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ABSTRACT

The long-term evolution of initially Gaussian eddies is studied in a reduced-gravity shallow-water model
using both linear and nonlinear quasigeostrophic theory in an attempt to understand westward-propagating
mesoscale eddies observed and tracked by satellite altimetry. By examining both isolated eddies and a large
basin seeded with eddies with statistical characteristics consistent with those of observed eddies, it is shown
that long-term eddy coherence and the zonal wavenumber—frequency power spectral density are best
matched by the nonlinear model. Individual characteristics of the eddies including amplitude decay, hori-
zontal length scale decay, and zonal and meridional propagation speed of a previously unrecognized quasi-
stable state are examined. The results show that the meridional deflections from purely westward flow
(poleward for cyclones and equatorward for anticyclones) are consistent with satellite observations. Exam-
ination of the fluid transport properties of the eddies shows that an inner core of the eddy, defined by the zero
relative vorticity contour, contains only fluid from the eddy origin, whereas a surrounding outer ring contains
a mixture of ambient fluid from throughout the eddy’s lifetime.

1. Introduction

Baroclinic Rossby waves have long been known to
play an important role in the spinup of the ocean
(Anderson and Gill 1975), and so their apparent direct
observation through satellite altimetry measurements of
global sea surface height (SSH) (Chelton and Schlax
1996) was a well celebrated result. These early observa-
tions were shown to differ in their predicted phase speed
from linearized quasigeostrophic theory, which moti-
vated numerous attempts to modify the classical theory
(e.g., Killworth et al. 1997; Tailleux and McWilliams
2001; Killworth and Blundell 2005). However, sub-
sequent observations from higher-resolution SSH fields
constructed from multiple satellite altimeters have cast
doubt on the original interpretation of the observations
as linear waves (Chelton et al. 2007, 2011). The en-
hanced observations now show more eddy-like struc-
tures that remain coherent for long durations, with
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opposing meridional deflections for cyclones and anti-
cyclones, and suggest a significant degree of nonlinearity
through several nondimensional parameters. Motivated
by these observations, we examine the basic character-
istics of Rossby waves and eddies in a standard quasi-
geostrophic setting.

We consider both linear (8" = 0) and nonlinear
(B! # 0) quasigeostrophic theory in a reduced-gravity
shallow-water model,

d d _
S m Sl g @ V) =0, (1)

where the dimensionless variable n(x, y, f) is a sea level
height perturbation scaled by a representative value
7o and the Jacobian is defined as J(a, b) = a,b, — a,b,.
The nondimensional coefficient 87! = U/(B,L%), where
U = gno/(foLRr) is the geostrophic velocity scale associated
with 7, g is the acceleration of gravity, B, is the me-
ridional gradient of the Coriolis parameter, and L is the
Rossby radius of deformation. Equation (1) is typically
written with the nondimensional parameter 3 associated
with the planetary vorticity term [B(dn/dx)]; however,
the convention used here uses the long-wave time scale
of (BoLg) ' rather than the advective time scale L /U so
that Eq. (1) reduces to a parameter independent form of
the linearized Rossby wave equation when 8~ = 0.
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In the first set of experiments presented here, the
linear (8~" = 0) and nonlinear evolution of individual
Gaussian initialized eddies (Ae_’z”“z, where A is the
amplitude and L is the radial length scale) are first
compared, and it is shown that the long-term coherence
of the observed eddies cannot be explained by the linear
theory. For the linear and nonlinear cases, a basin is then
seeded continuously for 150 yr with Gaussian eddies
with statistical characteristics that approximate those of
the eddies observed with altimetry. By considering the
zonal wavenumber—frequency power spectral density,
we are able to compare model results with observations
and it is shown that linear theory does not explain the
observed spectra and must be rejected.

In the second set of experiments, isolated Gaussian
initial conditions are modeled with the nonlinear equa-
tion for time durations much longer than in past studies.
It is shown that a previously unrecognized quasi-stable
eddy state emerges. Individual characteristics of these
eddies are then diagnosed including amplitude decay,
horizontal length scale decay, propagation speed, and
fluid transport properties. These provide baseline prop-
erties for comparison with the observations and other
theories. It is shown that the meridional deflections from
due westward propagation, the transport properties, and
zonal propagation speeds are generally consistent with
those of observed eddies.

2. Nonlinear dynamics
a. Waves versus eddies

To compare wave-like and eddy-like mesoscale fea-
tures, consider the single Rossby plane wave solution to
the fully nonlinear quasigeostrophic Eq. (1),

n(x,y,t) = N, cos(kx + ly — wt + ¢), (2)

where N is a constant amplitude, k and / are zonal and
meridional wavenumbers, = —k/(k?> + > + 1) is the
nondimensional frequency, and ¢ is a constant phase
(Pedlosky 1987). Although Eq. (2) solves both the line-
arized and nonlinear form of Eq. (1), only for 3! = 0 do
linear combinations of Rossby waves solve the nonlinear
Eq. (1). For long wavelengths, k, / < 1, the linearized
form of the equation is only weakly dispersive and so it is
conceivable that linear features might remain coherent
for long durations as observed in the altimetry data.
An initial comparison between the linear and non-
linear form of the equation can be made by considering
the evolution of an initially Gaussian sea surface height
perturbation. For all model runs, an equivalent depth of
D = 80 cm (gravity wave phase speed of 2.8 m s~ ') was
used at latitude 24°. This could equivalently be thought
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of as a single 800-m layer with reduced gravitational
acceleration of approximately 1 cm s 2. This corre-
sponds to the observed deformation radius Lz = 47 km
along 24° in the eastern North Pacific (Chelton et al.
1998) with time scale (8oLg) " of 12 days, and the long-
wave Rossby wave speed is therefore ¢ =B Ly =4.7
cm s~ '. For a scale height of 10 cm these parameters
require setting 8! = 7.5, whereas for the linear form of
the equation they require setting 8~ = 0.

An initial perturbation of n(x,y,0) = Nye™”/"" with
amplitude Ny = 15 cm and length scale L = 80 km was
modeled for 365 days using the two forms of the equa-
tion; the results are shown in Fig. 1. The linear evolution
is dominated by Rossby wave interference patterns, al-
though the sea surface maximum can still be observed
to propagate westward. The nonlinear evolution also
shows Rossby wave interference patterns but is domi-
nated by the coherent westward-propagating sea surface
maximum. The nonlinear anticyclonic eddy also shows
amuch slower amplitude decay rate and an equatorward
deflection (McWilliams and Flierl 1979), both qualita-
tively consistent with the observations reported by
Morrow et al. (2004) and Chelton et al. (2007, 2011).

All experiments used pseudospectral methods (Canuto
2006) to compute spatial derivatives and fourth-order
Runge—Kutta time stepping to iterate forward in time,
still one of the more accurate and efficient iterative
techniques available (Durran 1991). To ensure numerical
stability, spectral vanishing viscosity was used to prevent
the buildup of energy at higher wavenumbers (Tadmor
1989). The premise is to construct a typical low-order
hyperviscosity operator, like those found in McWilliams
and Flierl (1979) or Maltrud and Vallis (1993), but then
to filter this operator such that low wavenumbers are
completely undamped. The original results obtained in
Tadmor (1989) that restrict the choices of this filter are
nicely reviewed in Karamanos and Karniadakis (2000).
This approach has since been used in other fluid models
with great success (Gelb and Gleeson 2001; Pasquetti
2005). Because the domain is doubly periodic, a sponge
layer was added to all four sides to prevent signals from
crossing the boundaries. The numerical model was vali-
dated by comparison with the steady dipole solution
found analytically in Flierl et al. (1980), by doubling the
resolution of all experiments from 4 to 2 km, and by
varying the damping techniques and damping parameters.

b. Eddy seeding experiment

To compare the wavenumber—frequency spectra of
observations with those of the linear and nonlinear
models, a basin 8300 km X 3850 km was seeded by
modifying the instantaneous streamfunction at a random
sequence of times during the full 150 yr of the simulation
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FIG. 1. The evolution of an initially Gaussian SSH of amplitude 15 cm and length scale 80 km. The linear form of
Eq. (1) with (left) 87! = 0 and (right) the value appropriate for the first baroclinic mode at 24° latitude, 8! = 7.5. The
contours are drawn for every 2 cm of height at odd values (e.g., —1,1,3 cm, etc.), and a thicker contour is drawn at 0 cm
to emphasize the interference pattern. The thick black line is the path of the SSH maximum. Animations for the two
cases shown in this figure are available in the supplemental material at the Journals Online Web site: http://dx.doi.org/

10.1175/2011JPO4601.s1.

with Gaussian eddies placed at random locations
throughout the domain. The seeded eddies had ampli-
tudes (both positive and negative), horizontal length scale
distributions, and spatial and temporal frequencies of oc-
currence that matched the statistics of the observed eddies
in a region of the subtropical North Pacific (Chelton et al.
2011). The simulation was run and continuously seeded
with these eddies throughout the domain for 150 yr.

The sea surface height 13 yr into the two model runs
is shown in Fig. 2. Because the linear model simply
evolves the phases of individual Rossby waves, the en-
ergy at individual wavenumbers cannot transfer to other

wavenumbers and changes only by virtue of the energy
continuously added by the eddy seeds. The sea surface
height for the linear model therefore consists of an
evolving interference pattern from the superposition of
waves with length scales unmodified from the original
eddy seeds. Conversely, the nonlinear model allows in-
teractions between wavenumbers and transfers energy
to different scales just as in the study of quasigeostrophic
turbulence (Vallis 2006). The nonlinear model run shows
a clear trend toward reduced energy at short wavelengths
(see Figs. 2, 3). Further, the eddies can be observed from
the animations in the online supplemental material
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FIG. 2. SSH 13 yr into the eddy seeding experiment. Shown are (left) the evolved state using the linear equation
and (right) the evolved state using the nonlinear equation. Both experiments were seeded with the exact same
Gaussian eddies at the same times and locations. The domain shown is a subset of the entire modeled domain.

(available at the Journals Online Web site: http:/
dx.doi.org/10.1175/2011JPO4601.s1) to interact by dis-
tortions, changes in their propagation paths, and merg-
ing, unlike the linear case.

The zonal frequency—wavenumber spectra in Fig. 3
show very different behaviors between the two models.
For the spatial domain, analysis was restricted to 1500 km
west of the easternmost eddy seeds to a box 5500 km in
zonal extent and 3600 km in meridional extent. For the
linear model, the spectral power is restricted to fre-
quencies below the meridional wavenumber / = 0 of the
zonal Rossby wave dispersion relation. This is consistent
with theory, because waves with given zonal (k) and
nonzero meridional wavenumbers (! # 0) have frequen-
cies that remain below the frequency for / = 0. The
spectral power for the nonlinear model is distributed
substantially differently than for the linear model. The
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signals are essentially nondispersive for lower wave-
numbers for both models, whereas the energy at higher
wavenumbers remains centered near the same non-
dispersive slope for the nonlinear model but not the lin-
ear model. The zonal frequency—wavenumber spectrum
of the nonlinear model is very similar to that of the ob-
servations in Fig. 4, whereas the linear model fails to
explain the nondispersive structure observed.

It is noteworthy that small “‘spurs” of spectral power
extend a short distance along the dispersion relation for
both the model and the observations. In the case of the
observations, it is not clear from Fig. 4 whether this spur
of spectral variance is more consistent with either of the
modified Rossby wave theories than with the classical
theory. Distinguishing between these theories is not an
objective of this study, because the model considered here
is not capable of representing the processes of vertical
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FIG. 3. Zonal frequency-wavenumber spectra for SSH of (left) the linear model and (right) the nonlinear model
from 110 yr of the eddy seeding experiment; 25 neighboring latitude bands were ensemble averaged. The black lines
are the maximum (meridional wavenumber / = 0) Rossby wave zonal dispersion relation (curved) and its non-

dispersive limit (linear).
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FIG. 4. Zonal frequency—-wavenumber spectra for SSH from the
merged Ocean Topography Experiment (TOPEX)/Poseidon—
European Remote Sensing Satellite (ERS) satellite altimetry data
along 24°N in the western subtropical Pacific Ocean. The solid line
is computed from the radon transformation. The three dispersion
relations shown are from standard Rossby wave theory, the rough
bottom topography theory of Tailleux and McWilliams (2001),
and the vertical shear-modified theory of Killworth et al. (1997)
extended to the case of nonzero zonal wavenumber (Fu and
Chelton 2001), in order of increasing frequency along the left-hand
side of the plot.

shear or rough bottom topography that are the physical
basis for the modified theories. The spur of spectral power
along the dispersion relation in the case of the reduced-
gravity model considered here is investigated in more
detail from monopole experiments in section 4.

Figure 5 shows distributions of the deviation from due
west propagation of the eddies in the eddy seeding ex-
periments. The linear model shows no systematic pref-
erence for meridional deflection, matching the results of
purely westward propagation found for the isolated
Gaussian in Fig. 1. The spread of meridional deflection
angles is evidently attributable to randomness in the in-
terference patterns from the superposition of the waves in
the linear solution. In contrast, the eddies tracked in the
nonlinear model show distinct tendencies for poleward
and equatorward deflection for cyclonic and anticyclonic
eddies, respectively. This is consistent with the observa-
tions that show similarly opposing deflections of cyclones
and anticyclones. However, in the observations, the mean
deflection angle for combined cyclones and anticyclones
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is rotated a small but significant amount equatorward
from due west (Chelton et al. 2011). This asymmetry
about due west in the observations cannot be explained
by quasigeostrophic theory because the meridional com-
ponent of Eq. (1) is antisymmetric with a change in height
polarity (y — —m). The slight equatorward rotation of
the mean deflection angle from due west in the observa-
tions may be an indication of the effects of meridional
advection or the effects of vertical shear on the total po-
tential vorticity gradient vector from ambient currents
(Samelson 2010) that are not included in the zero mean
flow, reduced-gravity model considered here.

Figure 6 shows the distributions of the tracked eddy
speeds normalized by the long Rossby wave phase speed
¢, = ByL%. The mean value of the distribution for the
linear model, u = 0.54, falls far below the mean value of
the observations for the Northern Hemisphere, u =
0.74. However, the mean value of the distribution from
nonlinear model, u = 0.77, shows a significant increase
over the linear model that is comparable to the obser-
vations. The largest difference between the observations
and the nonlinear model is in the variability of the dis-
tributions. The failure of the nonlinear model to capture
the variability of the observations may be attributed to
the simplicity of the nonlinear model, which includes
only a single independent vertical mode and variations
in the Coriolis parameter as the only contribution to the
potential vorticity gradient; or, it could be an indication
of the importance of nongeostrophic effects that are not
included in the model.

The long-term coherence of the isolated eddies, the
wavenumber—{requency spectra from the eddy seeding
experiments, their meridional deflection, and their dis-
tribution of tracked speeds suggest that linearized qua-
sigeostrophic theory is not a viable theory to explain the
observed westward-propagating features. Nearly all of
the observed properties are well explained by nonlinear
quasigeostrophic theory confirming that the observed
signal represents eddies obeying nonlinear dynamics
rather than Rossby waves obeying linear dynamics.

3. Monopoles
a. The three states of evolution

The interest in eddies on a 8 plane has generated a long
history of analytical and numerical models attempting to
elucidate some of their basic properties, such as ampli-
tude decay and propagation speeds and directions. The
two-dimensional quasigeostrophic potential vorticity
equation [Eq. (1)] lacks many of the complexities asso-
ciated with multilayer quasigeostrophic or primitive
equation models yet remains sufficiently complex that the
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FI1G. 5. Meridional deflection of the (top) cyclonic and (bottom) anticyclonic eddies. (a) The linear model shows no preference for
equatorward or poleward deflection, whereas (b) the quasigeostrophic model shows cyclones have a poleward preference and anticyclones
an equatorward preference. (c) The satellite observations show a pattern similar to quasigeostrophic dynamics, but with the mean
propagation direction of the combined cyclonic and anticyclonic eddies rotated slightly equatorward.

evolution properties of Gaussian initialized distur- §(x,y,7) = —s(x, —y,) is also a solution of Eq. (1). Any
bances are still not completely understood. Previous conclusions drawn here for anticyclonic eddies therefore
studies have typically recognized two distinct states in  also apply to cyclonic eddies provided the terms equa-
the evolution of a quasigeostrophic eddy: an initiali- torward and poleward are swapped.
zation period followed by what was assumed to be For these Gaussian initializations, a quasi-stable west-
a quasi-stable state (Sutyrin et al. 1994; Korotaev 1997, ward-propagating eddy generally emerges as the domi-
Reznik et al. 2000). Here, we will argue that there are  nant feature. When the model was initialized with non-
actually three states: formation of the B gyre (initiali- Gaussian solitary shapes, other solutions were more
zation); an adjustment period (formerly believed to be  likely to emerge (including eastward-propagating di-
quasi stable); and a third quasi-stable, slowly decaying poles), but the quasi-stable westward-propagating eddy
state that has not previously been explored. was still part of the solution, although sometimes with
Typical amplitudes (5, 10, 15, and 20 cm) and radial very different amplitude and length scale than the ini-
length scales (40, 60, 80, 100, and 120 km) were used to tialization shape. These quasi-stable eddies are the focus
initialize isolated Gaussians with parameters represen- of this study, but we briefly consider the other two tran-
tative of latitude 24°N in the eastern North Pacific. sient stages as well.
These correspond to nondimensional amplitudes of 0.5,
1.0, 1.5, and 2.0 and nondimensional length scales of 0.85,
1.27,1.69, 2.12, and 2.54. It is important to note that cy- The first component of an eddy’s evolution is the
clonic eddies (negative amplitudes) can be safely omitted formation of the B gyre, in which an initially axisym-
from consideration because Eq. (1) is symmetric when metric eddy evolves an azimuthal mode-one component
changing polarity, provided that the sign of y is flipped as  because of the B effect over a time scale (BoLg) ' ~
well. Formally, if s(x, y, t) is a solution to Eq. (1), then 12 days (Fiorino and Elsberry 1989). The flow associated

1) FORMATION OF THE 8 GYRE
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with the dipole structure of the gyre initially causes a
largely meridional deflection of the eddy, which then
eventually propagates more zonally. Analytical predictions
for the trajectory of an eddy have previously been found
to agree well with numerical simulations for time periods
less than (ByLz) ', after which the radiation of Rossby
waves strongly alters its evolution (Sutyrin and Flier] 1994;
Reznik and Dewar 1994).

This initialization period must be expected because
a Gaussian shape cannot be a stable solution for the
quasigeostrophic potential vorticity equation [Eq. (1)].
A radially symmetric shape like a Gaussian causes the
Jacobian to vanish, meaning that the advection of rela-
tive vorticity is trivial (advection is still present but
moves fluid parcels to locations of fluid parcels with
identical relative vorticity). Because the advective
nonlinearity is initially trivial, linear Rossby wave dis-
persion due to the B effect will necessarily cause the
initially Gaussian shape to become asymmetric as ex-
plored in Flierl (1977) (see Fig. 7). This asymmetry will
in turn induce nontrivial advection of relative vorticity
through the Jacobian term.

Here, we consider an explanation of the formation of
the B gyre valid for this short time scale initialization
period t < (BoLg) . The initial disturbance is a positive
Gaussian and the resulting anticyclonic eddy can be
thought of as either the local sea surface maximum or
the local relative vorticity minimum. Recall that without
the dispersive and advective terms in Eq. (1) the initial
disturbance would propagate zonally with unaltered
shape at exactly the linear long-wave speed. The evo-
lution of the eddy can therefore be thought of as a de-
viation from perfectly zonal propagation by advection
and dispersion.

(i) Because the initial disturbance is radially symmet-
ric, the first time step is governed entirely by linear
dynamics. The disturbance maximum moves west-
ward; however, because of the dispersive relation-
ship between the group velocity and wavelength,
the signal associated with longer wavelengths will
travel farther westward, whereas the signal associ-
ated with shorter wavelengths will travel more
slowly westward (eastward for the very shortest
wavelengths). The net effect is a decrease in the
western slope and steepening of the eastern slope,
evidently because the shorter wavelengths, which
are required to describe steeper slopes, trail to the
east of the longest wavelengths, which are required
to describe shallower slopes.

(ii) As the gradient of the leading edge shallows and the
gradient of the trailing edge steepens, advection plays
a larger role (this is the formation of the 8 gyre). The
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FIG. 7. Contours (color shading) of height, relative vorticity, zonal-coordinate tracer, and fluid velocity for
a Gaussian initialized 15-cm-height, 80-km eddy on day 675 of its evolution. The e-fold contour (maximum height
divided by e) is shown in cyan. The instantaneous closed height contour in the comoving frame (red) and the contour

of zero relative vorticity (black) are also shown.

stronger equatorward flow on the east side of the
anticyclonic eddy considered here and weaker pole-
ward flow on the west side cause net equatorward
meridional advection of fluid at the eddy’s centroid
and therefore an equatorward deflection of the
anticyclonic eddy (McWilliams and Flierl 1979). Note
that this requires a height difference across the eddy,
consistent with the idea that the eddy formed from
the initial disturbance is best described by relative
vorticity contours rather than height contours, as
elucidated in more detail later. The initially equator-
ward deflection is particularly strong because the net
initial advection is exactly equatorward. The eddy
therefore initially translates to the southwest for this
Northern Hemisphere anticyclone.

After time periods of t ~ (BoLg) !, an asym-
metric shape of the eddy forms to provide a
near advective—dispersive balance. This shape is

characteristic of both the adjustment period that
follows the B-gyre formation and the subsequent
long-term quasi-stable state. Dispersion moves
much of the signal to the region east of the eddy
maximum (as can be seen in the linear case of Fig. 1),
whereas advection moves fluid to the southwest-
ern region. These two effects do not completely
balance, with the difference being approximately
an order of magnitude less than their respective
individual values, and the net effect is to pull the
eddy to the southeast from otherwise due west-
ward propagation at the long-wave phase speed.
Linear dispersion is responsible for slowing the
westward propagation of the eddy, never quite reach-
ing the linear 4.7 cm s~ ! longwave speed (Flierl
1977), whereas the advection is responsible for
deflecting the anticyclonic eddy equatorward
(McWilliams and Flierl 1979).
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FIG. 8. Time evolution of four properties for a Gaussian eddy initialized with 15-cm-amplitude and 80-km-length
scale: (top left) length scale decay rate, (top right) height decay rate, (bottom right) meridional speed, and (bottom
left) zonal speed. The B-gyre formation (initialization) occurs for times less than 11 days and is therefore not well
described in this figure. All four properties show the adjustment period of roughly 200 days before the eddy settles
into the quasi-stable state. Note that the speed plots are shown with a different vertical axis and the meridional speed
is nearly an order of magnitude slower than the zonal speed.

2) ADJUSTMENT PERIOD

After time periods of  ~ (BoLg) ', the eddy’s evolu-
tion is largely dictated by its energy loss due to the
excitation of Rossby waves (Flierl 1984). Figure 8 shows
changes in the decay rates of the length scale, amplitude,
and the zonal and meridional speed over the first 600 days
of the eddy evolution. There is a distinct adjustment
period over the first 200 days,  ~ 20(BoLg) ', where the
changes are quite rapid. These values were obtained by
tracking the relative vorticity extremum and recording
the contour of zero relative vorticity, the local sea surface
maximum, and the sea surface height e-fold contour.

It was noted in Sutyrin et al. (1994) that at around
175 days (converted to the scales used here) a tripole
emerges in the potential vorticity field. The rapid changes
in eddy properties during the end of the adjustment
period (Fig. 8) may reflect processes associated with the
emergence of this tripole structure. Perhaps not coin-
cidentally, it is also around 200 days that analytical
predictions of the eddy path show qualitatively poor
agreement with numerical results (Sutyrin et al. 1994;
Korotaev 1997; Reznik et al. 2000).

For most of the cases considered here, the transition
from initialized Gaussian to quasi-stable, slowly decaying
eddy followed the pattern shown in Fig. 8. However,

some of the large length scale and small-amplitude Gauss-
ians (which have smaller Uy,,x) took much longer and
sometimes never even reached the quasi-stable state,
instead dispersing with more wave-like characteristics
due to the weak nonlinearity of these eddies. This is
consistent with the results in Sutyrin et al. (1994), where
it was found that, given their chosen length scale, there
exists a critical intensity below which the tripole in the
potential vorticity field failed to emerge. The length of
the adjustment period depends on the height and length
of the initial Gaussian, but for most cases the quasi-stable
state is generally reached at approximately 100-200 days,

t~15(BoLr) .

3) QUASI-STABLE STATE

The quasi-stable eddy state for a Northern Hemi-
sphere anticyclone always has the characteristic shape
shown in Fig. 7 that is necessary for maintaining the near
advective—dispersive balance. The height field is char-
acterized by a steep south-southeastern edge, whereas
the north-northwestern edge is particularly shallow. The
resulting geostrophic velocity field consists of strong flow
in the south-southeastern region and weak flow along
the north-northwestern edge. The asymmetry in the
height field is easily seen from the cyan e-fold contour.
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FI1G. 9. (top) Eddy speed vs amplitude. The amplitude, speed, and length scale are plotted for each day of the eddy’s
evolution starting at day 200 until day 730 or until the eddy can no longer be tracked. In total, 5139 points are plotted.

The black lines are the linear (inverse amplitude) best fit line to these points, ¢y(A) = 55471 — 44 cm s~

L and

cy(A) = —3.0A"" = 0.19 cm s~!, whereas the red lines are from Egs. (3) and (4). Points are colored with the eddy
length scale (in km), suggesting a weak speed dependence on length scale. The dashed gray lines are the maximum
group velocities of Rossby waves in the zonal and meridional directions. (bottom) The deviation of the eddy speed
from the predicted relationship normalized by the variability, suggesting weak speed dependence on length scale.
The results were filtered to only include isolated eddies in the quasi-stable state.

In the comoving frame, the height field (equivalent to
the streamfunction or pressure field) becomes far more
symmetric. The resulting largest instantaneous closed
contour in the comoving frame is shown in red in Fig. 7;
if the flow were steady in that frame, the fluid in this
contour would be trapped and carried along with the
eddy. For the region to truly trap fluid, the eddy’s am-
plitude, length scale, shape, and translation speeds
would all have to remain constant. Figure 8 shows that
this is not the case.

The relative vorticity zero contour, where Vzn =0,
shown in black in Fig. 7, remains nearly symmetric
throughout the eddy lifetime, unlike the e-fold contour
which was found to have far greater variability. For this
reason it was found that the automated eddy tracking
algorithm used in this monopole study was far more re-
liable when tracking the relative vorticity extremum and
the contour of zero relative vorticity than tracking the sea
surface height extremum and e-folding contour. Fol-
lowing Korotaev and Fedotov (1994), the inner core of
an anticyclonic eddy is defined here as the region con-
taining negative relative vorticity, whereas the outer ring
is the surrounding region of positive relative vorticity.

For the initial Gaussian disturbance, the e-fold con-
tour of sea surface height and contour of zero relative
vorticity are identical, but, as can be seen in Fig. 7, this is
not the case for the quasi-stable state. The height dif-
ference between the higher northwestern corner of the

contour of zero relative vorticity and the lower south-
eastern corner require a net fluid transport to the south-
west, which is responsible for the equatorward meridional
deflection of this Northern Hemisphere anticyclonic
eddy. Note that if we defined the eddy by contours of
constant sea surface height there could be no net merid-
ional transport across the eddy because the net transport
is | 277){ dx = n(b) — n(a), the difference of which is zero.

b. Meridional and zonal propagation speeds

The zonal speeds of the isolated eddies in the quasi-
stable regime were found to be dependent on the eddy
amplitude such that larger-amplitude eddies propa-
gate significantly faster than smaller-amplitude eddies,
as shown in Fig. 9. This is qualitatively consistent with
the observed eddies, for which the eddies with largest
/3 amplitudes propagate about 20% faster than the
eddies with the /3 smallest amplitudes Chelton et al.
(2011) (see Figs. 19 and 20 and the related discussion in
section 4). Figure 9 also shows mild dependence on
eddy length scale with smaller eddies propagating
slightly more slowly. In general then, eddies larger in
both amplitude and length scale propagate faster than
eddies smaller in amplitude and length scale. The least
squares fit to the inverse amplitude was found to be
c(A) = 53471 — 4.4 cm s™'. This is suggestive of a
lower bound asymptote at —4.4 cm s~ ', which is close

to the linear long-wave speed of 4.7 cm s~ .
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FI1G. 10. Propagation speed of eddy vs eddy amplitude. As in Fig. 9, but at latitude 35°. The zonal and meridional inverse
amplitude best fits lines are c,(4) = 1.04"! — 2.0 cm s ! and c(A) = —0.71A7" — 0.032 cm s~ ', respectively.

That the zonal speed of the eddies is slower than the
linear long-wave speed is consistent with previous ex-
periments. The linear model considered in Flierl (1977)
suggests that this should be the case at least for linearized
Gaussians. In the case of the nonlinear model considered
here, this is also consistent with the notion of “‘wave drag”
caused by the excitation of Rossby waves forcing a slower
propagation speed (Korotaev and Fedotov 1994).

The meridional speed of the eddy was similarly found
to depend significantly on the amplitude of the eddy,
as shown in Fig. 9; the meridional speed decreases with
increasing amplitude. The least squares fit to the in-
verse amplitude was found to be ¢, (A) = -3.047" -
0.19 cm s~ 1. Just as with the zonal propagation speed,
there appears to be a weak dependence on the length
scale of the eddy with meridional speed decreasing with
increasing amplitude. However, unlike the zonal propa-
gation speed, Fig. 9 shows the smaller-amplitude eddies
exceed the maximum meridional Rossby wave group
velocity. To obtain reliable meridional speeds, data points
with amplitudes less than 2.0 cm were discarded because
it was found that zonally propagating Rossby waves left
over from the initialization and adjustment periods were
interacting by catching up with the eddies (because their
zonal propagation speed decreases as they evolve) and
dramatically changing the meridional deflection.

Assuming that ¢,(A) asymptotes to the linear long-
wave speed of 4.7 cm s~ ' and then dividing the least
squares fit regression coefficient (5.3) by this value re-
veals an amplitude scale of approximately 1.1 cm. This
scale is suggestive of N = D(B,L%)/(v/gD), the height
scale that arises when all coefficients of Eq. (1) are
forced to unity, which results in Nog = 1.3 cm (in

contrast to choosing a preferred scale such as Ny =
10 cm as we have done). Given the observation that the
linear long-wave speed of B L% appears to be a lower
bound asymptote, this suggests that the propagation
speed ¢, is dependent on the eddy amplitude A by

The corresponding meridional propagation would take
the form

N,
c(A)=ByL% (|7Q|G - 3)

BoLk Nog

A=

4)
These predicted dependencies are plotted in red in Fig. 9
and appear to most closely approximate the speed
dependencies of the eddies with the longest length
scales. To test the hypothesis that Egs. (3) and (4) cor-
rectly describe the propagation speed dependency of
quasigeostrophic eddies on eddy amplitude, the same
experiment was run at latitude 35°, where the linear
long-wave speed is 2.2 cm s~ and Nog = 0.60 cm. The
results are shown in Fig. 10 and are consistent with the
hypothesis.

The small-amplitude limits of Egs. (3) and (4) result in
seemingly nonsensical values. However, it is important
to note that these results are for coherent, identified
eddy features for which the length scale is also de-
creasing. The simultaneous decrease in amplitude and
length scale keeps the eddies nonlinear by maintaining
relatively large fluid velocities. Because the length scales
are also small in this limit, it is not clear exactly what
limiting speed should be expected.
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FIG. 11. Area-mean potential vorticity and energy within the entire trapped fluid region; the eddy core; and
the eddy ring of an 80-km, 15-cm Gaussian initialized eddy. The trends are the same for the other quasi-stable

eddies.

c. Trapped fluid conservation properties

If the fluid rotational speeds U in the eddy exceed its
translation speed c, transforming coordinates into the
comoving frame will result in closed streamlines within
the eddy. The outermost closed streamline bounds the
region where no fluid can escape, if the flow in the
translating frame is steady. However, these quasi-stable
eddies have slowly decaying amplitude and length scales
(Fig. 8). The region of trapped fluid and the amplitude
both decrease, meaning that the volume of trapped fluid
actually decreases with time.

Conservation of potential vorticity for a fluid parcel
has contributions from three terms, planetary vorticity,
relative vorticity, and vortex stretching,

8 w2 fo
d By + 7 Ven D" —0
dt N~~~ 0\/—’ N—— ’
planetary vorticity  relative vorticity ~ vortex stretching
®)

Figure 11 shows the relative contributions from each of
the three terms in potential vorticity conservation for



AuGusT 2011

a Gaussian initialized eddy with 15-cm amplitude and
80-km length scale. In Fig. 11a, the values are found by
integrating the terms over the entire instantaneous re-
gion of trapped fluid at each time and then dividing by its
area. The trends for the planetary vorticity, vortex
stretching, and total potential vorticity are the same for
all other eddies that reach the quasi-stable state.

Even though the region of trapped fluid changes in
time, it is clear how the planetary and vortex stretching
terms should change for the average fluid parcel in the
region. Because the eddy has a southward component of
propagation on a 3 plane (y decreases), the contribution
from planetary vorticity decreases in time (By de-
creases). The decay of the eddy’s amplitude (n de-
creases) causes an increase in contribution from vortex
stretching (—7 increases). That the contribution from
relative vorticity remains nearly constant throughout
the eddy lifetime means that the eddy is maintaining
a ratio between the negative relative vorticity from the
eddy core and the positive relative vorticity in the outer
ring (see Fig. 7, top right).

Energy can be divided into two terms, the kinetic
energy

2
8,2 2
—2(77x+77y
0

and the potential energy n° Figure 11b shows decreasing
contributions of both kinetic and potential energy as the
eddy evolves. The initial ratios of kinetic energy to po-
tential energy depend on the initial conditions. For ex-
ample, the 80-km, 15-cm eddy considered in Fig. 11b is
initially dominated by potential energy, whereas a
40-km, 10-cm eddy is initially dominated by kinetic en-
ergy. Despite the partition differences for the two eddies,
both display similar evolution characteristics, with the av-
erage energy per fluid parcel decreasing over time. This
trend is similar to that described by Korotaev and Fedotov
(1994) and Korotaev (1997), who suggest that this may be
due to the radiation of energy by Rossby waves.

To investigate the advective properties of the eddies,
both a passive tracer and floats were added to the model.
The passive tracer W(x, y, ) is a scalar field with no
sources or sinks initialized with the value of its initial x
position and then allowed to evolve with the equation

ow

ow ow
+ v— =0.

— tu
ot 0x dy

In addition to the passive tracer, floats were initialized
with positions at each grid cell. The float positions are
solved by estimating the velocity field at each time step
using bilinear interpolation. The fates of the tracer field
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and floats over the lifetime of a westward-propagating
monopole are investigated separately for the eddy core
and the eddy ring in the following subsections.

1) EDDY CORE

We consider the eddy core first (recall that this is the
region whose outer boundary is defined as the zero rel-
ative vorticity contour where V% = 0). Fluid must be
entrained, exactly trapped, lost, or some combination of
entrainment and loss.

Can a new parcel of fluid be entrained in the eddy
core? Recall that the eddy core for an anticyclonic eddy
is a region of positive sea surface height and negative
relative vorticity and consider what it would take for
a fluid parcel with no height perturbation and no relative
vorticity to enter the eddy core. To join the eddy core,
the fluid parcel must increase its height and therefore
decrease its vortex stretching contribution to the total
potential vorticity. To balance this decrease in vortex
stretching, the particle must come from 35 km north of
the eddy for every 1 cm increase in height. In addition to
the decrease in potential vorticity from vortex stretch-
ing, the particle must also decrease its relative vorticity
from zero to become negative. If we consider the eddy at
the instant shown in Fig. 7 where the contour of zero
relative vorticity is at roughly 4 cm, this would mean
that, for a parcel of fluid to even reach the boundary of
the core, it must be displaced from its original rest lo-
cation 140 km north of the eddy. However, the eddy’s
radial length scale is much less than 140 km and, because
of the effect of the B gyre, the eddy is propagating
southwestward. We must therefore conclude that a new
fluid parcel will not be entrained in the eddy core. Ex-
actly this effect can be seen in the x-tracer panel in Fig. 7
where on day 675 the eddy core still only contains fluid
initially trapped within a region centered at (x, y) =
(0, 0) when the eddy was formed.

Do fluid parcels on the eddy core boundary remain on
the boundary? For particles to remain on the V5 =
0 contour, the fluid flow must be tangential to the contour,
and there can be no normal flow. To conserve potential
vorticity [Eq. (5)], these particles must therefore obey

dy _ f() dn
'BOE “Dar (6)

throughout their lifetimes. During the time it takes
a parcel of fluid to circulate once around the core, the
condition is quite reasonable to meet. As computed
before, this only requires a particle to decrease its height
by 1 cm for every 35 km of meridional displacement.

Using Fig. 7, we can estimate the north-south extent of
the zero contour of relative vorticity to be 100 km, and
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FIG. 12. Histograms of (top) the initial x position and (bottom)
the initial y position of the fluid on day 675 in the core of an 80-km,
15-cm Gaussian initialized eddy. At this time, the eddy extremum is
located at x = —2247 km and y = —330 km. Thus, the core contains
only fluid from its starting point more than 2000 km away. An
animation of the passive tracer field is included in the online sup-
plemental material (available at the Journals Online Web site:
http://dx.doi.org/10.1175/2011JPO4601.s1).

so our condition would require that the northern edge of
the contour of zero relative vorticity be roughly 3 cm
higher than the southern edge. Figure 7 shows that this is
indeed the approximate difference. We can also use Eq.
(6) with the parameters from this problem to compute
a condition relating the meridional propagation to the
amplitude decay, and we find that

9.0~ .20 )

This suggests that that meridional speed shown in Fig. 8
of approximately 0.5 cm s~ ! must be offset by a height
decay rate of approximately 4.5 cm yr~ ' if a parcel is to
remain on the zero contour. The observed height decay
rate falls short of meeting this condition and instead has
a decay rate closer to 3 cm yr '. Although these are
estimates, the values computed for Fig. 8 are from the
eddy maximum, and our condition in Eq. (7) is for the
V?n = 0 contour, they are qualitatively correct. Such
a particle therefore does not conserve potential vorticity
and the assumption that particles remain on the contour
of zero relative vorticity must be incorrect. To conserve
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potential vorticity [Eq. (5)] and account for this differ-
ence, this implies that particles must be increasing their
relative vorticity and crossing the boundary of zero
relative vorticity. The eddy core cannot entrain fluid and
because the condition in Eq. (7) is not exactly met then it
does not trap the fluid that defines its boundary, so the
eddy core must be shedding fluid (equivalently, the
boundary of the core is shrinking).

We can validate our entrainment conclusion with the
model by considering the floats within the eddy core on
day 675 and asking where they were on day zero. This
can be seen in Fig. 12 where a histogram of the initial x
and y positions of the fluid shows the fluid in the eddy
core consists entirely of a subset of approximately the
inner 50 km of the original fluid trapped in the core
during the initialization of the 80-km eddy. The top
panel of Fig. 13 shows these original float locations as
red dots on top of the sea surface height for day 675,
and the bottom panel shows the results of allowing
a passive tracer to advect with the flow. The individual
red dots are not discernible, because they are all clus-
tered tightly within the core of the eddy at its initial
center location of (x, y) = (0, 0). The fluid was given
a meridionally uniform color for each location in x on
day zero according to the rainbow palette at the bottom
of the figure.

Having established that no new fluid is entrained
within the propagating eddy core defined by the con-
tour of zero relative vorticity, we can more easily in-
terpret Fig. 11c. Because the total potential vorticity
becomes more negative on average, this implies that
the eddy core is shedding fluid with higher potential
vorticity.

Figure 14 shows the history of a float initially located in
the eddy core, which remains in the eddy core for all
730 days of the model run. The oscillations in the indi-
vidual contributions of the potential vorticity occur as the
float circulates around the eddy core. The parcel of fluid
tracked by the float finds that the total potential vorticity
remained conserved, but the surface height adjusted
to compensate for the loss of planetary vorticity from
the equatorward displacement of the eddy, whereas the
relative vorticity changed very little. The potential
vorticity for the fluid parcel is within 0.1% of its initial
value after 730 days. This is excellent confirmation that
the numerical scheme is accurate because individual
contributions to the potential vorticity vary by well
over 50%.

2) EDDY RING

The eddy ring consists of fluid with positive relative
vorticity, although with magnitude much smaller than
the eddy core. The same possibilities for trapped fluid
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FIG. 13. Location of fluid advected on day 675. (top) SSH with the instantaneous trapped fluid contour (red) and relative vorticity zero
contour (black). Blue circles show the day zero location of the floats in the eddy ring, whereas red circles show the location of floats in the
eddy core. (bottom) A passive tracer equal to the initial (day 0) value of the zonal coordinate.

exist as with the core: fluid is either entrained, exactly
trapped, lost, or some combination of entrainment and
loss.

At the very least, the eddy ring will be collecting fluid
shed from the shrinking boundary of the eddy core. In
addition, however, the eddy ring will also entrain new
surrounding fluid. An increase in height (and therefore
a compensated increase in relative vorticity) is exactly
what a fluid parcel requires to join the eddy ring. This
can be seen from the histograms of the original loca-
tions of floats found in the ring on day 675, shown in
Fig. 15, where it is clear that the eddy ring has collected
(and also therefore released) fluid throughout its life-
time. These original float locations are shown in the top
panel of Fig. 13 as blue dots on top of the sea surface
height on day 675.

The average potential vorticity composition within
the eddy ring over time for the 80-km, 15-cm eddy is
shown in Fig. 1le. The contribution from planetary
vorticity decreases and the vortex stretching contribu-
tion increases; again, both of these are obvious. The
relative vorticity remains flat or mildly increases for all
eddies. The average potential vorticity trend always
decreases. This is because the ring is shedding fluid with
higher potential vorticity and acquiring new fluid with

lower potential vorticity, as we can see from the tracer in
Fig. 13 and the histograms in Fig. 15.

Figure 16 shows the potential vorticity composition for
a float that began in the eddy core, crossed to the eddy
ring (all while circulating around the eddy center causing
the oscillations) and was eventually ejected from the
eddy. Notice that the potential vorticity for this float does
not remain perfectly constant. Although most floats
throughout the domain do conserve potential vorticity
well, we find that floats crossing the relative vorticity zero
contour often undergo rapid changes in potential vorticity
while crossing the boundary. After examining a number
of individual floats, we believe that this is an artifact of the
strong gradients of u and v that are poorly resolved with
bilinear interpolation, which also typically coincide with
regions of strong potential vorticity gradients.

Although the linear model is generally associated with
the assumption that fluid parcel advection is negligible,
the Lagrangian motion implied by the geostrophic ve-
locity field can still be computed ex post facto. The
resulting motion is equivalent to the Stokes drift resulting
from the interaction of two or more Rossby waves with
the same frequency (not shown here). This can be seen in
Fig. 17, which shows the same tracer fluid experiment seen
in the bottom panel of Fig. 13 but using linear dynamics
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FIG. 14. Contributions to the total potential vorticity for a float
initially at x = 29 km and y = 26 km. The float remains inside the
core of the eddy for all 730 days. On day 730, the float was located
at x = —2400 km and y = —389 km.

(when B~' = 0). The resulting fluid transports are still
valid provided that the advection of relative vorticity is
small compared to the other terms in the potential vor-
ticity Eq. (5), even if fluid parcels are advected at a finite
distance. However, because the dynamics substantially
change with the inclusion of the advection of relative
vorticity, as seen in Fig. 1, we know that this condition
is violated and the advection of relative vorticity is not
negligible. Even with this inconsistent assumption, al-
though fluid is transported over 1000 km, it still pales in
comparison to the distance and efficiency with which fluid
is transported by the coherent eddy in Fig. 13.

4. Discussion

Although it may seem surprising that the quasi-stable
state of isolated nonlinear eddies identified here has not
previously been identified, early numerical solutions of
isolated quasigeostrophic eddies, such as McWilliams
and Flierl (1979), have typically been restricted to times
roughly as long the adjustment period identified here,
likely because of computational resource limitations.
The numerical study of Sutyrin et al. (1994) and Lam
and Dritschel (2001) did consider times longer than the
adjustment period but not significantly longer and for
a smaller range of scales. Only by considering times after
the adjustment period and discarding eddies that failed
to reach the quasi-stable state do we find clear re-
lationships between eddy amplitude and propagation
speed, as in Fig. 9. The empirical Egs. (3) and (4) appear
to describe this relationship accurately; an analytical
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F1G. 15. As in Fig. 12, but histograms of (a) the initial x position
and (b) the initial y position of the fluid in the ring on day 675.
Thus, the ring contains a mixture of fluid from throughout its
lifetime.

derivation of these equations would likely provide ad-
ditional insight into the nature of the quasi-stable state.

Previous studies have attempted to formulate ana-
Iytical estimates of the westward propagation speed of
quasigeostrophic vortices by determining the speed
of the center of mass (McWilliams and Flierl 1979;
Cushman-Roisin et al. 1990). However, the center of
mass is determined by integration over the entire domain
(rather than a region localized around the eddy like the
contour of zero relative vorticity used here) and does not
appear to correlate with the speed of the tracked eddies.
The approaches found in Korotaev (1997) and Nycander
(2001) use the loss of energy through Rossby wave ra-
diation to estimate the propagation speeds and may
apply during the adjustment period but, based on com-
parisons to our numerical results, do not appear to apply
to the quasi-stable state. The results of the analytical
study Reznik et al. (2000) are only valid for time periods
extending into the adjustment period where the eddy
height decay rate is at its strongest and may explain
why their results significantly underestimate the eddy’s
lifetime.

Although the isolated eddies in section 3 and the basin
of eddies in section 2b are both governed by the same
equation, Eq. (1), it is not necessarily true that the
properties of one experiment applies to the other. First,
is the shape of nonlinear zonal frequency—wavenumber
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FIG. 16. Contributions to the total potential vorticity for a float
initially at x = 60 km and y = 26 km. The float begins in the eddy
core, crosses to the ring, and is eventually lost by the eddy. On day
730, the float was located at x = —1113 km and y = —227 km.

spectra in Fig. 3 explained primarily by eddy—eddy in-
teraction, or is it already represented in the monopole
experiment? Second, does the eddy speed dependence
on amplitude and length scale as shown in Fig. 9 also
exist for the eddy seeding experiment?

In the first experiment, the zonal frequency-wavenumber
spectra in Fig. 3 were repeated for isolated monopoles
and are shown in Fig. 18. The spectra were averaged over
multiple y slices to capture the power from the whole
domain. The spectra of the isolated eddy and eddy basin
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FIG. 17. Passive tracer on day 675 advected by an initially
Gaussian disturbance evolved with linear dynamics. The contours
of zero SSH are shown in black. As in Fig. 13 (bottom), but with
linear dynamics.

evolved with linear dynamics appear nearly identical,
and the spectra of the nonlinear experiments are also
quite similar, but with two noticeable differences. First,
the spectrum of the isolated eddy experiment shows a
somewhat more distinct spur of power following the
linear Rossby wave zonal dispersion relation than is
found in the spectrum from the eddy seeding experi-
ment. This is explained by the observation that the
Rossby waves shed from the initial disturbance is still
largely obeying linear dynamics in the monopole ex-
periment, whereas in the seeding experiment there is
relatively little free space between eddies (and there-
fore less room for features that obey linear dynamics).
Second, the spectrum from the nonlinear eddy seed-
ing experiment shows relatively less power at higher

9] 2] ~ o] ©

oS

Logm [c:mz(cycles,’day)'1 (cycl(-;ts;v’km}"I

-1 0
Zonal Wavenumber (cycles per 1000 km) Zonal Wavenumber (cycles per 1000 km)

FIG. 18. Zonal frequency-wavenumber spectra for SSH of (left) the linear model and (right) the nonlinear model
from the 730-day evolution of an initially Gaussian SSH of amplitude 15 cm and length scale 80 km. The black lines
are the maximum (meridional wavenumber / = 0) Rossby wave zonal dispersion relation (curved) and its non-

dispersive limit (linear).
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FIG. 19. Distributions of eddy speeds from the nonlinear model normalized by the nondisperisve Rossby wave
phase speed separated into the eddies with (a) smallest /3 amplitudes; (b) largest /3 amplitudes; (c) smallest /3 length

scales; and (d) largest /3 length scales.

wavenumbers than in the monopole experiment. This
stronger shift in concentration of power from the larger
wavenumbers to the smaller wavenumbers likely arises
from the eddy—eddy interaction introduced in the eddy
seeding experiment. This is consistent with the up-scale
energy cascade of quasigeostrophic turbulence (Vallis
2006).

In the second experiment, it is shown that the eddy
speed dependence on amplitude and length scale shown
for isolated eddies in Fig. 9 also exists in the eddy seed
experiment as well as for the altimeter observations
(Chelton et al. 2011). Figure 19 shows the tracked eddies
from the nonlinear eddy seeding experiment separated

by amplitude and length scale. Just as for the isolated
monopoles, propagation speed is strongly dependent on
eddy amplitude and weakly dependent on eddy length
scale. Figure 20 shows that this relationship also holds
for the altimeter observations.

5. Conclusions

The long-term coherence of eddies observed and
tracked by satellite altimetry more closely matches the
evolution of isolated eddies in the nonlinear than in
the linear model. Further, the spectral properties of the
eddies observed by satellite altimetry are in excellent
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FIG. 20. As in Fig. 19, but for the altimeter observations of eddies in the eastern subtropical Pacific between 20° and
35°N and between 165° and 110°W.

agreement with the spectrum from the basin-scale eddy
seeding experiment for the nonlinear quasigeostrophic
model. Taken together, we find this to be convincing
evidence that the signals observed in the high-resolution
satellite observations (Chelton et al. 2007, 2011) repre-
sent eddies obeying nonlinear dynamics.

In an effort to understand the characteristics of qua-
sigeostrophic eddies, we conducted a study of the long-
term evolution of isolated eddies. Gaussian initialized
eddies have three distinct regimes in their evolution, of
which only two have previously been characterized. What
was once believed to be a quasi-stable state turns out

to be better characterized as an adjustment period, and
only at lifetimes of approximately 15(8oLz) ' does a
truly quasi-stable state emerge.

The quasi-stable state is characterized by zonal and
meridional propagation speeds strongly dependent on the
inverse amplitude of the eddy, with larger amplitudes
tending toward the long-wave limit of linear Rossby waves.
All propagation speeds for the monopole experiments are
slower than this limit, and this is thought to be an effect of
the wave drag caused by the excitation of Rossby waves.
This same speed dependence was found in the eddy
seeding experiment as well as the enhanced eddy resolving
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observations (Chelton et al. 2007,2011), which found zonal
propagation speeds to be strongly dependent on amplitude
and weakly dependent on length scale. However, the
nonlinear model has a smaller variability in the distribu-
tion of eddy speeds compared with the observations, and
we believe that this is a limitation of quasigeostrophic
theory or the neglect of the effects of variations in the
background mean flow on the potential vorticity gradient.

The quasigeostrophic eddies were shown to transport
a substantial amount of fluid over long distances. At any
point during an eddy’s lifetime, 100% of the fluid in the
core is from the initialization location, where the core is
defined as the region interior to the zero contour of the
relative vorticity. This is in contrast to the instantaneously
defined trapped fluid region, determined by transforming
into coordinates comoving with the eddy, which does not
well describe the boundary of the retained fluid. In this
sense, the core of the eddy is a “perfect” transporter of
fluid and carries the same parcels of fluid for thousands of
kilometers during its slow decay. The ring of fluid with
opposite signed relative vorticity fluid around the eddy is
approximately bounded by the zero contour of relative
vorticity and the region of trapped fluid but transports
fluid in a very different manner. The ring entrains and
sheds fluid throughout its lifetime, moving some parcels
of fluid hundreds of kilometers and others thousands of
kilometers.

In light of our conclusion that the satellite observa-
tions are not Rossby waves, these transport properties
have significant implications. Linear Rossby waves
cannot transport fluid nearly as effectively, and there-
fore most energy transferred is in the form of kinetic and
potential energy. The nonlinear eddies, in contrast, are
capable of transporting relatively large quantities of
fluid and therefore can carry energy in the form of heat,
in addition to the kinetic and potential energy carried by
wave fluctuations, as well as other material properties and
dissolved materials that may have biological importance.

A number of issues regarding the individual proper-
ties of quasigeostrophic eddies still need to be resolved.
Although an empirical relationship between the prop-
agation speed and the eddy amplitude was found, a sat-
isfactory analytical theory for this relationship has not
yet been developed. Further, we believe that the ideas of
radiative Rossby wave energy loss should be applicable
outside the adjustment period explored in Korotaev
(1997) and Nycander (2001). Analytical formulations
for the relationships between eddy amplitude decay
rates and propagation speed may be possible.
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