value near a maximum will decrease with time.

The third assertion can be demonstrated by noting that the spatial average (br) is
conserved
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The deviation from the mean 0. = by —(br) satisfies the same advection-diffusion equation.
If we multiply said equation by b/, and average, we find
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which shows that the variance around the spatial (and temporal) mean decreases steadily.
Eventually, the total by will become uniform, invariant with respect to both x and t. The
implications in the deep ocean are striking: almost all of by will be in the dissolved forms
(e.g. nitrate plus nitrite) and the total of those would be uniform. Since observations
indicate significant variability with large and systematic gradients, we cannot expect a
closed model work well for an ocean basin.

Inhomogeneous sources or sinks for one or more constituents (e.g., riverine input of
nutrients) can lead to inhomogeneous distributions for the same reasons that salinity is
nonuniform — the variations on the top or sides will be advected into the interior and their
amplitude will be attenuated, but not erased, by diffusion.

In addition, living creatures (or, for that matter, detrital material) move relative to
the water; if we write a continuum equation for the i*" constituent

0
abi + V- [(0+ Wpio,i )bi — (K + Fbioi))Vbi] = B



we find that the flux of by
ubr — kVbr + Z Upio,ib; — Z Kbio,i V b;

depends on more than just by and its gradient. As we shall see, even relative simple types
of motion can greatly alter the distribution of by. Movement can also produce aggregations
or patches. For zooplankton (or fish, etc.), we can think of the reaction (birth, death, ...)
terms in the density as being relatively small if we are considering times that are short
compared to the life cycle. Localized, persistent, high density patches can arise when the
biological component of the velocity uy;, is convergent.

With this background on the significance of motion relative to the water, we shall now
examine models which help us understand the behavioral contribution to the velocity and
to the diffusivity.

2.2 — Models of Stochastic Motion

To understand the effects of the behavior of organisms — their motion relative to
the water — on their distribution, we start at the level of the individual and study its
movements, both deterministic and stochastic. The common models for the position X of
a single organism fall into two categories. In the simpler idealization, the animals make
random hops (also called random walks)

X(t+ 6t) = X(t) + U(t)5t + 6X | (2.2)

with Udt representing the mean displacement over the interval ¢ and dX a stochastic
increment with zero mean and (as we shall see) a variance order dt. Alternatively, the
random flight model predicts the displacement as the integral of the velocity, and the
stochastic term acts as an acceleration:

X(t+dt) = X(t) + U(t)dt (2.3)
U(t+dt) = U(t) + A(t)dt + 6U '

To see how the same math applies to a structured population model, consider a case in
which organisms at different life stages are characterized by different weights. The weight
of an individual will satisfy an equation such as

W (t+ 6t) = W(t) + g(W(t), 1)t + W | (2.4)

where the mean rate of weight gain [g(W (t),t)] depends on the current weight and perhaps
on environmental conditions represented as an explicit variation in time. A specific indi-
vidual will gain weight at a rate which differs from the mean in a stochastic way, depending
on its success or failure at gathering the needed resources. The stochastic term, 6W, may
depend on the weight and environment as well.

Figure 2.1 shows examples of these three situations; each plot traces the characteristics
of multiple individuals starting from the same conditions. The variability proves significant
for many reasons:



e Our expectations of where we might find organisms can be quite different; the place
where the probability is highest is not necessarily predicted by the mean position.

e The mean trajectory can be different from that predicted by the deterministic parts
of the equation.

e The average rates of biological processes such as the consumption of resources can
be altered. If, for example, the grazing rate depends nonlinearly on the weight with
higher weight organisms feeding more effectively,

grazing = aW + gW? |
the mean grazing rate becomes
(grazing) = a(W) + B(W)* + (W — (W))?)

which is larger than that predicted from the mean weight (W) alone. Since nonlinear
biological reaction terms are the norm, rather than the exception, we must expect
variability to play a role in the mean dynamics; the degree of its significance remains
an open question.

The individual dynamics above can be represented in general as

Zi(t+6t) = Z;(t) + U;(Z, 1)t + 0 Z;(Z, 1) (2.5)

where 7y, Zy, Zs3,...Zn are the variables determining the state (e.g., X, U, and W for
weight-dependent random flight behavior). The random increments 6Z; have (§Z!) = 0
and (as we shall see) (§Z;0Z;) = 2K;;6t. For some of the equations, the random term
may be absent (or, equivalently, have zero variance). Note that we could work with biased
random processes without explicitly separating the mean

Zi(t+6t) = Zi(t) + 6 Z;(Z, t)

For this form, (§7;) = U;6t and (0Z,0Z;) = U;U;6t? + 2K;;6t. Such equations have been
analyzed in detail in many places (beginning with the theory of Brownian motion, Einstein,
19xx, Wax, 19xx) and applied to many types of organisms (c.f. Okubo, 19xx, Flierl, et al.,
19xx); we shall adopt a simpler version (c.f. xxx) which results in much the same answer
but is mathematically more straightforward.



2.3 — Random hops:

To start with a methematically and conceptually simple case, we consider motion on
a discrete, one-dimensional lattice of points for the case where the mean has not been
removed. During a time interval §t, an organism at lattice point x can move an integral
number of lattice points jéz with probability Pr(jéz|z).

Transitions from a site

PT(\—3A|X) P (A]X)

X=-3A X-2A X-A X X+A X+2 A X+3A

Transitions to a site
P_(3A|X-31) P, (-A|X+A)
T T,

I

In this model, “behavior” simply means that the probability of making a hop in any
particular direction depends on environmental cues at the current position . For example,
an organism may decrease the probability of moving if the food concentration is high. Or,
if it can perceive gradients, it may preferentially hop to the right if the conditions seem
better in that direction.

Simulating the random hop on a lattice process is easy (but somewhat more difficult
than coding 2.2): at each step, a random integer conforming to the appropriate probability
distribution is computed for each organism, which is then moved to the new lattice point.
Experiments with only hops of —dz, 0, and dx having non-zero probabilities (figures 2.2-
2.5) show:

e Peaks spread out with the rate of spread proportional to the j # 0 hop probabilities.
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Figure 2.1a: Random hops with Pr(dz|z) = Pr(—déz|x) = 0.1, 6t = 1, dz = 1.
The solid line shows one realization; the dashed lines the probability distribution
computed from 2.xx. Times are 50, 250, 500, 750, and 1000. Plots for successive
times are displaced downwards.
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Figure 2.1b: Pr(dzx|z) =

60

Pr(—dx|z) = 0.4.

o If Pr(dx|z) > Pr(—dx|z), the group also drifts to the right.
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Figure 2.2: Pr(dz|z) = 0.125, Pr(—dzx|zr) = 0.025. Times are 500, 1000, 4000,
8000, 12000, 16000, and 20000. The dotted line shows the predicted steady state
from the eigenvector of T (see below).

If the probabilities depend on position, we see aggregation behavior. The simplest case
is the isotropic one Pr(dz|z) = Pr(—dz|z) = po + p1z. The organisms only change
their behavior based on local conditions and do not sense gradients, yet are still able
to aggregate. If the reduction in the tendency to move occurs in regions where the
environment is favorable (abundant food, for example) this movement pattern (called
“kinesis”) will lead to enhanced growth.
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Figure 2.3: Pr(ddz|z) = 0.4(0.02 + 22/50%). Times are 500, 1000, 4000, 8000,
12000, 16000, 20000. (Plots are displaced upwards).



o If Pp(dz|x) — Pr(—ox|z) varies with z, we can also find aggregation near the point
where a decreasing Pr(dzx|z) crosses an increasing Pr(—dx|x) (if such exists). This
kind of behavior, called “taxis,” provides another, more active aggregation mechanism
for organisms which can sense conditions for some distance around them and can make
directional decisions.
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Figure 2.4: Pr(dz|r) = 0.4(0.02 + 22/50%) for x < 0 and 0.02 for x > 0.
Pr(—ox|xr) = Pr(dx,—x) is the mirror image. Times are 0, 500, 1000, 1500,
2000, 2500.

Thus this very simple model can exhibit mean drifts, dispersion, and the basic mechanisms
for aggregation induced by behavior (as contrasted with that generated by population
dynamics).

2.3.1 — Probabilities

In addition to direct simulations of the stochastic process, we can look at how the
probability P(x,t) of being at location = changes with time. In the 1-D case, the chance
of an organism being at a particular site at time t 4 dt is given by the probability that it
was at a site z — jox at time ¢ and made a hop of distance jéz (summed over all j values).
[The likelihood of staying at z is just Pr(0|x).] Therefore, the probabilities of occupying
a site change according to

P(x,t+ dt) = ZPT(j5x|x — jox)P(x — jox,t) . (2.6)

Since each organism must end up somewhere, the transition probabilities are constrained
by
> Pr(jozlz) =1 . (2.7)

J



Not only is this procedure easy to code, it is amenable to analysis. For example, we can
find the steady states, if they exist, by considering the equation for the probability written
as a transition matrix

P(t + 6t) = TP(t)

with the i'" component of P being the probability of occupying site idz and Ti; = Pr([i — jloz|jox).
The steady state is just the eigenvector of T corresponding to the eigenvalue 1. We know

that 1 is indeed an eigenvector because (1,1,1...1) x T = (1,1,1...1) by (xx). Therefore

we have a left eigenvector with eigenvalue one and must also have a corresponding right
eigenvector, Figures 2.xx also show the steady states corresponding to the examples above.

Note that these are calculated for a bounded domain (with the conditions on Pr ensuring

that the organisms do not cross the edges of the area); in many cases, the probability of
occupying the favorable region is inversely proportional to the domain size. We will discuss

the existence and characteristics of steady solutions in more detail below.

2.3.2 — Differential Equation Version:

If we Taylor-expand 2.xx to order 6t, dz, and dz2, we find

Plx,t) + %& = Pr(jéz|z)P(xz,t) — % [Z j0xPr(jox|z)P(x,t)

(1o [Z 2622 Pr(jo|a)P(x t)}
2 0z 4 ’
or
oP(z,t) ., 0 , , 1 02 9e o ,
Tdt =~ [P(az,t) Z]dasPT(jéﬂx)} + 3522 [P(w,t) Z] dx“Pr(jox|z)

The assumption here is that the scales over which the transition probabilities and P itself
vary are much larger than the hop size dx; such an approximation — that the mean free
path is short compared to scales of variability — is an intrinsic step in deriving diffusion
equations.

We can define the mean velocity

1 . .
U= 5 [E jéxPT(]5x|x)] =5
and the dispersion coefficient

K= % [ijéxZPT(jéﬂx)} = o5




where (Az) is the mean hop and (Az?) is (to the appropriate order in §t the expected
variance.! These definitions yield

oP 0 0
5 = 55 [U@P )] + 5 [K(x)P(x,1)]
or, in standard advection-diffusion form,
%'P =-V- [ubiop - /‘\'fbiovp] (28)

with

ubiO:U—VIC s IibiO:IC.
We shall use this standard form (extended in 2.xx to two and three dimensions under
the assumption that K is isotropic); keep in mind that the biological velocity includes
contributions from both taxis (U) and kinesis (—VK).

Equation (2.xx) illustrates the transition from individual behavior (summarized by
the quantities U and K) to a continuum equation for changes is the density p = NP/,
where N is the number of organisms, and P’ = P/dx is a probability density (so that P’z
is the probability of being in the interval x — dx/2 to = 4+ dx/2). Therefore the expected
density satisfies the same equation as P

a R

at’ =
As we shall see, the same form will arise for the random flight model, but requires further
approximations. As discussed in chapter xx, continuum models such as this are the most
common approach to biological modelling; however, we should note that individual-based
and continuum simulations can differ in a number of ways. First, of course, any particular
realization will necessarily give a density distribution (calculated by summing the number
of individuals in suitably sized volumes) which differs from NP’; we would need to compute
a large ensemble of realizations and average them to recover the predicted probability
distribution.

—V - [Wpiop — Kbio VP ] (2.9)

Aggregation

We can see what is required for aggregation by repeating the derivation (x.x) using P
and the appropriate velocities and diffusivities

2//77:—77&1// V'ubio‘i‘% Kbiol - VP
ot)) a A oA

Local maximum can be intensified only if the biological velocity (including both bias in the
hops and gradients in the hop probabilities) is convergent. When the hops are restricted
to a single lattice distance, we need either

o 2
%[PT((SQ:M) — Pr(—bz|z)] <0 or @[

or both — U must be convergent or K must have a minimum.

Pr(dz|z) + Pr(—dzlx)] >0

T Le., K = var(Ax) /25t + U268t /2; if the first term has a finite limit as §¢ — 0, then the
second term will be vanishingly small in comparison.

10



2.3.3 — Generalization to multiple dimensions

Now let us generalize to the full problem (2.5) where there can be a large set of state
variables Z for each individual, including position, velocity, weight, etc.; following the same
steps starting from

P(z,t+ dt) = ZPT(éz\z —0z)P(z — dz,t)

(with the sum over all possible vector displacements 6z) and expanding, we obtain the
Fokker-Planck equation

2
Op— 2 WP+ 2

5 9o ~ (KmnP) (2.10)

02m02n

with U; = (Az;)/dt giving the mean motion in phase space and K,,,, = (Az,Az,) /20t
giving the diffusion induced by the stochastic variability.

Note that the step of passing from a difference to a derivative in z requires the lattice
size to become very small, and, concomitantly, the random terms to have a range of values,
with a pattern such that the moments become independent of the mesh spacing. Thus we
obtain the same equation if we begin from the equations (2.xx) and treat 6Z’ as a random
variable with a continuous range of values (eg., Flierl, et al., 19xx).T

DIVERGENCE OF PHASE-SPACE VELOCITIES

In chapter one, we looked briefly at the question of when mean motion results in
divergence form like 2.xx versus a Uia%i form; because P(z,t)dz1dzy...dzyn gives the
probability of being within a volume Ildz; around the point z, P is a “per unit volume”
quantity, and the divergence form is indeed appropriate. But it is pedigogically worthwhile
to see exactly how this difference plays out in the case where Z represents weight. If a 100
g organism grows to 105 ¢ in time §t and a 103 g organism becomes 107 g (with the ones
in between remaining in between), the number per unit weight will go up by a factor of
(103 — 100)/(107 — 105) = 3/2 (see figure 2.xx). More generally, if

Z — Z+U(Z,t)6t

Z+dz— Z+dz+U(Z+dz,t)6t ~ Z + U(Z,£)8t + dz <1+?9—U5t) ,
z

then the volume (length in 1-D) changes by

dz — dz <1 + 8—U§t)
0z

T We use, throughout, the Ito calculus appropriate to the case where the characteristics
of the stochastic terms are set at the beginning of the step.

11
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Figure 2.5: Changes in volume associated with spatially varying mean velocities
Ul(z,t)

In the absence of stochastic terms, the probability satisfies

P(z,t)dz = P(z+ U(z,t)dt, t + dt)dz (1 + a—U(St)

0z
oP oP oU
~ P(z,t)dz + Eétdz + Ugdtdz + Pgétdz
5o that oP _oP OU_. 9P 0

The first two terms come from transforming movement in Lagrangian space back to Eule-
rian space, while the third arises from the volume changes along the trajectory.

In N dimensions, the volume of a parallelpiped defined by a set of vectors v(7) is given
by the determinant of a matrix V;; = vi(] ) having the v’s as its columns. If the matrix is

Vij = dz;0i;
initially, it changes to

oU;

12



at time ¢ + 8t. The off-diagonal terms of V contribute to the determinant at order §t? or
higher, so we can estimate the volume by
oU;
V(t

- <1+6tzggi> [[d= ~ <1+5tz

Thus the rate of change of volume is set by by the divergence (in N-dimensional space) of
the velocities V'), %gj, and the mean (determanistic) part of the evolution equation

V(t + 6t) ~ Hdzl

Pz, )V (t) = P(z + Uz, t)ot, t + 5tV (t + ot)

results in

oP oP oU;
— +Ui— +P
ot "0z 0z;
(reverting to summation notation).
With this derivation providing more detail on the underpinnings of the advective part
of the Fokker-Planck equation, we shall use 2.xx or its advective-diffusive form

=0

0 0 0 0 0

in the following sections and chapters.
2.3.4 — Comparisons

We have discussed three different approaches: first, the “individual-based model”
(IBM) with the positions of some number of organisms advanced by using random numbers
(in the lattice problem, to see if each organism should hop left, right, or not at all; in the
continuous problem to select a X — see appendix A.2). Second, we can compute the
evolution of the probability distribution using (2.xx). Thirdly, we can solve the diffusion
equation (2.xx-xx). Figure 2.xx shows a comparison of the three methods after 100 time
steps for the simplest problem of dispersion from a point. For the IBM, we compute the
probabilities by averaging 10,000 realizations; the diffusion equation solution is computed
directly from the analytic solution

1
VATt

The IBM simulations, which we can also think of as releasing 10,000 individuals at
x = 0, show statistical fluctuations around the expected probabilities, most noticeably at
the tails where the numbers are small so that the fluctuations are relatively large. Note
also that the maximum distance traveled by any of the organisms was less than 20% of
the potential maximum distance (1000x/Jt units).

The direct calculation of P from 2.xx likewise has a cutoff for |z| > 100, which
correponds to all 100 hops being to the left or to the right; the organisms spread at a
finite rate of speed bounded by w4, = dz/dt. The diffusion equation, in contrast, gives a

P(x,t) = exp(—x?/4Kt)

13



finite, albeit tiny, chance of being much farther away, but underestimates the probability
of being in the range (0.5-1) XU qzt-

We can think of problems where this difference could become significant: if an organ-
ism is trying to maintain itself against advective losses in a favorable area (see xx.xx), its
maximum movement speed could be critical in determining whether it can diffuse back
and reseed a growing population.

For this very simple problem, the diffusion equation works well as long as the regions
with a small number of organisms (or very low probabilities) are not of significant concern.
If that is not true, a probabilistic model or an IBM would be called for (with the recognition
that individual realizations may turn out quite differently from each other). We shall return
to the advantages of each approach when we couple movement and physical flows.

14
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Figure 2.6a: Probability of being at position z at ¢ = 100 for an organism released
at x = 0 at time 0. The parameters are P; = P, = 0.1 and dx = it = 1.

t=100
| | I I ' T T T
Markov +
Probability
Diffusion --------
01
0.01 |
o
0.001
0.0001
1e-05

Figure 2.7b: Closeup of previous figure.
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2.4 — Random flight — Lattice-Boltzmann model

While “hop” might be an apt description of escape responses, many organisms move
by swimming, so that a random flight model seems like a more appropriate model for their
motion. Taking the positions and velocities as control variables, with mean accelerations
a and stochastic velocity changes dU, we can find a version of the Boltzmann equation

directly: 5 5 5 .
50 (%, t) = —a—xi(uip) - B—ui(aim + B, 9,
with KC;; = £(0U;6U;)/8t. As before, the stochastic terms induce a diffusion in the relevant
space; in this case, the velocity dimension. We can regard (2.xx) as a differential form of
the Boltzmann equation, although (unlike the gas dynamics case he considered originally)
the equation is linear. However, social behavior (responses such as attraction to congeners)
leads to expected values of Ju or du? which depend on the density (related to NP) so that
the equation can once again become nonlinear.
We will see that, under some restrictions, the random flight model again leads to an
advection-diffusion equation for the density of N organims

(Ki;P) (2.12)

p(x,t) = N/duP(x, u,t) .

For illustriative purposes, a simple 1D version can help us understand the limits of validity
of the diffusion approximation. This model constrains the velocities to be —u, 0, +u. We
can then solve for the probability changes in a two-step process:
1) Translation
P(x, —u,t+ 6t™)
P(x,0,t+6t7)
P(x,+u,t+6t7)

P(z + udt, —u,t)
P(x,0,t)
P(x — udt, +u,t)

which can be written as

P(x,ui, t+ 5t7) = P(x — u;ot, u;, t)

2) Acceleration

P(x,u;, t+ 0t) = ZPT(Ui — ujle,uj, t)P(x,uj,t +6t7)
J

where Pr(du|z, uj,t) is the probability of accelerating by du given the current location
x and velocity u;.
Combining these gives the probability evolution equation

P(x,u;,t+ dt) = ZPT(Ui —ujlx, uj, t)P(x — u;ot, uj, t) (2.13)
J

16



In essense, this is a discrete form of an integro-difference equation (c.f. Neubert, 19xx)
To move towards a differential equation version, we can rewrite this is a form con-
venient for Taylor-expanding: since the columns of the transition matrix must sum to

one
Z Pr(oui|z, uj,t) =1

[the final velocity must be one of the set of possible velocities|, we can subtract the identity

matrix off explicitly

P(x,ui, t+ dt) — P(x — u;ot, u;, t) = Z [(Pr(u; — uj|z,uj, t) — 0i5] P(x — u;ot, uj, t)

J
= 5tZ’T(ui —ujlx,uj, t)P(r — u;ot, uj, t)
J

with the turning rate matrix satisfying > . 7 (u; —uj|z, u;,t) = 0. The resulting differential

equation system

> T (i — ujla, ug, t)P(x, uy, t)

273(33,ui, t) + U¢%P(a:,ui, t) = j

ot

will be examined for the three-state model under the assumption that the stopping [S =
T (fulz, Fu, t)] and turning rates [T' = T (£2u|z, Fu, t)] are independent of the direction
of travel, but the probabilities of starting from rest [Ry = T (u,z,0,t), R— = T (—u|z,0,1)]

may be asymmetric

0 0
SP_ =~ (~uP_) — (T +S)P_ + R_Py+ TP,
%Po — SP_ — R_Py— Ry Py + SPs
0 0
57+ = " (uP+) + TP+ RyPo — (T + 5)Py

We can rewrite these in terms of the density p = N(P_ + Py + P4 ), the momentum or
mass flux J = N(uP; —uP_), and the rest density pg = NPy:

9 __9

o’ = o

0

EJ = —8—u2(p —po) — (S+2T)J +u(Ry — R_)po (2.14)
0

50 = Sp = (S+ R+ Ri)po

17



DIFFUSION APPROXIMATION

The three equations 2.xx (or the original form 2.xx) predict a diffusive-like spreading of
an initial condition (see figure 2.xx), although once again the behavior is different near the
leading edges of the spreading patch. The key to approximating these 2.xx as a diffusion
equation lies in the fact that the behavioral rates (S, Ry, and T') do not appear in the
equation for the density. If the transition rates are fast, we can solve the second and third
equations by assuming that p is quasi-steady, so that the rest density and the flux rapidly
approach the values

S
=S FR_+ R
and
jeWR=R)S w0 ( R+R
S S+ (S+R +Ry)’ S+2Tor \S+R_+R,
or
J = Wpiop — Kpio VP
with
R U(R+—R_)S _ U2 g R_+R+
O (S+2T)(S+R_+R.) S+2T0xS+R_+R,
and

P u?(R_ + Ry)
o T (S 2TY(S+ R_+ R,)

In terms of the preferred velocity U and the relaxation rate r = S + 27" for the flux, we
have

1
Upio = U— ;V<r’€bio)

Thus the biological velocity and diffusivity from the three-state random flight model have
much the same structure as the diffusivity as the random-hop model (although there is an
extra factor of 7).
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SINGLE EQUATION VERSION

Keller (2004) has described corrections to the random hop model which give a differ-
ential equation having finite signal propagation speeds; here, we shall see that the same
applies to the three-state random flight model. We look first at the case without a resting
state pg =S = R+ = 0 and take T to be constant

o _ 9
o’ = " ox
o ,0
aJ——uﬁ—p—QTJ

If we eliminate .J, we obtain the telegraph equation

0? 0 0?
92" + 2T§P = Uz@ﬂ )
which has signals propagating like waves at a finite speed u. The diffusion equation is
obtained by assuming % p << 2Tp, so that the first term can be dropped. To see where
such an approximation is valid, we can substitute the spreading solution for diffusion into
this inequality. The resulting requirement x < O(y/kt) with x = u?/2T shows that we
can only apply the diffusion equation for small enough distances (c.f. Keller, 2004). If the
very small populations at greater distances are a significant concern, either the IBM, the
probability equation (2.xx) or the PDE’s (2.xx) should be used.
The three state model can likewise be reduced to a single equation when the param-
eters — stopping, turning, and restarting rates — are constant:

o 0 o 0 9 5, 0
(§+S+R_+R+)(E+S+QT)E/)— By w(Ry — R_)p ot (§+R_+R+)p

Again, the diffusion equation arises from neglecting the % terms in the parentheses; the
unapproximated third order equation or the third order system (2.xx) results in finite

propagation speeds *+u.
2.4.1 — Characteristics of the Boltzmann equation

Once the form of the mean acceleration, a;, and the covariances of the stochastic jerks,
ICi;, are specified, the Boltzmann equation can predict the evolution of the joint position/
velocity distribution. Velocity data for organisms in the ocean (or even in the lab) are
exceedingly rare; therefore, we would like to determine the changes in density

b(x,t) = N/duP(x, u,t)

(the number of organisms times the probability of being at x at time ¢ irrespective of the
velocity) without fully solving for the probability distribution. Multiplying (2.xx) by N
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and integrating over the velocity shows that the density changes by a divergence of the
flux of organisms:

%b— -v-J J(x,t):N/duuP(x,u,t)

Attempting to predict the components of J, however, runs into the “closure” problem: the
rate of change of the first moment (in u) of P requires knowledge of the second moment

0
atJi: 8933 N/duuluj —|—N/al

and the second moment requires the third,

%(N/du wiu;P) = — Dar N/du wiujuRP) —l—N/du KCijP

etc. Thus we cannot generally write a simple equation for the density unless we make
a “closure hypothesis” which leads to some kind of approximate formula relating higher
moments to lower ones. In the following section, we shall employ a very simple closure.
Before that, we will explore some examples of the behavior of the full Boltzmann equation.

Suppose the deterministic acceleration a represent an organism’s attempt to swim
at a speed V(x,t); when the velocity is perturbed away from this value by the random
accelerations, it will relax back at a rate r(x,t)

a; = —r(u; — V;)

The preferred velocity, V, has two parts: the fluid velocity u (i.e, we expect the drag
to eliminate initial motion relative to the water) and any consistent swimming/ floating/
sinking relative to the water. We also assume that the random accelerations are isotropic
and depend only on position

ICZ']' = 7‘2I<L(X, t)éij

(K, as a diffusivity in velocity space has units L2T~3; the factor of r? gives k ordinary
diffusivity units L2T~! as well as leading to a simple form below). The Boltzmann equation

0 0 0 82

[r KP] (2.15)

has a simple Gaussian solution when V, r, and x are constant:
P=PRGu-Vrs) , G(zlo) = (2r0)" " exp(—|z*/20) ,

with d being the dimensionality of z and ¢ the variance in any direction. Figure 2.xx
illustrates the way the probability distribution relaxes to this state: the “flow” (88—)5, %—Itj)
in (z, u) space acts like a combination of shear and convergence towards the zero velocity
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axis (V = 0 for this example). The latter is balanced by the diffusion, leading to the
Gaussian distribution with velocity variance rx.
Figure 2.xx shows how an initial state

P = L pol1 + cos(ho)] expl )

relaxes to an z-independent final state with a velocity variance rx. The solutions

P = ag exp(—cou?) + R[ay exp(sbyu + 1ka — ciu?)]

ga]‘ = —QICCLJ'CJ' — lCajb? +ra; , %b] = —4’ijCj + Tbj -k, gcj
end up in the asymptotic state ¢; = r/2K, by = —k/r and %al = —a1Kk?/r? = —kk?a;.
Thus spatial variability is smoothed out with an asymptotic decay rate which is identical to
that predicted by a diffusion equation (figure 2.xx). But the decay rate for the Boltzmann
equation deviates noticeably from the diffusion model during the initial stages. Consider
first the case when the initial state has a velocity variance which is large compared to the
equilibrium, and note the the period when the density variations decrease very rapidly.
The process that speeds up the effective diffusion rate is analogous to “shear dispersion,”
treated in xx.xx.xx. The flow in the (z,u) phase space has strong north-south shear in
the east-west velocity (treating the u axis as though it were north). This tilts structures
over so that the distance between highs and lows decreases as different regions interleave
and provides strong gradients on small scales, which the diffusion can then remove very
effectively. Indeed, the tilt persists in the asymptotic decay regime, as the solution above
demonstrates. The slow decay seen initially occurs because the probability distribution is
only diffusing in u which has no effect on p; the density variations only decrease as shear
dispersion sets in.

= 2rc; — 4/Cc?
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Figure 2.9: Probability distributions P(x,u,t) for various times. The initial
condition has a velocity variance which is 10 times larger than the equilibrated

variance.



The two aggregation behaviors discussed in the context of the random hop model (c.f.,
figures 2.xx and 2.xx) appear in the random flight model as well when V or K depend
on position. Taxis (convergent V) has a very clear signature in the (z,u) plane: the flow
converges vertically to a line V(z) rather than to the u = 0 axis. However, the flow
component along this curve is non-zero, so that the trajectory will spiral in towards the
point where u = 0 (Figure 2.xx). Hence the advective parts of the problem provide a
direct tendency to accumulate at convergence points; the diffusion simply broadens the

probability distribution around the center of the patch.

Phase space flow
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Kinesis is slightly more difficult to understand. Suppose rk is small in a region sur-
rounding x = 5. If the initial distribution has the same structure in u at all = points (e.g.,
all organisms start with zero velocity), it will adjust towards a narrower distribution of
velocities near z = 0; since the probability distribution is initially uniform in z, P(z,u,t)
will have a higher peak at the origin. The non-uniform spreading has no direct effect on
the density; however, it creates z-gradients of P on the north and south resulting in higher
values being advected towards the x = 5 line and in towards u = 0. The distributions at
times t = 1 and 2 show clearly the high values on the northwest side created by rightward
advection of the wide distribution and the low values on the northeast side of x = 5. The
opposite situation holds in the u < 0 region. As a result the flux, J = [duuP will be
positive for x < 5 (since the distribution of P is skewed towards the positive values of u)
and negative for x > 5. Therefore the density will increase in the low K region.
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and from the density equation 2.xx (dashed). t = 0, 0.5.

30



[ A
+ +
o+t +
Lt + + e
+ + + *
o+ n oy + . g
+ 4 +. +
+ + 7t + ot +
£, + b e L
+ T4 oy 4 t o+
+ + ++
., T+ ++ + ### #tr +h +
Lot o+ + Lty
+ F # o1 Y R N
T R AT R N
Lr LT Lt . oo
+ 4 + A + i
o+ + + o+ ot
+ + + ¥ + Ty
+ + o+ % +y T+ ¥ +3
it + o+ + T
+ ot + It - ty
I T L e e A + 1
+ + o+ + +
+ +
- 2 o ey ++ﬂ+* wF e b
4 PR FE R T e +4 A
+ " s L+
+ 4 +++++++ﬂ¢ +#++ +
T 4t % ty + ++
+ + + + Tt
+ 5S4 # ot S
¥ ¥ + 5 ot T+
r A o
- ++# 7 + ot
TR + + T
. % + i +F
++ + # +
L e f
R R +
+ o Ty ..t
-
L+ toas e +
. . . .
9 ® © < o~

10

12

10

12

12

10

12

10

boltz

N
—

14

12

0.8 [

oyl

0.6

04 |

0.2 |

31

12

t=1,2.

Figure 2.12b

14

12

0.8 [

oyl

0.6 |

04 |

0.2 |



t=10

w + w
* +
+ * +
ot +
+ T .
L + + 4
+
5
PO + .
+
T + + + +
+ , +
+ +
+ + o+ ot + +
L PR B
oA CRA e +
+ + +
| A ﬂw hleﬂr e ﬁﬂ I
e e S R H
(i e ey JW# LA e e
U S S T
B+ ot g T A + +
e e R TR T AR T L}wtr N
toH + + LU
[ M W I
o
ot 4 T B . o4
- + 5 + % o
+ hy ++
Lot g
+ + + + +
+ Tt + +
o+ " + .
L 4 4
- o, + +
R + +
+
+
+
L + + 4
. . . .
=} © © < o~ o
[ . o, " + 4
+ 4 + + +
+ Lt
+ +
4
+* + ot P N ++
+ + + A E
L, o, i
+ o+ + + o+
ot 4 o+ +
. o4y 4 |
+ + "
bor O et +7
e fas + ¥ + ¥
+ N w F e
L [ Nmr E VAR
R i T+
+, + + 0+ o+ +
L S T Bl YT T ey
R Wt et
Kl 4t gt o TR
et et #++ i+¢++€++++++++ﬁ+ W He
+ A aF +
I L T L A
= T 4 s + At + oA
o b T e i
bt * i Lt FH O+ oL
s +F
e+ PR S e e
T + *
+ 4 Hop o+ o
L e * + 4 +
+ +
T+ o+ +
+ + &+
+ £ .
+ it
+ o+ N + o4t
ET + o+ "
"
L * + + nﬂ + ]
. . . .
=} © © < o~ o

12

10

12

10

t=10

12

10

12

10

t=10

boltz

14

boltz

14

12

0.8 [

oyl

0.6 |

04 |

0.2 |

1t =05, 10.

Figure 2.12¢c

32



rho

10 — N \ 10 T T n
- g A M * A
+ o4 T
Lo+ +5 + + i
+ T N +£++}W+f++ M + + + +:* i *%4}# + + o4 e
8r + + I:*H wt t A 7 8 S :ﬂft& R * M g
# + 4:};3 oy + < * N iv:;w& £ 7
+ - I W
F g N + R S +
+ * w0 #fr + o T e *
£ +4 + oy Hh e e +
6 e + +++J§fﬂ;++:+ Lo+ q 6 TR g et + + i
- ek g + 4o+ MR T
+ e e N ot &
+ ¥ R + + > + hale +
+ + + +
4t R AT o 1 4t AT =/ 1
+ N + R +++tf++ + + o+ +++++¢++++*+++++ .
f + +
+ e }J}I{r w + n T, * oy Jr#* 4»++I+ oy
¥
et + tﬁf+w++ Ty ’ i + ¢+++++H*+ o+
> LR o > + + + “'#;*'*z# A
I . oo v . 1 I N e 1
e . A +
L
. T fﬁgﬁi‘r"# A + + P :'ﬂt“*w' s +
+ g + H
R +§:"ﬂ+ﬂ+1+i M P P : f’ FE 4 E w7
0 . . ERE A AL A . . 0 . . R i . .
-2 0 2 4 6 8 10 12 -2 0 2 4 6 8 10 12
X X
t=15 t=30
al 1 s 1
2 b 1 2k 1
ol 1 s of 1
2k 4 2k d
-4 + - -4+ 4
. . . . . . . . . . . .
-2 0 2 4 6 8 10 12 -2 0 2 4 6 8 10 12
X X
t=15 t=30
14 T 14 .
boltz " boltz
“ dens -------- 7\ dens --------
A sm - FY sm
12 F /! B 12 F {4 B
1t b B 1t : B
08 B 08 B
I°) / b
2 b
06 B 06 \ B
04 1 04 1
02 B 02 B
0 0
-2 12 -2 12
X X

Figure 2.12d: t = 15, 30.

33



2.4.2 — Diffusion approximation

Now that we have some sense of the way in which the full probability distribution
P evolves, let us return to the closure issue and derive an approximate equation for the
density. We start with the equation for the flux

0 0

—Ji=—5—|N iuj Pl —rJ; f
8tJ (93:]-[ /duuuﬂ?] rJi +rVib

and assume that the relaxation is rapid (large r); then we can use
NP ~b(x,t)G(u— V]rk)

as a local estimate. This “quasi-normal” approximation allows us to approximate the
second moments by

N/du uu; P ~ rrdijb+ ViVib .
In the appropriate parameter range with r large, the first term dominates so that

0 0
e reb—rJ; +rV;b .

Ji=—
6:51

The flux rapidly relaxes to

Ji:VZb—1 0 (1“/4;1))2(‘/;—1 0 r/{)b—/e 0 b
r 0x; r 0z, ‘

with the diffusivity

being (c.f. Taylor, 19xx) the product of the variance of the fluctuating velocity and a
characteristic time scale (1/7) for the decay of correlations in the fluctuating velocities.
In this limit, we recover the usual biological form of the advection-diffusion equation

g, v 1 _ (0U?) _ (u?)
ab =-V- [ubwb—liwab] y Upip = V- ;VTlibw N Rpio = 27‘25t = r . (216)

Going through a formal mathematical treatment (appendix xx) demonstrates that the
basic requirement for validity is 1" >> 1, where T is the characteristic time scale for
patch formation or fluid flow changes. The length scale L and the time, velocity and
the diffusivity scales satisfy V.~ u ~ L/T and k ~ L?/T. One implication is that the
r.m.s. velocity fluctuations, which are order \/rx ~ rT(L/T), are large compared to
the mean velocities. This assumption — basically equivalent to the mean free path being
short compared to the length scales of interest — may not be realistic in some cases; then,
diffusion equation results should be viewed with considerable caution.
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2.5 — Taxis and Kinesis

To illustrate some of the effects of taxis, we shall study a few simple analytical ex-
amples, using the advection-diffusion form. In the absence of flow, these cases will reach
a fairly simple balance. Consider organisms with a preferred velocity which is uniformly
upwards towards the surface

V = woi

and otherwise uniform parameters r and . In steady state, the flux J must be uniform and
furthermore must be zero since no organisms pass through the surface z = 0. Accordingly

wob = /i%b = b =bgexp(woz/k)

The organisms concentrate near the surface in a layer of characteristic thickness x/wy with
the upward swimming balancing downward diffusion.

More generally, suppose the preferred velocity can be written as the gradient of a

scalar potential
V=-Vo

so that organisms tend to move down into low potential valleys. The steady state (when
boundary conditions imply the flux is zero) has local maxima in the low potential regions

b = by exp(—¢/K)

(figure 2.xx). Note that in cases where the cue field is localized so that organisms which are
too far away (for example from a patch of food) can no longer determine which direction
to swim, the population levels out to a non-zero value. This result implies that a seed
population, even in the optimal region, will gradually lose members who wander outside
of perception range and then spread further and further out by random walking.

Kinesis also gives rise to particularly simple steady states: if the flux is zero and
V =0, we have

Toko

Vrkb=0 = b=y ,
rK

so that the density is highest where the velocity variance rx is lowest.
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2.5.1 — Diel migration example

Many species of zooplankton have diel migration patterns, living near the surface at
night and descending during the day. Suppose the animals swim upwards when the light
is less than the optimal level and downwards if it is above

{ —1 2> z(t)

V = wpioz = woz 1 2 < ()

where zy(t) gives the coordinate of the optimal isolume (and is negative during the day). It
may be more convenient numerically and more realistic to let the switch from downwards
to upwards occur over a finite depth range

2—72000)

Wpio = —Wq tanh
bio 0 ( h

Analytically, we can consider the case of a steadily rising isolume
zo =ct

(for ¢ < 0) and examine the equilibrated density b = b(z — c¢t). The density equation
becomes
0 0 0o 0

—c&b + &(wbwb) = —k—=—Db

which can be integrated with respect to z and then treated like the cases above. The
solution is

K

K

b= by

shown in figure 2.xx, along with the solution for the smooth case

b= by exp (—wohln sechZ7< + ¢(z — ct))

K
The solutions show a relatively thin layer ahead of the ascending isolume, with a relatively
long trail behind it. Above zg, the velocity relative to the isolume is large, so that a
narrow boundary layer is required for diffusion to offset the stronger flow. Below, the
relative velocity is smaller and the distribution is wider. When ¢ exceeds wg, we cannot
have a steady solution.
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Figure 2.13: Vertical structure when the desired depth is gradually ascending
(c=0.8 % wp).

For a light curve which is zero at night and sinusoidal over the day, we can no longer
assume the flux is non-divergent. Assuming that the light decays exponentially with a
scale of 17 m and employing a numerical approach results in patterns (figure 2.xx) which
cluster about the preferred isolume. Slowly swimming organisms, not surprisingly, have a
delayed response so that the minumum surface concentration occurs in the mid-afternoon.
The concentrations are highest just before dawn.
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Figure 2.14: Contours of density under diel motion. The dashed line shows the
assumed preferred depth (in km), corresponding to a half-sinusoid. wg = 2 km/d.

10

Figure 2.15: Same for wg = 10 km/d.
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Figure 2.16: Contours of density under diel motion. The dashed line shows the
depth of the preferred isolume with 107! of the surface strength. wo = 2 km/d.

Figure 2.17: Same for wg = 10 km/d.
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2.5.2 — Social behavior

Biological distributions in the ocean, especially at higher trophic levels, are often
patchy, so that the distribution of organisms is distinctly not random: individuals have
more close neighbors than one would expect and large areas have lower than average
density. Figure 2.xx illustrates a random versus a patchy distribution with the same
density. Also shown are several measures which quantitatively demonstrate the difference
in character.
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Figure 2.18a: Random and patchy distributions

Patchiness can arise from both biological and physical mechanisms. Stirring can
lead to streaky patterns (e.g. figure xx.xx); for example, organisms spawned near the
coast can be pulled offshore in narrow plumes and end up as high density parches in
otherwise clear water. Biologically, organisms whose offspring are born near the parent (e.g.
phytoplankton which reproduce by fission), form clusters from “demographic stochasticity”
(Young, 2000) — local extinctions occur, causing empty areas, while patches become more
dense as reproduction occurs. Behavior, here meaning movement patterns which vary as
the environment changes, can also cause aggregations. When the cue causing alteration in
movement is associated with the presence and perhaps characteristics of neighbors of the
same species, self-organizing structures can arise. This “social behavior” is common among
larger zooplankton and fish; we shall explore the resulting dynamics, but caution that the
ecological and evolutionary significance of these processes are not fully understood.
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Figure 2.18b: Patchiness indices: probability for density in squares of scale L/32
and Lloyd’s patchiness index (number of neighbors in a circle of radius R divided
by the expected number for a Poisson process).
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Social kinesis

The simplest case we can analyze is social kinesis, in which the cue (denoted by ¢)
causing the organisms to alter their behavior is related to the density of neighbors within
the perception distance. For discrete individuals, we can take

d(Xi)=f(R) , R=> W(X;-Xi) . (2.17)
JFi

The weighting function is zero for distances greater than the perception distance. Kinesis
involves a decrease in the random hop 6X; or random acceleration §U; of the i*" organism
as the desirability of a particular spot — represented by ¢(X;) — increases.

We shall use the random flight model 2.xx with (0U;0U;) = 2§,,;Kdt and

K = Koexp(—=B9¢) .

The deterministic term is again —rU;, causing the movements to damp out in the absence
of stochastic accelerations. Since we have very little information on how these organisms
perceive, we are forced to fall back to simply postulation various functions for W and f
and seeing in what ways they are similar or different. Consider four cases:
1) a simple weighting function W(d) = 2(1 — d*) with the cue just a linear function
¢ = R. Distances are measured in terms of perception lengths.
2) a weighting function W(d) = 2(1 — d?)(d? — }) representing “personal space” so that
neighbors which are too close will cause the accelerations to increase again.
3) a saturation of the cue as the number of neighbors increases

R

Cb = ¢mamm

This form incorporates appropriate limitations on the perceptive abilities: zooplank-
ton can probably distinguish between a few neighbors and many neighbors, but their
response saturates so that their behavior is similar whether they have (say) 10, 20, or
100 neighbors — K = Ko exp(—Bdmaz)-

4) a cue which initially increases with density, but decreases again as the density becomes
too high, so that the region is no longer desirable.

¢ — Re_R/e¢mam
Figure 2.xx shows an example from each case with 5 =5, ¢pee =1, p =1, and Ky = 1.
Note that case 1 yields very small, densly packed groups, while the examples from cases

3 and 4, where the reponse saturates, have much looser clusters (although they become
tighter as ¢4, increases). The groups also move more and split or merge.
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Figure 2.19: Simulations for different types of kinesis response. The domain is
doubly periodic.

Figure 2.xx shows the result from direct simulations of the 2D random flight model
2.xx with (0U;0U;) = 26,;KCét for various population densities using the third case above.
As the density increases, the pattern switches from essentially random distributions to
spontaneous formation of patches. The critical density will depend on the parameters
Ko, B, r as well as the details of the weighting function, W and the form of ¢(R).
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Figure 2.20: Simulations at different densities (note different scales) with r = 1
and kg = 1. Except for the lower right figure, 5 = 5 and ¢,,4: = 1; in the
last case, 8 = 2.5 and ¢4 = 2, indicating that the important parameter is the
product of the two.

To find the critical density and relate it to the parameters, let us consider the con-
tinuum version of the problem. The approximations discussed above lead to a density

equation
0 1 K
—_— = — . J J = —— —_—
at” v ’ r v ( r p)

The estimated density of neighbors withing the perception distance is found by replacing
the weighted sum 2.xx with a convolution integral

R(x) = /dz W(z)p(x + z)
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STABILITY:

Under what conditions will the uniform state p(x) = p break up into patches? This
is again a stability problem, but now with the addition of spatial variability. First, we
need to demonstrate that a state with uniform density is a steady solution. For p = p, the
estimated local density is

R= [dWap=7 .

so that ¢ and K are also constants. The flux J is then zero, and 2 5; 0 1s indeed zero.
Now we perturb the steady state

p=p+p(xt)
and calculate the terms which appear in the density equation

9 1y -
5 = 2V (K +K'p)

The first term will damp out perturbations; growth can only occur when K’ and p’ are
negatively correlated. To calculate this correlation, we can use separation of variables

p" = poexp(ik - x) exp(ot)

The exponential form arises naturally because the equations are homogeneous in both space
and time — the stochastic term K does not explicitly depend on x or ¢, and the weighting
function only varies with separation. (We can certainly think of counterexamples — e.g.,
when the movements combine social behavior with sensitivity to external conditions such
as food concentration.) From this form for the perturbations, the estimated local density
becomes

R=p+ W)Y W(K) = [ daWi)esplk-2) |
o K= 2903 i))o! = R Se WK
0¢p OR
From these, we find
7=~ P | - PR GEWKD|
which demonstrates that small perturbations will grow exponentially when
P55 (IK) >

-1
Figure 2.xx shows that when the density exceeds the critical value (6 g—ﬁ) , the long

waves become unstable. For slightly larger values of p, however, the patches with a scale
on the order of the perception distance are favored. For example, in the case 3 where the

45



desirability of a spot levels off as the local density increases, the maximum growth (for
BPmaz = 5) occurs when p ~ ¢pqr and k = 1.12, corresponding to a spacing between
patches of 5.6 times the perception distance. For this model, grouping does not occur
when the density is very large, since the diffusivity becomes very small ~ Ko exp(—Bdmaz)
everywhere, and the variations are too weak to have much effect. The simulations show a
slow decay in patchiness as the density increases (figure 2.xx).

growth rates

rhobar/phi_max
N

0O 05 1 15 2 25 3 35 4 45 5
k

Figure 2.21a: Case 1 growth rates as a function of k (normalized by the perception
distance) and p/¢maz- Here Bdar = 5.
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Figure 2.21b: Case 2 growth rates.
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Figure 2.21d: Case 4 growth rates.
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Figure 2.22: Individual-based simulations of case 3 with B8¢,,q, = 5 for different
densities. The points show the patchiness averaged over ¢t = 800—1000 for five

realizations at each density; the line gives the average.

Social taxis

When the organisms modify their swimming based on gradients in the neighbor den-
sities (i.e., they aim in the direction where they see more congeners), they can form also
form dense aggregations. To model this kind of social taxis, we take the preferred velocity

to have the form
Vi=fR;) , Ri=> (X;-X)W(X; -X;|) .
J#i

As in the previous case of kinesis, we face the same issues of deciding on a reasonable form
for the weighting function and on limitations in perceptive abilities and swimming speeds.

We can write R as the gradient with respect to X; of a scalar function
9¢ /
=X, Wi(s) = —sW(s)

0
R=55> WX, -Xi)
Then, in the simplest case where V is a linear function of R, the continuum equations

become 5
5" =~V [PVe— KV
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which can be analyzed in exactly the same way as the case of kinesis. We can impose
perceptive limitations (e.g., by making ¢ saturate for large values of [ dx'W(x —x')p(x"))
or restrictions on swimming ability (letting f be a nonlinear function of V¢); however, the
behaviors are qualitatively similar to those produced by kinesis.

Schooling

Schooling is a more sophisticated form of social behavior in which organisms not only
aggregate in patches but tend to be aligned in similar directions and to move with similar
velocities. In the simplest form, we can take the preferred velocity to be a weighted sum of
the neighbors’ velocity vectors; moreover, the resulting schools are rather amorphous and
short-lived. Adding an additional taxis based on neighbor positions

V=) UW(X; - X)) +6 > (X; — X)W(X; — X;))
i#] i#

and normalizing

~

V;

\/[Vil2 + 0.001

generates more realistic schools (figure 2.xx). (For reference, an organism swims a single
sensing distance in 5 time units.) Schools can merge or break apart; individuals can join
or leave. Figure 2.xx illustrates the changes in cluster size which occur by these processes
in a set of realizations with 6 = 0.3, kK = 0.014, and V5 = 0.2. After the initial phase,
the statistics of the schools settle, with 20-30 clusters in the domain; on average, these
clusters have on the order of 35 members, with the largest running on the order of 200-300
individuals.

V=Y,
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Figure 2.23: Schooling experiments with 1024 individuals in a domain 51.2 times
the sensing radius. Note the jumps in size as the largest school merges with
another or splits apart.

As xxx (19xx) have pointed out, these kinds of experiments can be used to derive empir-
ically a dynamics for groups, meaning the propagation, splitting and merger rates, all of
which depend on the sizes of the schools and the number of schools per unit area. Merger
can be predicted from estimated encounter rates. To illustrate splitting, we have run a se-
ries of experiments starting with a (highly artificial) school of N organisms within a square
with sides equal to one sensing radius and with identical velocities. After a short time, the
schools adopt the more elongated pattern seen in figure 2.xx. The velocities of the schools
decreases very slightly as we vary the number from 64 to 128 to 256. But the time before
a second school breaks off averages 123, 168, and 169 for the different (increasing) school
sizes. (One of the smallest schools lasted for more than 700 time units.)
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Figure 2.24: Schooling with Vo = 0.2, W(r) = 2(1-r?),6 = 0.4, 7 =1, k = 0.014.
The + signs show the trajectory for ¢ > 460 of the centers of the schools, defined
as sets of at least 10 individuals who are no more than one sensing distance form
at least one other member of the school.

51



2.6 — Some effects of movement on biological interactions

We began the chapter by discussing the importance of movement on biological distri-
butions; now that we have examined various types of movement, let us explore some of
the consequences.

Vertical migration

As an example of the effects of vertical swimming, let us consider the Quadratic NPZ
model with the zooplankton having a constant upward or downward velocity wq

0 0o 0
5L = P[uN —gZ —d,) + 55,1
0 0 0o 0
0 0o 0
aN = —uPN+ (1—a)gPZ+dpP+dzZ + 5“&‘7\7 :

When the zooplankton swim upwards, they equilibrate at higher biomass levels, and the
total amount of nutrient, P + Z + N, is no longer uniform, but becomes higher in the
euphotic zone and lower in the deep water (figure 2.xx). Upward swimming results in a
57% increase in the net zooplankton biomass by allowing them to resist the diffusion into
the deep, food-poor regions; downward swimming reduces the net Z biomass by 34%.
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Figure 2.25: Effects of vertical swimming in the QNPZ model. The solid/ dotted/
dashed lines show the cases wg = 5 x 107° km/d, 0, and —5 x 107° km/d,
respectively.

Schooling and feeding

As a second example, we will examine how schooling behavior alters the grazing rate
for zooplankton. We shall use a mixed model, in which the zooplankton are represented
as individuals and the phytoplankton as a field. However, the continuum model can give
some insight. Suppose the phytoplankton equation has logistic growth and grazing?

0 P
—P=uP|1—-— | —gPZ 2.18
Gl = 1 ( 7%) g (2.18)
and split P and Z into the average values (area or ensemble) and the deviations. Taking
the averages of the %P and the %%P equations results in
2 py = ey — B2 2 iy z) - gz
0 (P)
—(InP)=p—p——g{Z
i\l =p—ppr—gl2)
If the system reaches a statistically steady state, the % terms vanish, and the average

phytoplankton and zooplankton values bear the same relationship to each other as in the

spatially uniform case:
Z
<P>:P0<1——g< >)
I

Multiplying the second equation by (P) and subtracting from the first demonstrates that
the spatial variability — the deviations from the mean — contributes negatively to the
grazing rate

/2
g(P'Z"y = —,u<P ) <0 .
Py
The average grazing rate will be lower than that of uniformly distributed zooplankton with
density (Z), even though the average phytoplankton concentration remains the same.

To see how much the rate decreases, we combine the schooling model with the plankton
equation (2.xx). We partition the domain into small squares and count the number of zoo-
plankton in each square; dividing by the size of the square provides the local concentration
Z. We solve equation (2.xx) by rewriting it in terms of S =1/P

0
50 = (k—92)S+pu

T The quadratic NPZ model xx.xx can be written in this form by suitably redefining
the constants.
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which can be solved exactly over time dt (assuming negligible changes in Z)

M H
S(t+6t) = o7 + | S(t) — 7 exp(—[u — gZ]ot)

Figure (2.xx) shows the schools leaving a trail of depleted food supply, P, as they move
though the domain; the length of these depend on the rate of movement (~ V}), the density
in the patches (order 10 times the mean for this experiment), the grazing rate, and the
phytoplankton recovery time. For this experiment, the average grazing rate is reduced by
73%. Even the “null experiment” in which the zooplankton swim randomly (V; is chosen
to be Vy(cosb;, sinf;) with 6; chosen randomly from 0 to 27 at each time step) has a
reduced grazing rate on the average — about 20% less than that predicted by the products
of the means.
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Figure 2.26: Phytoplankton concentration contoured from 0.2 by 0.2 to 0.8 with
the zooplankton positions shown by dots. Parameters are u = 0.2, g = 0.05,
Py=1,r=1,k=0.014, V, =0.2.

Searching for food

As a final example, we consider how behavior which results in movement up the
gradient of food concentration can alter the net grazing rate. In the previous discussion
of taxis, we presumed that the organism could sense gradients in the cue field. However,
animals can achieve much the same result by having a memory of past conditions and
comparing them to present ones. Let us describe the state of each individual by its position,
speed (relative to the water), direction, and a physiological variable, call it gut-fullness.
The dynamics is described by

dX =V cosfdt

dY =Vsinf it

AV = —y(V = V) 0t + s,dRy
df = S dRQ

dG = —\[G — P(X,Y,t)] 6t .

The parameters Vj, s,, and sp can depend on environmental (P) or internal (G) factors.
The random increments dR1, dRy have zero mean and variance v/dt.

When the parameters are constant, the mean square displacement grows linearly with
time
o s
S5 2y(A+ 2)

2

For fixed P, the gut-fullness will limit to G — P. If G > P, the organism had been in
regions with greater food concentrations than it is now seeing. We shall show that if it
turns more frequently under such conditions, it will migrate up the food gradient.

To demonstrate this, assume that sy is an increasing function S(G — P) and that the
physiological process is fast; then

CUX X0+~ Vo)) =4

1D
—P~———P
¢ ADt
and sy depends on gradients of P. The relevant Boltzmann equation,
9 9 9 9 8 1 82 1 1D 1"
—P+Vcos —P+Vsin—P =~v—(V-V — P4+ —— |S(—~—=P
gi TV eostg PHVsindg P = gn (V=W P4 50 590 P+ 502 5 [ (=X D1 )} P
implies that the lowest order P has a Gaussian structure in V' with mean Vj and amplitude
proportional to [S(—+ 2 P)]~2. The expected biological velocity is

-2
J df(cosb,sin0) [S(—% cosf2p— Y sin@a%P)]

Wio = Vo —
J o [S(=% cos0 2P — Ysing 3 P)|
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(assuming %P is small). At any particular point, the orientation of the axes is arbitrary so

we can take (%P = 0; hence the integral with sin # will vanish, implying that the velocity is

in the direction of the gradient of P. Furthermore, if a%P > 0, the denominator is largest
for 6 = 7w and smallest for 6 = 0, and the cosf integral will be positive — up-gradient
movement (see figure 2.xx). Figure 2.xx shows example distributions of P and positions
of the organisms in an experiment where the food is supplied in Gaussian blobs at random
times. The food seen on average by the organisms is considerably higher than the average
food over the domain (figure 2.xx). The mean grazing rate is on average twice the product
of the mean P and Z values, with peaks well over three times that expected from the
mean concentrations. Clearly the taxis behavior significantly increases the food-gathering
ability.
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Figure 2.27: Estimated up-gradient velocity

These examples suggest that movement and patch formation can have significant ef-
fects on biological interactions. Frequently, these processes occur on scales smaller than
those which the model of interest can resolve and therefore must be parameterized. Be-
havior adds another level of complexity to this ubiquitous problem: even when a single
organism dominates Z and even when lab measurements of grazing rates exist, the average
rate over a block of ocean can be significantly different because of patchiness and behavior.
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Figure 2.28: Contours of P (0.1 to 0.7) and positions of grazers at ¢ = 3000. The
upper right blob of P has been nearly consumed.
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Figure 2.29: Average grazing rate (PZ) compared to the grazing rate estimated
from the mean concentrations (P)(Z)
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2.7 — Movement and flow

Our vertical migration example in section 2.xx demonstrates that the interplay be-
tween movement and diffusion leads to quite inhomogeneous distributions; we shall now
consider how vertical swimming by the zooplankton alters the upwelling problem discussed
in chapter xx. We assume that the flow is steady, but that the zooplankton have a constant
vertical swimming velocity which is added to the motion produced by the fluid. Figures
2.xx-xx compare the distributions in three cases, wg = 0 and £1 x 10~™* km/d, while
figure 2.xxa,b summarizes the peak and mean values. The peak Z values increase with
either upward or downward swimming, but for entirely different reasons. In the upward
swimming case, they concentrate near the surface just as in the one-dimensional case, but
in the offshore waters. Likewise, NV; increases near the surface and decreases below. As a
result, the net flux of V; is out of the domain and its average value decreases (figure 2.xx).
Concomitantly, the average value of Z also decreases (as it does in the zero-dimensional
case when N; goes down). Indeed, the average value of P increases, an effect not found in
simpler situations. We can understand this from the linearized form of the Z equation

0 0= 0 = _
— 7'+ w2+ —woZ = agZP’
o’ Tt T e T

Both w and wg are positive, as is %; therefore, we expect that P’ will be everywhere
positive in equilibrium. Thus, the average P in the upwelling zone is higher (1.32) than in
the case without flow (1.25) and increases further when the zooplankton swim upwards.
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Figure 2.30: Average values of P, Z, N, and N; = P+ Z 4+ N over the upwelling
domain as the zooplankton swimming velocity changes.
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Figure 2.31: Maximum values. (For Z, the values in the corner have been ex-
cluded; they can be as much as 50% higher for the rapid downwelling case, but
are not likely to be reliable numerically.)

The case of downwards swimming has the opposite effect on the average values of the
fields: the outflowing surface water is depleted of N; so that the total nitrogen increases
within the domain, as does the average Z concentration. Correspondingly, the net amount
of phytoplankton decreases. But the maximum values give quite a different picture (figure
2.xxb). Zooplankton swimming downwards get out of the offshore current and are trans-
ported back onshore and remain in the upwelling zone. Stommel (19xx) discussed some
of the differences between the trajectories of sinking particles compared to those of fluid
elements and showed that some particles could remain buoyed up by circulations such as
Langmuir cells. Much the same argument applies here: some trajectories (figure 2.xx)
form closed recirculation cells. The most obvious one is the point at which the horizontal
velocity vanishes and the upwelling speed matches the downward swimming rate — the
organism stays at the same geographic point. An animal slightly to the east descends,
is carried to the west where the vertical velocity exceeds |wg|, moves upwards and then
to the east, where its downward swimming returns it to the initial position. To prove
that the motion is indeed cyclic, note that the trajectories are determined by an effective
streamfunction

Yz = —wox

with the stationary point (where by Viz = 0) being a local minimum. In the vicinity
of that point, ¢z will be a quadratic function, so that the lines of constant effective
streamfunction form closed ellipses. For zooplankton further out, the ¥z contours will hit
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the bottom; in the presence of mixing, the animals remain in the bottom layer and move
up the slope into the surface ocean again.

Fluid and Zooplankton Trajectories
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Figure 2.32: Zooplankton trajectories (solid) and fluid/ P/ N trajectories (dashed)
for wg = —3 x 107* km/d.

The trajectory figure provides a handle on why the Z, N, and N, values rise to large
values: the flow provides a steady source of food for the zooplankton in the recirculating
gyres, while removing the phytoplankton-depleted water. To see this, let us integrate the
sum of the P and N equations over an area A enclosed by a contour of constant 1y

%uqﬁ(P—l—N):—g//PZ—l—dZ//Z—l—%/iﬁ-V(P—i—N)

(Strictly speaking, since the diffusion in this model is anisotropic, the last term is

0 0 . 0

but this does not change the argument.) Since P + N is high in the deep water for
the downward swimming case, the advective term is negative (and the diffusive term is
relatively small) which implies the grazing term is larger than the zooplankton death term.
But the zooplankton equation, integrated in the same way, implies

0:g//PZ—dz//Z+7{/fcﬂVZ .
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Therefore the excess grazing must be balanced by diffusive losses out of the area; given
weak diffusion, the gradients must become large and the peak values must be big. Indeed,
calculations with a larger mixing rate do give weaker maxima.

We can also view the dynamics by considering what happens along a streamline in
the case with wg = 0. As the parcel of fluid moves shoreward and up, the increasing light
leads to N being incorporated into P and then, since P > dz/ag, to Z. This high Z,
low N water washes out of the domain in the surface layer. But with wy < 0, the high Z
concentrations are not transported out; instead they swim down into the incoming, high
nutrient and high phytoplankton water which provide additional food for growth.

2.8 — Fluid Dynamics

We have discussed the transition from individuals to continuum models above; similar
arguments can be made for the way in which collections of molecules behave like a clas-
sical fluid. Unlike the equations for taxis and kinesis (2.xx, xx), fluid dynamics requires
prediction of the mean velocities as well as of the density. Continuum models of schooling
organisms require similar information; so a brief discussion seems worthwhile.

Boltzmann (19xx) developed the basic approach for deriving the Navier-Stokes equa-
tions from molecular dynamics; the analysis was finally completed by Chapman (19xx) and
Enskog (19xx) who derived the proper forms and values for viscosity and conductivity (c.f.
Harris, 19xx). Here, we take a simplified approach akin to Bhatnager, Gross and Krook
(19xx) or Welander (19xx) and assume that the stochastic interactions between molecules
have two effects. First, they cause the individual velocities to relax back to the local mean,
and, second, they generate thermal fluctuations which maintain variance in the velocities.
Putting this ansatz into 2.xx resuilts in

0 0 0 o
&Pm = —a—xi(uﬂ)m) - a—ui(aﬂ)m +rlu; — Vi]Pm) + a—u?(T’RTPm) )

where P,,(x,v,t) = NmP is the local mass density near x and v and V is the mean

velocity
Vi = / duuiPy, / / duP,, or pVi= / duu;Py,

with p = [duP,,. The a; accelerations represent external forces such as gravity. The
local solution to the Boltzmann-like equation — achieved to a good approximation when
r is large — is a Maxwell distribution P = pG(u — V|RT) with mean velocity V and
mean temperature 7. (Replacing the stochastic I by RT is really appropriate for gas
dynamics, where it gives the correct velocity variance, rather than water and gives the
proper velocity variance. Since we are simply trying to illustrate the way in which the
Navier-Stokes equations arise, we will not be concerned about the differences between the
two fluids.)

From the Boltzmann equation, we can find equations for the evolution of mass and
momentum by integrating over u or multiplying by u and then integrating. The results are
similar to previous ones, with the flux now written in terms of the mean velocity J = pV:

0
P+ V- (Vp) =0
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0 1
§Vz + VJVJVZ + ;VjTij = q;
with the stresses given by 7;; = [ du(u; —V;)(uj — V;)Pp,. We arrive at the Euler equations
by using P =~ pG(u — V|RT) to estimate 7,; >~ pd;; RT = pd;;

8

0 1
au-i—(u Viu ——;Vp-i—a :

If we incorporate corrections to the Maxwell distribution, we can expect to find a form of
viscosity; to see this we multiply the Boltzmann equation by w;u; and integrate

0 0
EIO‘GVk +

atT]k + —

0
£ (VV Viep + VTJk; + V Tik + VkTZJ /u;u;uﬂ?m)

= Viarp + Via;p — 2r7j, + 2rpRT0

We will substitute the lowest order approximation into the left-hand side, so that the third
order term vanishes, and use the inviscid equations above to eliminate most of the terms

0 0 oV oV
=Tkt 75— e [VTJR] +7‘Zka + Tij— 97

= —2r[1jr — pdji]
If we now use the lowest order (for large r) result 7, = pRT'd;; and assume temperature
is conserved, we are left with

s ov; oV
Tjk = POjk — N5 {a—xk‘f'a—xj]
with n = p/r. If we use r ~ rms(u’)op/m where o is the cross-section for collisions and m
the mass of the molecule, ) has the same form (o< v/T') as found by Chapman and Enskog.
Note that the viscosity of water, unlike an ideal gas, decreases as temperature increases,
we should not take the exact form of v too seriously — as shown in fluid dynamics texts,
the same form arises from macroscopic arguments together with the assumption that the
stress / rate-of-strain relationship is linear and isotropic. Generally, we ignore gradients
in 7 and work with the kinematic viscosity v = n/p, which, in turn, is treated as constant.

This derivation, then, shows that the Navier-Stokes momentum equations

9
ot

Vi + VY,V = ——v,p+a,+v {av 8V}

—vl i +vViVi
oz, 8:(:] p p+a; +v

appropriately represent the ways in which molecular collisions mix momentum within the
flow. Henceforth, we shall use them in the Boussinesq form discussed in Chapter 1. x.xx)
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