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1. INTRODUCTION
1.1 Turbulent and Not-So-Turbulent Geofluids

The complexity of geophysical flows, from scales of planetary radius down
to scales of molecular diffusion, has long posed a fascinating and frustrat-
ing challenge to fluid dynamicists. It is not only a tantalizing theo-
retical question but also one of practical importance. Despite determined
study, understanding of the oceans and atmosphere and, especially, the pre-
diction of responses to our trespasses upon these environments remain
dangerously suspect.

Much of the dynamical difficulty arises from nonlinear coupling across
many scales of motion. Occasionally one refers to the “turbulent atmo-
sphere” or the “turbulent ocean.” Just as often it is remarked that these
systems are not altogether “turbulent” if that adjective is taken to connote a
condition that is highly chaotic, dissipative, diffusive, or possessed of
whatever other attributes that one may assign to “turbulence.” Examples of
wavelike phenomena abound but often are partly obscured by nonlinear
interactions. Persistent, coherent, finite-amplitude flow features also are
observed.

Moreover there is the disturbingly nontrivial problem of distinguishing
mean and fluctuating fields. Geophysical flows often are characterized by
spectra, both in frequency and in wave number, that are continuous and
“red” in character. Then the definition of a mean field becomes more or less
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arbitrary. This problem is compounded when we ask the dynamical
question, how are mean and fluctuating fields interrelated?

1.2 Approaches

Faced with this complexity, what is to be done? On the one hand, ever
bigger and faster computers will provide ever more power to numerical
hydrodynamical approaches in which a wide range of scales of motion are
explicitly resolved. The computer approach has its weaknesses: It raises
both the inevitable question of how much does any solution depend upon
numerical method and how much upon physics, and also the need to
organize the output of such numerical empiricism according to some
conceptual framework.

On the other hand, traditional theoretical approaches have tended to fall
into two areas. Specific flow mechanisms, say a kind of wave propagation or
an instability, might beisolated and solved analytically. The question then
is how to obtain the collective result of many such mechanisms actingin a
common environment; it is a “forest-and-trees” problem. The second
theoretical approach is exemplified by turbulence theories such as those
that rest upon dimensional analyses, similarity assumptions, or heuristics.
Such theories yield statistical information on collective behavior. However,
when the underlying mechanisms become more elaborate (e.g. including
both wave propagation and turbulent advection), then the problem
becomes ambiguous to dimensional analysis, may not support similarity
assumptions, and can be quite confusing to heuristic approaches.

This review concerns a third kind of theoretical approach. We consider
the exercise of ideas from equilibrium and disequilibrium statistical
mechanics as applied to macroscale geophysical flows. The literature
discussing these applications to geophysical flows is relatively recent,
mostly going back less than a decade. Earlier developments are due to
Onsager (1949), Hopf (1952), and Lee (1952). We provide here an overview
of the methods of equilibrium and disequilibrium statistical mechanics
(Sections 3 and 4). These sections are brief, conceptual, and nonspecific. The
major part of this review is then the discussion in Section 5 of specific
examplesillustrating a wide variety of geophysical applications. The reader
who finds the conceptual overview esoteric may be surprised to see the
detailed quantitative calculations that result from applications. A main
point to be demonstrated is that these methods offer a practicable approach
to problems that otherwise perforce fall into the domains of numerical
empiricism or of heuristic description. Moreover, one obtains directly the
relation of statistical quantities to other statistics, which also reveals an
analytical dependence upon external parameters.

It is to be emphasized that this article is organized along lines of
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methodology; no effort is made to provide a systematic treatment of the
phenomenology of geofluids, for which a number of reviews and textbooks
are available.

2. GEOFLUID EVOLUTION IN PROBABILITY

Consider a typical geofluids problem. The problem will often be expressed
in the form of a nonlinear partial differential equation with boundary
conditions, symbolically

%§+$§+_Af§§=é’, BE=0 onC, (1)

where #, 4", and £ are operators on a vector field & Here % and & are
taken to be linear, while /" is a bilinear operator. Components of & might
include velocity components, density, pressure, elevation, concentrations,
or whatever else is of interest. The vector & represents external forcing.
Nonlinearity in (1) is only of second degree, such as is often introduced by
advection. Boundary conditions are given as homogeneous for simplicity.
More general cases than (1) may be considered ; here we assume only that
(1) is illustrative of many problems.
We seek to represent the solution &(x, t) on a basis set as

M
§(x,t) = ;1 Yit)$i(x), @

where the ¢, are chosen in some convenient, orthogonal way, perhaps as
eigenfunctions of % satisfying # (although this need not be the case). An
important remark is that (2) has been truncated at some large but finite M.
If the dimension of each amplitude vector y; is R, then the total number of
degrees of freedom is RM.

The truncation in (2) raises difficult issues. An argument thatis often used
is that variations across short length scales, which tend to be less energetic
than larger scale motions, might be ignored or else “averaged over” so as to
be represented by “eddy diffusivity,” for example. However, such heuristic
“averaging,” when performed at synoptic or mesoscales of atmospheres and
oceans, has won notoriety for generating wrong results. In principle we
might suppose M so large as to express scales of motion down to the scales
of molecular diffusivity.

Substituting (2) into (1) and enforcing the truncation at M produces

M MM
yi+ '21 L;; Y,i+zzk: Nijwyi¥e = €5 (3)
j= J
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where §; is the time rate of change of amplitude vector y;,, We may
conceptualize (3) as describing the motion of a point Y tracing a trajectory
in a phase space of very large dimension RM spanned by coordinates {y,}.

There are two attitudes that we may adopt toward (3). One approach is to
pick Y(0) and solve for Y(t). Unless expressions for L, N, and e are especially
simple, a solution for Y(t) requires resorting to numerical integration.
However, both a practical and a theoretical difficulty arise. The practical
difficulty is that for large M the computer demand can become excessive.
Moreover, in the case of weather forecasting or, especially, in the case of
ocean-circulation calculation, a condition for sufficiently large M is not
known. Theresulting Y(t) may be grossly unfaithful to a “true” Y according
to ().

The theoretical difficulty is a greater problem. Even if Y(z) as calculated is
close to “true” Y, Equation (1) may still have the property that two
solutions commencing from slightly different initial conditions, but subject
to the same £ and &, will move off along rapidly diverging trajectories,
becoming as dissimilar from each other as two randomly selected Y. Since
initial conditions for real geofluids are hardly ever known precisely in all
details, the different initial conditions may be practically indistinguishable,
whereas the ensuing evolution produces very distinctive conditions. Similar
sources of uncertainty may enter through 4 and &. Under such circum-
stances any particular solution for Y(t) becomes useless after some “pre-
dictability time.”

Given that exact trajectories of geofluids are neither practically nor even
theoretically available, it is appropriate to pose such problems differently.
Consider instead a time-evolving probability density p(Y,¢) for finding a
geofluid in the neighborhood of Y at time t. One may think of p as a number
density in a large ensemble of realizations. Then “conservation of
trajectories” provides the evolution equation for p:

9 :
= p+Vy () =0, @)

where V, is the RM-dimensional gradient operator on the phase space and
Y is the rate of displacement, or “phase-space velocity,” of a geofluid at Y.
In some cases the equation of motion may satisfy

Vy'Y =0, (5)

whence (4) becomes

0 .
P tY Vir=0 ()

so that p “flows” as an RM-dimensional incompressible fluid in the phase
space. If the representation (2) is such that the y; are canonical coordinates,
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then(5)is the statement of Hamilton’s equations. Assurance of this property
may motivate a development in Hamiltonian dynamics; in many cases
though one may prefer to test (5) directly under a representation chosen for
some other convenience. Indeed for most cases, including those with forcing
and dissipation, (5) and (6) will not hold. When (6) holds, the system is said
to have the Liouville property.

Now we might contemplate assigning an initial p(Y, 0) and then solving
(4) for p(Y,¢), from which we could evaluate the expectation of Y(t) or
moments thereof. However, for any realistically complicated expression for
Y and any RM larger than a few, direct solution for p(Y,t) is usually
infeasible. Moreover, beyond such practical difficulties, there is a theoret-
ical reason why p(Y, t) might not be sought.

Recollect that we introduced p in part on account of the inability to
observe Y precisely. Thus p(Y,0) would be distributed over some phase
volume that represents the minimum volume element within which we
might discriminate different Y. Although p(Y, 0) occupies such a volume,
subsequent straining-shearing-stirring of p by Y following (4) will produce
smaller phase-space scales in p. To be consistent, we must identify such
small scales in p to be unobservable with regard to, say, calculations of
expectations of Y. Therefore we consider instead a probability density p,
which represents an averaging of p over the smallest observable phase
volume.

Here we subscribe to the classical concept of “coarse graining” (cf.
Tolman 1950). It can be seen that p will evolve differently from p. Consider,
for example, an evolution of p satisfying the Liouville property. If p is
initially highly concentrated, it must remain so while, perhaps, being drawn
out into ever thinner filaments. Individual filaments become too thin to be
resolved by any observing system, and hence p perforce must average p over
the minimum observable phase volume. Such averaging represents an
irretrievable loss of information and introduces time irreversibility into a
dynamical system that otherwise might satisfy time-reversal symmetry.
Geophysical fluid dynamics (GFD) researchers are reminded that plane-
tary rotation needs also to be reversed in time-reversal arguments.
Although p remains concentrated, it often appears to dilute, thereby filling a
larger phase volume. The reader may be amused that this description of
probability evolving in phase space is so like an initially concentrated
pollutant dispersing in some geofluid system [see, for example, Haidvogel
& Keffer (1984) or Holloway & Kristmannsson (1984)].

3. EQUILIBRIUM STATISTICAL MECHANICS

This section concerns the exercise of the “maximum-entropy principle,” or
(effectively) the Second Law of Thermodynamics, with regard to macro-
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scale geophysical flows. We are not concerned here with usual thermo-
dynamics such as might describe an equation of state of seawater. Indeed,
we can avoid some areas of confusion by proceeding more from the view
of information theory (Khinchin 1957, Jaynes 1957, Katz 1967, Levine &
Tribus 1979) than from conventional statistical mechanics.

The central concept is the system entropy, which we regard as a measure
of the uncertainty, or “missing information,” in the inability to observe or
forecast Y precisely. This entropy may be distinguished from the thermo-
dynamic specific entropy of the fluid, although it is noteworthy, follow-
ing Jaynes (1957), that the dynamical account developed here may be
extended to include the thermodynamic entropy. However, we do not
include thermodynamic entropy except indirectly as manifested, for
example, through viscous heating.

Let us recall the concept of entropy as developed by Shannon (Shannon
& Weaver 1949) and Wiener (1948). Suppose a random process A may
select one of n discrete states with probability P; for the ith state. We seek a
function H that measures the uncertainty of outcome of A, subject to two
conditions

1. The greatest uncertainty is when all outcomes are equally probable.
Thus H is to be a maximum for P; = 1/n.

2. If a second random process B is independent of A, then a measure of
uncertainty of joint outcome is the sum of the separate uncertainties.
That is, H .5 = H 4+ Hp.

Given these conditions, Shannon showed that, uniquely within a
multiplicative constant,

H=-YP/nP, Q)

Some corollaries of (7) are noteworthy. If the outcome is certain, say P;
= 0, then H takes a minimum value of zero. (We evaluate P;In P, =0
when P; =0.) If processes A and B are partially dependent, then H 4
behaves reasonably, including the case when B is an identical copy of A
(for which H .z = H ,).

For processes yielding continuously distributed outcomes, e.g. the
coordinate values of Y in phase space, (7) becomes

H= —JdYﬁ(Y)ln p(Y), @

where the integration is over all phase space. It could be assumed that an
undetermined measure m(Y) multiplies the integrand in (8); however,
Salmon (1982b,c) argues that preservation of the Liouville property, apart
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from forcing and dissipation, requires that m be independent of Y. Also to
be noted in (8), we consider the observable (in principle) p rather than p;
thus H is the experimental entropy (Jaynes 1957).

Given an isolated system in which forcing and dissipation are excluded,
the Second Law reads

d
ZH=20, )
where we consider continuous evolution in time and it is understood that (9)
holds as an ensemble average. It is remarkable that the Second Law enters
axiomatically, defining an “arrow of time,” unanticipated by the other laws
of dynamics. The central concept of equilibrium statistical mechanics
follows directly: p(Y,t) is expected to approach a condition giving a
maximum value of H.

Evaluation of p that maximizes H is performed under certain constraints.
One constraint is the normalization condition

fdyp= 1. (10)

For most systems, some representation of total energy E(Y) will be
conserved. Thus E(Y) = E, as given by initial conditions, and we might
constrain p to satisfy

(E) = de pE = E,. (11)

Other invariants, such as total mass or angular momentum, may provide
further constraints. Of particular GFD importance is the conservation of
potential vorticity following fluid elements. Defining potential enstrophy
Q(Y) as the square of potential vorticity integrated over the flow domain,
we often have the constraint that Q(Y) = Q,.

The manner in which constraints such as E, and @, are imposed admits
some possible choices. If we strictly require E(Y) = E, and Q(Y) = Qo, then
the p yielding maximum entropy is

p(Y) = CS(E(Y)— Eo) 8(2(Y)—Qo), (12)

the “microcanonical ensemble.” However, calculations of moments of Y
(for example, the energy spectrum) can be difficult. Equilibrium spectra for
two-dimensional turbulence have been calculated from (12) by Basdevant
& Sadourny (1975), revealing the complexity of such calculations.

An alternative to (12) that proves easier to manipulate is the “macro-
canonical ensemble.” For positive-definite invariants such as E or Q,
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exercise of the method of Lagrange multipliers to maximize H subject to
(10), (11), and a like condition on Q yields

p(Y) = Cexp [—a, E(Y)—02Q(Y)], (13)

where C is a normalization, and «; and a, are Lagrange multipliers.

Under (13) we note that each trajectory is not required to lie on the
surface E = E,, Q = Q,. This may be a point of consternation, since
(dynamically) each trajectory preserves E and Q. The algebraic forms of (12)
and (13) appear to be quite different, and so a choice of one or the other
should have significant consequences. However, for most of the questions
one might ask regarding most GFD systems, differences between (12) and
(13) prove insignificant following a calculation given by Khinchin (1957)
and extended by Salmon et al. (1976; hereafter SHH). Usually we are
concerned only with marginal probability, often for a single mode as, say,
pi(y)- Asymptotic methods for integration over (12) then yield

p:(y) = C; exp (—a, E;—a,Q), (14

where E; and Q; are single-mode contributions to E and Q. Validity of (14)
requires that E; and Q; be small compared with E and Q for all i. Since
(14) would result also from (13), differences between (12) and (13) are
not important as regards p;. If we are interested in calculating expectations
such as (E,> or {Q,), then we are only concerned with (14).

The interesting results to be obtained from equilibrium statistical
mechanics methods depend upon specific expressions for E(Y), Q(Y), or
other constraints. There are surprises, such as cases when predictable,
steady, large-scale flow rises from chaotic initial conditions while expres-
sing the tendency to increase entropy. These and other cases are described
in Section 5.

For now we recognize two deficiencies of equilibrium statistical mech-
anics. Firstly, while a state of maximum H can be described, no information
is given concerning the rapidity with which a system approaches maximum
H. Secondly, and more fundamentally, the atmosphere and oceans and the
life systems that inhabit these environments are not isolated, closed
systems. Rather, these systems receive and release energy, exchanging
information with a larger universe. In particular, earth-atmosphere-ocean
life systems receive high-temperature (low-entropy) solar radiation while
collectively reradiating low-temperature (high-entropy) earth radiation. It
is thus natural to seek a statistical geofluid mechanics that makes explicit
the generation of entropy. For a quantitative treatment of systems that are
maintained far from maximum H through the roles of forcing and
dissipation, we turn to the less well-developed field of disequilibrium
statistical mechanics.
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4. DISEQUILIBRIUM STATISTICAL MECHANICS

Among various methods that might come under the heading “dis-
equilibrium statistical mechanics,” only moment-hierarchy closure
methods have found significant geophysical application to date. We
limit our discussion here to such moment closures. The relation of these
moment closures to entropy generation is explicit and consistent with
the Second Law; cf. (9). However, alternatives are certainly possible—for
example, methods based upon the direct approach toward solving the
Liouville equation (4) (cf. the exploration by Thompson 1983).

To retain a tractable problem, we limit our interest to describing the
evolution of second-order correlations {y;y;>. Calculations prove practic-
able in the homogeneous environment for which <y;y; > is diagonal in (i, j).
The limitation to homogeneity is severe. However, statistics {y;y;)> contain
much geophysically relevant information, including energy spectra, tracer
transports, and buoyancy flux.

The connection between second-order correlations and entropy has been
developed by Carnevale et al. (1981). Defining H, as the maximum of H
from (8) under prescribed <y;y;, they found that

H, =Indet {y;y;>, (15a)
or, if {y;y; is diagonal in (i, ),
H, =) Indet {y;y)- (15b)

In (15b), the déterminant is of the component matrix {yy) in mode i. For
many applications, this may be the total energy E; in mode i. Then

H, =Y In(Ep, (15¢)

a form that has been used by Montgomery (1976).

We seek to develop equations for the evolution of correlations {yy).
Previous developments in the hydrodynamic context have addressed
separately problems of weakly nonlinear wave-wave interaction
(Hasselmann 1962, 1967, Benney & Saffman 1966, Benney & Newell 1969)
or fully developed turbulence [Kraichnan 1959, Edwards 1964, Herring
1965, and works reviewed by Leslie (1973) and Orszag (1977)]. For many
GFD problems a separation between waves and turbulence is untenable
and, moreover, may prove unnecessarily frustrating. At the level of a
conceptual overview, it is easy to adopt a unified approach to waves and
turbulence. Some detailed results are made more apparent in Section 5.

There are various methods for developing moment hierarchy closures.
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Here we sketch one of the simpler schemes, referred to as the “eddy-
damped quasi-normal Markovian” (EDQNM) method, which may be
viewed as an abridgment of more formal systems such as the “direct-
interaction approximation” (Kraichnan 1959). In abbreviated notation,
recall Equation (3):

0
Ey+Ly+Nyy=e. (16)
Let us here take (y) = 0, hence omitting mean-motion fields. In some of
the illustrations to follow, this limitation may be lifted or, in other cases,
relaxed somewhat. We also return to this point in Section 6.
From (16), it follows that

0
% yy> +Lyy) + N yyy) = ey, 17

where L and N are considered to be deterministic and e is stochastic. Even if
we suppose that {ey) is given, (17) is not suitable for calculation, since
{yyy) is not determined.

Continuing from (16), we have

0
% yyy> + L yyy)> + N yyyy) = {eyy). (18)

Throughout this review, arguments of y are considered to be simultaneous;;
that is, we treat only single time statistics. Apart from {eyy), a solution for
{(yyy) is still not possible on account of {yyyy). Continuing to write
equations for successively higher moments only leads to an unclosed
hierarchy—hence the “closure problem.”

Closure is usually effected by considering fourth-order correlations,
which (for {y) = 0) can be expressed as

yyyy = yyo vy +yyyy)' (19)

If the different modes of motion were statistically independent in their
evolution, then the residual or fourth cumulant {yyyy)’ would vanish.

One means of closure is called fourth-cumulant discard, which involves
setting (yyyy)’ = 0in (19). Weak-wave interaction theory can be achieved
as a synthesis of fourth-cumulant discard together with a two-time-scale
expansion such that, if L describes purely free wave propagation and ¢ = 0,
then for t —» oo,

Cyyyy> = —L7INyy) yy)- (20)
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In (20), L™* has singularities on a resonance manifold where the natural
frequencies of the three modes sum identically to zero. For large t, L™! is
dominated by such singularities and can be approximated by

L' % aé{w, +w, + w3), (21)

where w;, w,, and w; are the three natural frequencies.

Turbulence theory has followed other routes, since if L is given only by
viscous dissipation, discard of {yyyy) in (19) is known to lead to
unrealizable solutions of (17) and (18) [yielding, for example, predictions of
negative energy spectra (Ogura 1963)]. One approach is to attempt to
replace N{yyyy)' by a term u{yyy), where u is a third-order matrix of
undetermined coefficients. If the coefficients in u are positive, the effect is to
induce relaxation of {yyy) toward zero. An assumption of quasi-
stationarity in time is made such that a nearly steady solution to (18),

yyyy = —(L+p) 'NQyy) vy, (22)

is achieved on a time scale shorter than the slow evolution of {yy)
according to (17). In (22) we have also ignored {eyy), as is customary but
perhaps not always justified. Substituting (22) into (17) yields the desired
evolution equation for {yy):

d
55 WLy —N(L+w” INCyy) yy) = <ey). (23)

Differences among EDQNM treatments arise from different methods of
determining pu, which is assumed to depend upon the {yy>. Some of these
differences are described in Section 5.

Two noteworthy features of (23) are the following: First, if nonlinear
interaction is strongly dominant relative to, say, wave propagation, then u
[which is presumed to increase with increasing energy E(Y)] will dominate
L+ p. Thus we will have (L+p)~! ~ u~?, which is the form that occurs in
EDQNM turbulence theories. At the other limit, when nonlinearity is very
weak relative to wave propagation, L dominates and L~ is approximated
by the resonant interaction condition (21). Thus (23) provides a smooth
bridge from waves to turbulence (cf. Holloway 1979).

The second important feature of (23) is a property proven by
Montgomery (1976) and Carnevale et al. (1981). The effect of the term
—N(L+w)~*N{yy) {yy) is to yield dH,/dt > 0, where H, is from (15),
with dH,/dt = 0 only at equilibrium as in (13). Dissipation and forcing,
which can be represented in L and e, may either increase or decrease H,;
they represent external couplings in open systems.
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5. ILLUSTRATIONS

Whereas the foregoing discussions have been broad and conceptual, the
remainder of this paper consists of a gallery of specific illustrations. The
intent is to explore a diversity of GFD applications and to demonstrate
the quantitative as well as qualitative utility of the resulting calculations.

A number of the following geophysical applications derive from an
equation of motion appropriate to quasi-geostrophic, multiple-layer flow
that we here record as

2 gttt )+ o) =6, en
where q; is the potential vorticity in layer i; W, is the stream-function
representation of the nondivergent, quasi-horizontal velocity field in layer
i; J is the Jacobian determinant with respect to horizontal coordinates; 2;
is a dissipation operator acting on '¥;; and &; is any external torque, such as
wind-stress curl, acting upon the uppermost layer in an ocean model. The
potential vorticity g; includes relative vorticity

& =2-Vxu =V, (25)

as well as planetary vorticity and any potential stretching terms due to
layer-thickness fluctuations or bottom topography. Specific definitions of g;
are given where needed.

5.1 Two-Dimensional Turbulence on a Plane and on a
Sphere

This example has been thoroughly reviewed previously, especially by
Kraichnan & Montgomery (1980) with interesting comments also by
Rhines (1979), Salmon (1982b), and McWilliams (1983). Since many of the
illustrations that follow may be seen as embellishments upon this simplest
case, we recall briefly the principal results from the equilibrium and
disequilibrium statistical mechanics of two-dimensional turbulence.

In planar geometry with either closed or periodic boundaries, invariants
of the unforced, nondissipative motion include kinetic energy E = $|V'¥|?
and enstrophy Z = {? as well as any V = v({), where v may be any function.
(Overbars denote integration over the flow demain.) The role of a possible
V is sometimes a concern. However, the nature of a possible V, other than
Z, appears not to restrict observable probabilities p(Y). Furthermore,
spectral truncation destroys the invariance of most V. An interesting
remark also is made by Thompson (1982), who shows that, subject to
certain restrictions, conservation of only a few invariants may determine
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the equation of motion, so that further invariants provide only redundant
constraints.

Maximum-entropy solutions for p subject to specification of E and Z
yield either (12) or (13), the difference being immaterial, since either tends to
lead to (14) (cf. SHH). If we assume periodic conditions in coordinates X, a
natural expansion in (2) is

Y(x,t) =) Yy(t)e™™, (26)
k

where W, is the expansion coefficient at wave vector k. Ensemble-averaged
modal energy and enstrophy are

Ey = 33P0 -i)s (27a)

Zy =l = k4<\Pk‘P—k>- (27b)
The equilibrium marginal probability (14) at k is

@y +ok?\M?

Pi(Py) = (—n%> exp (— (o + k) ¥u¥ ), (28)

from which
1 1 k2
E, = (29)

Y Z = a3
2 oy +oyk? LT gkt

as obtained by Kraichnan (1967) and verified repeatedly in numerical
experiments by Fox & Orszag (1973), Carnevale (1982), and Bennett &
Haidvogel (1983), among others. Moreover, Carnevale (1982) has calcu-
lated the evolution of entropy (15c), showing its rise to the anticipated
experimental equilibrium value. The evolution of the energy spectrum and
of the entropy is shown in Figure 1.

The equilibrium distribution has been calculated in spherical geometry
by Frederiksen & Sawford (1980). Expansion (2) becomes

Y pt) =23 PP () €™, (30)

where 4 islongitude, sislatitude, and P}, are associated Legendre functions.
The sums on m and n may be truncated according to various schemes.
If a variable y,,, is defined as

Amn = 3[(2—Omo)n(n+1)]'*¥,,, (31)
then the modal energy and enstrophy are
Epp = tmnl®>»  Zpy = n(n+1)E,,. (32)

In addition to the above invariants, motion on the sphere also conserves
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Y,, and |¥,,| in the absence of any surface friction or topographic
roughness. This is a consequence of angular-momentum conservation
but does not affect the equilibrium distributions for E,, and Z,,.
Corresponding to (29), we have

Epp=——lr (33)

oy +on(n+1)

Here it is interesting that the mean rotation of the fluid does not affect the
equilibrium spectrum (33). A similar outcome is seen in the following
illustration regarding f-plane motion, where it is found that the value of
does not affect the equilibrium statistics.
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Figure 1 Evolution of inviscid two-dimensional turbulence toward absolute equilibrium is
seen from direct numerical simulation. (Top) Kinetic-energy spectra are shown for the initial
conditions and at two later times. The equilibrium spectrum is shown dashed. (Bottom)
Entropy rises quickly to the equilibrium value for an isolated realization (Carnevale 1982).
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Disequilibrium treatment of two-dimensional turbulence has been ex-
plored mainly for the case of planar geometry. Early, more-or-less heuristic
accounts by Kraichnan (1967) and Batchelor (1969) reveal the dominant
phenomenology. Kraichnan’s account especially emphasizes the dual-
cascade scenario in which excitation forced in a wave-number band near,
say, ko decomposes to a uniform spectral flux of enstrophy toward higher
wave number together with a uniform spectral flux of energy toward lower
wave numbers, with the latter process referred to as a “reverse cascade.” In
the asymptotic limit of very wide ranges of available wave number, energy
transfer tends to vanish on the enstrophy-flux subrange, while enstrophy
transfer tends to vanish on the energy-flux subrange. Dimensional argu-
ments anticipate power-law behavior as k~*/ on the energy-flux subrange
k < ko and as k™2 on the enstrophy-flux subrange k > k,. Corrections for
wave-number nonlocal effects may be applied to the k™3 subrange.

Some support for these accounts was soon obtained from numerical
experiments by Lilly (1971, 1972) and others. The extent of similarity to
observed transfer processes in the Earth’s atmosphere is discussed by Boer
& Shepherd (1983).

Detailed closure-theoretical accounts such as (23) were developed by
Leith (1971), Orszag (1970, 1977), Kraichnan (1971a,b), and others.
Evolution of the closure studies, including careful testing against numerical
experiments, has been examined by Herring et al. (1974) and Poquet et al.
(1975), with a thorough review given by Kraichnan & Montgomery (1980).
Closure-theoretical treatment on the sphere is more algebraically tedious
and has been pursued only to a limited extent (e.g. Legras 1980), with
numerical experiments having been performed by Tang & Orszag (1978)
and Basdevantet al. (1981). Here only the briefest mentions have been made
as a prelude to the extensions from these studies that are reviewed in the
following sections.

5.2 Beta-Plane Turbulence

Rhines (1975, 1977, 1979) obtained insight into this problem for the case of
B-plane flow, periodic in x (east) and y (north), for which the equation of
motion in one layer is (24) with g = { + By. This problem interests us here
for two reasons: (a) There are striking differences between the equilibrium
and disequilibrium statistical mechanics, and (b) the problem is a simple
prototype for waves/turbulence interaction.

Under periodic boundary conditions, without forcing or dissipation,
integral invariants are |V¥|? and (2, where overbars denote integration
over the periodic domain. Invariants are just as in the case of two-

dimensional turbulence. It is also the case that F is conserved, but this
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proves redundant insofar as {y may be set to zero by statistical homo-
geneity. Thus for 2 = 0 = & and finite spectral truncation, the flow field
approaches (29), which is independent of the value of §. In particular, (29) is
isotropic. This would appear to contradict numerical experiments by
Rhines (1975), Williams (1978), and others that reveal a marked propensity
for the flow field to evolve toward anisotropy-favoring zonal velocity
components over meridional components. Such anisotropy is also evident
in the larger scales of atmospheric observations (Boer & Shepherd 1983).

A seeming discrepancy with regard to anisotropic tendencies is resolved
by showing that § enters only in the disequilibrium phenomena. A closure-
theoretical treatment by Holloway & Hendershott (1977; hereafter HH)
explores this waves/turbulence problem. The evolution equation cor-
responding to (23) is

P A
(E + 2"")21‘ = X OupalApaZpZa—2bipgZpZ,], (34)
k+ pp-;-qq =0

where Z, = {{,{_\>,{yis the Fourier coefficient of { at wavevector k, and v,
A
is a function of |k| resulting from 2. Symbol ) in (34) and hereafter indicates
a sum over p and q such that k+p+q = 0.
Expression (L+ u) ! in (23) becomes

0 _ Hx + :up + :uq
kpa (+ Mot l‘q)z + (g + Wyt wq)z ’

(35)

where w, is given by the Rossby-wave dispersion relation
@, = — Bk /IkI%. (36)

Coefficients a,,, and b, ,, are algebraic factors resulting from contractions of
type NN in (23). Finally, the particular treatment by HH has

a
= vi+g>y gkqukqup’ (37)

where g is an undetermined empirical factor, and b, is another algebraic
coefficient following Kraichnan (1971a).

A controversial point arises in this particular treatment by HH that also
concerns finite-amplitude wave-wave interactions in general. In (35), HH
used the free-wave frequency (36). This is called the “bare” frequency in the
terminology of renormalization methods. Whereas nonlinear interaction is
represented in (35) by u (essentially a frequency broadening), it might also
be assumed that a mean frequency w be systematically shifted from the free-
wave relation (36). This problem is discussed by Kadomtsev (1965) and
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Holloway (1979), with prescriptions for obtaining a renormalized, or
“dressed,” frequency given by Legras (1980) and Carnevale & Martin
(1982). Thecalculationsby Legras (1980),carried outin spherical geometry,
showed that the shift of the “dressed” frequency away from the “bare”
frequency is not too great for planetary waves and that results from HH
ought not be significantly disturbed. However, very recent results from
direct numerical simulations indicate some unexpected surprises. Both in
planar geometry (D. Ramsden, unpublished) and on the sphere (J. Tribbia,
unpublished), the simulations show large systematic frequency shifts in the
sense of rapid westward phase propagation, especially among the shorter
waves. For reasons that are not understood, the nonlinearly induced
frequency shift is nearly proportional to k, in planar geometry.
Consequently, the restriction to k +p +q = O means that the frequency shift
nearly identically drops out of (35). It would appear that HH were
approximately correct for reasons that were not at all suspected!

Itis noteworthy that wave propagation or f enters (34) only through (35),
affecting the efficiency of variance transfer. Absolute equilibrium (29) yields
an identical zero on the right-hand side of (34) and is thus indifferent to 8. It
is also for expressions such as the right-hand side of (34) that Carnevale et
al. (1981) have proven dH,/dt > 0. However, the rate of increase of entropy
will be depressed by wave propagation.

For what values of § is wave propagation significant compared with
nonlinear interaction? An estimate can be based upon (35) by asking when
termsin w become significant. As arough cut we mayignore the nearness to
frequency resonance, i€. to w,+,+w, =0, and just compare rep-
resentative w with representative u. For a flow with an rms velocity ' and
an rms vorticity {’, a representative length scale is | = «//{’, for which a
representative wis fu’'/(’. HH show that at scales near /, one obtains roughly
i = ('. Hence the relative importance of § is given as a nondimensional
number

B=pusc. (38a)

A condition B = O(1) may be seen as a threshold for “overturning” of
potential vorticity contours when g = { + fy.

Rhines (1975) described the evolution of the energy spectrum as an
“arrest” of the two-dimensional turbulent reverse-energy cascade toward
low wave number (Kraichnan 1967) near a wave number k; = (8/2u’)"/2. A
heuristic basis for this k; was obtained by comparing representative wave
phase speed with u’. The argument leading to (38a) implies that w be
compared with {’, suggesting that a transitional wave number be defined as -

ks = B/L. (38b)



Annu. Rev. Fluid Mech. 1986.18:91-147. Downloaded from www.annualreviews.org
by Marine Biological Laboratory - Woods Hole Oceanographic Institution on 04/18/13. For personal use only.

108 HOLLOWAY

Then the cascade arrest is seen theoretically to result from small values
of Oy ,q Over k| < k,, suppressing transfer into these scales. In practice there
is little distinction between k,; and k,;, which become equivalent when
B =0().

More striking is the evolution of anisotropy on the f-plane. Moderate k,
and small k are associated with large w, whereas moderate k, and small k,
are not. Thus the reverse cascading energy continues to transfer into
k| < Eﬁ for modes with small or zero k,—hence the zonal flows. Evaluation
of (34) confirms the evolution toward anisotropy at small k| but also pre-
dicts persistent anisotropy favoring zonal motion at all higher |k| as well.
The latter result would not be anticipated from simpler waves/turbu-
lence heuristics after Rhines (1975). Numerical experiments confirm the
closure-theoretical prediction for anisotropy across the spectrum, as seen
in Figure 2.

5.3 Geostrophic Turbulence Above Topography

This problem is one of special fascination, since it is characterized by the
emergence of organized, predictable, large-scale flow from random initial
conditions. Classically, such organized motions might be associated with
dissipation (Prigogine 1980) or, in some instances, with evolution into
solitons (Rizzoli 1982, 1984). In the present problem, such organized flow
arises solely as a direct manifestation of nondissipative absolute
equilibrium.

In the simplest case, we consider one-layer flow on an f-plane in which
the depth of fluid H(x, y) varies in some complicated way suggestive of
terrestrial topography. If we write

H(x; y) = HO(l —fﬁlh(%}’)),

then (for h* « f?) the equation of motion is (24) with g = {+h. Without
forcing or dissipation, the invariants are kineticenergy and total enstrophy,
ie.

1V¥? and ((+h), (39)
leading to absolute equilibrium statistics
k? azk*Chyeh_y)

&l — (40a)
% %3 %y *
. ki)
Lhow) = — W’ (40b)

where h, are Fourier coefficients of h, and o, and a, are determined in order
to satisfy invariants (39). Corresponding solutions for barotropic flow on a
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Figure 2 Disequilibrium anisotropy of f-plane turbulence is shown from numerical
simulation (heavy trace) and from closure theory (light traces). The anisotropy measure R(k)
denotes a predominance of zonal over meridional velocities at any scale k™ *, The light traces
show dependence upon a “test-field model” parameter (Kraichnan 1971a), which had
previously been estimated by Herringetal. (1974) to take a valuenearg = 0.65. Closure theory
here permits analysis of mechanisms controlling anisotropy. A dashed curve shows a source
term S(k), which gives the direct induction of anisotropy due to f, divided by a return-to-
anisotropy coefficient v. Nonlinear transfer of anisotropy is governed by a kernel K (k, p) and is
seen to account for persistent anisotropy at large wave number. Negative transfer under
K(k, p) is also seen to be an effective restraint upon anisotropy induced by $ at small k
(Holloway & Hendershott 1977).

sphere including topography have been noted by Frederiksen & Sawford
(1981), Frederiksen (1982), and Sawford & Frederiksen (1983). It is
noteworthy that we may permit here nonvanishing first moments. We then
consider a specific realization of h, taking ensemble averages over { for
given h. Resulting first moments [cf. (40b)] are

o k?hy
oy +o,k?

Cw> = — (41)
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or, in configuration space,

(“1 - v2> (WS = h. 42)
®2

For most geophysical values of (39), it is the case that a; /o, < 0, so that (42)
is a forced Helmholtz equation.

This may seem surprising : that from randomly chosen initial { charac-
terized by {{> = 0 there arises a steady, deterministic, macroscale flow
given by (41) or (42). In addition to the steady component, there willoccur a
time-dependent part whose variance is given by the first term on the right-
hand side of (40a).

The spontaneous emergence of such large-scale, organized flow has been
noted for some time in numerical simulations (Holloway & Hendershott
1974, Bretherton & Haidvogel 1976) and is seen in Figure 3. In most cases,
such numerical simulations have included dissipative effects and, some-
times, external forcing. Indeed, Bretherton & Haidvogel attribute the
organized, steady flow to the following argument (here abbreviated):

If dissipation acts selectively on the highest wave numbers, then it is
argued that total enstrophy decays more quickly than does energy. A
solution is obtained that minimizes enstrophy subject to constant energy
and given h. This solution describes a steady flow having many features
qualitatively similar to (42), which become identical to (42) if one considers
just the case where enstrophy in (39) is given its minimum value.

A controversy has ensued between advocates of the minimum-enstrophy
principle and proponents of the maximum-entropy principle. Physical
arguments for minimizing enstrophy may be intuitive and have been further
advanced by Rhines (1979) and Leith (1984), whereas the maximization of
entropy seems foreign to many researchers in GFD. However, in the
absence of any dissipation and hence with no decay of enstrophy, evolution
toward maximum entropy including the steady component (42) is readily
seen in numerical experiments.

To go beyond extremal principles into the forced/dissipative or statisti-
cally time-evolving cases requires the treatment using disequilibrium
methods. This has been done by Herring (1977) and by Holloway (1978),
with the latter author obtaining a pair of equations for the coupled
evolution of {{,{ {

d
(;1; + 2v.¢> Gl - ¢ ¢ (430)

d
(E + Vn) h-> = —m L (43b)
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Stream function at t=0 I Stream funcfio ftr tr24/18

Figure 3 Aninitially random eddy field, shown as a stream function at t = 0, is permitted to
decay freely in the presence of realistically complex topographic relief. After a time of
approximately 24/f8, where f is the Coriolis parameter and & is characteristic relief as a
fraction of total depth of fluid, it may be seen that the stream function bears a striking visual
resemblance to underlying topography (Holloway & Hendershott 1974).

where v, expresses dissipation and Fy, #,, and g, are expressions involving
weighted sums over spectra of { and h and may also include any external
forcing.

Some important points concerning (43) should be noted. Firstly, these are
the equations for which Carnevale et al. (1981) showed that dH,/dt = 0,
which leads to (40) in the absence of forcing and dissipation. Secondly,
evolution according to (43) has been tested and found to give very good
quantitative agreement in comparison with direct numerical simulation, as
seen in Figure 4.
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Figure 4 Closure theory is tested against numerical simulations of geostrophiceddies above complicated topography for a variety of choices of
topographic interactions and different strengths of eddy fields. Spectra of topography are marked H(k). Theory predicts spectra of total vorticity
variance Z(k) and of variance Z(k) for the steady part of the vorticity field. Also predicted is the vorticity-topography correlation, here marked R(k).
Crosses mark values of Z(k) and R(k) collected from simulation experiments. (@) Topography has a broad, shallow spectrum ; (b) topography has a
narrow-band spectrum ; (c) topography is given a steep “red” spectrum. (d) topography has the same spectral shapeasin (c) but isreduced in amplitude,
so that the ratio of vorticity to topography is about four times greater than in (c) (Holloway 1978).
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5.4 Closed-Basin Circulation and Western Intensification

A synthesis of the preceding illustrations is seen when we consider one-layer
flow in a closed, flat-bottomed, f-plane basin. Consider a case with no
external forcing, no internal dissipation, and free-slip sidewall conditions.
Integral invariants are kinetic energy, total enstrophy, and circulation, i.e.

VPP, C+BY L (44)

where the overbars indicate integration over the basin.

The maximum-entropy solution is characterized both by a large-scale
steady flow and a spectrum of time-dependent eddies. The spectrum of
transient eddiesis given as before by (29), while the steady component, after
(42), is represented by

(a— - v2> (¥ = Bly—o), (45)

where «;, ®,, and a5 are chosen so as to satisfy (44).

That (45) is an exact solution to the inviscid, nonlinear equation of
motion had been observed by Fofonoff (1954). However, there was no
reason to believe that oceans should “prefer” (45). Now we see that (45) is in
fact selected by the maximum-entropy principle. This may seem re-
markable: that deterministic, large-scale, steady flows arise spontaneously
from random initial conditions as a manifestation of equilibrium statistical
mechanics.

Taking a value for a; somewhere between the maximum and minimum
values of y within the basin, (45) will be characterized by broad westerly
flow in the interior, with return easterly flow in boundary currents of
approximate width |@,/a,|'/? at the northern and southern boundaries of

-the basin. A tendency toward westward interior flow was noted by

Bretherton & Karweit (1975) in numerical experiments including rough
topography on a S-plane. Bretherton & Haidvogel (1976) argue that the
minimum-enstrophy principle may indicate flows qualitatively like (45).
Similarly, Rhines (1979) proposes that the enstrophy cascade leading to
enstrophy dissipation at small scales may cause the establishment of such
basin-scale flows. Here we observe that the large-scale mean flows arise
with no topographic roughness nor with any dissipation.

The disequilibrium statistical mechanics of closed-basin flows have not
been worked out. However, a qualitative evolution can be described. Note
that in a basin whose geometry is east-west symmetric, equilibrium
statistics for <{,{_,> and {¥) [from (29) and (45)] are also east-west
symmetric. On the other hand, one of the more prominent features of real
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oceans is a tendency for currents to be more intense near western basin
boundaries than near eastern boundaries. Various explanations for
this phenomenon have been proposed over decades of theoretical oceano-
graphic research. Here, we propose yet another explanation.

Imagine an initial-value problem in which vorticity is randomly
distributed in an ocean basin, so that { = 0. The initial state is characterized
by 4|V¥|? and (Z, from which &, &,, and o, are determined. Without forcing
or dissipation, we anticipate evolution toward (29) and (45). However, for
typical geophysical values of 4|V'¥|? and (?, values of a,, a,, and «; will be
such that (29) will have larger (? with correspondingly smaller {y (hence
{y < 0) than are given initially. Disequilibrium processes must cause the
changes in {Z and {yin order to satisfy dH/dt > 0. The rate of change of {Z is

given by

w
, (46)

E

d_z ” |2
EC =BL1 dyIV |

where the integral runs over the meridional extent of the basin, and the
integrand is the difference of |[VWP|? evaluated at western and eastern
boundaries. Adjustment toward maximum-entropy requires that (46) be
positive and thus that |[V¥|? be larger at western boundaries. The western
intensification follows in the most natural way as a Second Law manifes-
tation (Holloway 1975). When absolute equilibrium is finally approached,
western intensification must relax.

Recently this scenario has been tested by M. Smith (unpublished) using
an energy/enstrophy-conserving finite-difference simulation of barotropic,
quasi-geostrophic, inviscid flow in a square, $-plane basin. In addition to
observing the emergence of (45), Smith noted the development and
subsequent relaxation of western intensification, as shown in Figure 5.

5.5 The Shape of the Thermocline

Whereas we have considered barotropic motion in a closed -plane basin of
limited latitudinal extent such that fy is small compared with f;,, Salmon
(1982a) has extended this treatment to a two-layer system on the equatorial
B-plane. The goal is to anticipate the equilibrium form of {h), where h(x,t)
is the thickness of the upper layer. Only the equilibrium statistical mechanics
problem is examined.

Although equations of motion are set out in primitive form, it is
convenient to calculate entropy on the assumption of nearness to
geostrophy, with the equatorial singularity removed by requiring that fields
remain sufficiently smooth. If the lower layer is considered to remain at rest,
then the state of the system is defined approximately by h(x, t). Without
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Figure5 Time evolution of the ratio of velocity variance along the western basin margin to
velocity variance along the eastern basin margin is shown from a numerical simulation of
inviscid flow in a square, flat-bottomed, B-plane ocean. Western intensification occurs as a
disequilibrium phenomenon associated with entropy generation and relaxes in the approach
to maximum-entropy circulation (M. Smith, unpublished).

forcing, dissipation, or property exchange between layers, the system
possesses four integral constraints:

Upper layer mass M = fdx dy h, (47a)
g’ 2 2 ' .
Energy E= |dxdyh 5 VA" +g'hyp, (47b)
Potential vorticity P= J‘dx dy (V g— Vh+ ﬁy), (47¢)
¥

gl
Enstrophy = de dy (V .
0 By

Vh+ ﬂy)zh‘l. (47d)

Rather than expanding upon a basis set as in (2), Salmon (1982a)
discretizes by assuming a grid-point representation on which differentials in
(47) become difference operators. The upper layer is treated as a freely
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evolving “blob” that covers some subset of the available grid points. The
number of grid points covered or, effectively, the location of isopycnal
outcrops (i.e. “blob” edge) is to be determined. For a number N, of points
covered in configuration y, the entropy is determined by the set of
thicknesses {h;} at the grid points:

' H= Nf In Chid. (48)

However, maximization of (48) subject to (47) is difficult. A recourse is to
assume approximate constraints in which each h; is replaced by (h;» each
time it appears in the discrete representations of (47).

By considering configurations that are symmetric about the equator, it
follows that P = 0 and thus (47c) may be omitted. Intuition may be gained
by applying the remaining constraints (47) successively. Thus, if only mass
(47a) is constrained, the maximum-entropy thermocline is simply flat
(h = hy) and covers the entire domain. Next, in addition to mass, the
constraint (47d) on enstrophy is applied in a simplifying approximation

p2y?
g <hi)

= QO’ (49)

which leads to

1= alh>+bp*yi/<hsy, (50)

where a and b are constants determined from mass M and enstrophy Q.

It may be seen that (50) is an equipartition form that recovers the
previous case of mass constraint only when b = 0. To preserve positivity of
h; at all i, one hasa > 0, b < 0. Then Equation (50) already has a satisfying
shape: It is relatively shallow and flat near the equator and deepens with
increasing latitude to either side of the equator. However, the solution
suffers in that the greatest depths are attained at the highest latitudes y
permitted by each N,. This defect is ameliorated when the energy constraint
(47b) is taken into account.

Inclusion of energy conservation proves tedious. Salmon (1982a) obtains
a nonlinear, fourth-order equation for (k). If a solution is attempted as a
power series in y, the quartic truncation yields

2
<hiy = A0+A2.Vi2+|: 4 b A :I_V?, (51)

where ¢ # 0 enters on account of the energy constraint. Constants 4, and
A, depend upon boundary conditions at “outcropping latitude” y = ypax,
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which the fluid is free to establish. However, if these boundary conditions
are

d (g dh

h=0 and pn (ﬁy dy>+[3y 0
aty = + ... then itisrequired that ¢ = 0. To retain ¢ # 0, a term y° must
also be retained in (51).

It may be surprising that the double-lobed thermocline shape (thin and
shallow across the equator and then achieving maximum depth at higher
latitudes before turning upward at yet higher latitudes) follows from
equilibrium statistical mechanics alone. To illustrate the process of
adjustment, Salmon (1982a) also integrated a Lagrangian finite-element
numerical model in which an initially quiescent lens of upper-layer fluid
was released over the equator. Although the numerical model included
friction, spontaneous evolution toward the higher-entropy thermocline
shape was noted.

5.6 Baroclinic Turbulence; Eddy Heat Transport

Charney (1971) realized that the heuristic approach to two-dimensional (i.e.
barotropic) turbulence was readily extensible to three-dimensional quasi-
geostrophic turbulence in an unbounded, uniformly rotating, uniformly
stratified fluid for which the equation of motion is

(% +u- V) V2¥ = forcing and dissipation. (52)
In (52) ¥ is now in three dimensions ; V2 is the three-dimensional Laplacian
in stretched coordinates such that vertical z is replaced by Nz/f, where N is
the Viisild frequency; and u is horizontal velocity given by z x V.

Herring (1980) considers both the equilibrium and disequilibrium
statistical mechanics of (52). Without forcing or dissipation, motion
conserves total enstrophy

Q=F=§Qk, (53)

where g = V2¥ is potential vorticity, Q, = q,g_,, and k refers to the three-
dimensional wave vector in the stretched coordinates. Total energy is also
conserved as

E=)E, (54)

where E, = Q,/k? includes both kinetic and available potential energy at k.
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Then just the arguments leading to (29) apply, yielding

1
B =iy (55)
It should be noted that (55)is isotropic in the stretched coordinates and that
E, here is total (not just kinetic) energy.

Disequilibrium study of the three-dimensional quasi-geostrophic
evolution under (52) was pursued by Herring (1980) with the goal of
discovering to what extent nonlinear transfer enhances the degree of
barotropy at larger scales.

Motion fields in the Earth’s atmosphere tend.to approximate quasi.geo-
strophy only on the larger scales for which the presence of a rigid lower
boundary is significant. In the oceans, however, the quasi-geostrophic
approximation may be satisfied on much smaller scales. Although one
would not anticipate observing the form (55) on account of forcing and
dissipation, oceanic observations at subinertial frequencies tend to support
“stretched isotropy” or N/f scaling.

The relation between geostrophic equilibrium (55) and the equilibrium
statistics of the full primitive equations has been examined by Errico (1984).
Under primitive equations, only energy is a quadraticinvariant ; hence, one
anticipates energy equipartition among all retained modes of both
geostrophic and ageostrophic or gravity-wave types. In numerical simu-
lations, Errico observed the evolution as a two-stage process, with an early
period of evolution toward the geostrophic equilibrium (55) followed by a
more gradual evolution toward energy equipartition among all modes.

The equilibrium statistical mechanics of a two-layer quasi-geostrophic
system was considered by SHH. The equation of motion is (24) withi =1
and 2 and

g = V¥, +F(¥;-¥), (56)

where j = 3—i, F; = f3/g'D;, and D, is the average thickness of layer i.
Without forcing or dissipation, and given either closed boundaries or
periodic boundary conditions, invariants are total energy

E = |V¥,|?/F, +|V¥,*/F,+ (¥, —¥,)

(57)
=) [K(¥ul’FT'+ Woul?F3 )+ ¥y —¥aul?]
k
and total enstrophy in each layer
Qi=qF =Y K+ F(¥iu— Yol (58)
k

Maximum-éntropy distributionsfor ¥, , and ‘¥, subject to constraints
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E, Q,, and Q,, with arbitrary assignments of F, and F,, are given by SHH.
The algebra may be considerably simplified if attention is limited to the case
of equal layer depths (hence F, = F, = F). This restriction is not necessary
but does render more intuitive the results, which are readily seen as
extensions from the one-layer case. For the equal layers, it is convenient to
substitute

¥=>W+¥)2 =" -Y)2 (59)

so that P is the barotropic or transport stream function and z is a vertically
averaged buoyancy (and hence is temperaturelike). Defining barotropic
and baroclinic modal energies as

Up =5 W= G+ (60)
absolute equilibria (after SHH) simplify to
1

T e e e F 61

W 2y + k] o oy + o (k2 +k3) (61)

where k% =2F. The expression for U, is just as with the one-layer
equilibrium (29).

It may be seen from (61) that for large k?* > k2, there is approximate
equipartition between barotropic and baroclinic energies. However, at
small k% < k%, V, tends toward a constant value, whereas U, (for
geophysically appropriate a; and a,) tends toward further increase with
decreasing k2. This is much the same surprising conclusion as that seen in
Sections 5.3 and 5.4 : the condition of maximum entropy is characterized by
very well ordered (here depth-independent) flow at the large scales.
Numerical-simulation results agree closely with the theoretical result
implied by (61). Such a tendency toward barotropy is observed, as
discussed, for example, by Rhines (1979).

The tendency toward large-scale barotropy in layered flow may be
reconciled with the three-dimensional “stretched isotropy” (55). Essentially
kg !is just the largest horizontal length scale at which the three-dimensional
potential vorticity q can satisfy N/f scaling. At larger horizontal scales,
“stretched isotropy” is prevented by the imposition of rigid boundaries.

The disequilibrium statistical mechanics of layered flow have been treated
by Salmon (1978, 1980), with further discussion by Hoyer & Sadourny
(1982) and by Salmon (1982b,c). A restriction to equal layer depths permits
an especially simple account even apart from quantitative details of a
closure calculation. Salmon (1978) points out that for each triad of wave
vectors satisfying k+ p+q = 0, interactions are constrained to satisfy

U +U, 40U, =0, KU, +p*U,+qU, =0 (62)
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and
U4V, + V=0, KU+ +i)Vo+ (g +k3)V, = 0, (63)

where overdots indicate time derivatives. For the barotropic triads UUU,
Equations (62) are identical to those of two-dimensional or one-layer
turbulence, whose behavior has been extensively studied. It has been noted
that constraints upon UUU triads are such as to retain energy in large
scales of motion and to tend toward transfer to yet larger scales. These
constraints are broken by UVV triads because of the role of kg. In
particular, for k2 ~ p? S k2 > g2, triads of type UVV support the classi-
cally studied “baroclinic instability” in which large-scale baroclinic energy
Vg may be transferred to smaller-scale baroclinic and barotropic energies V,
and U,. Wave-number local (k? & p? ~ ¢q? ~ k2) triads of type UVV may
then “occlude” or convert baroclinic to barotropic energy, which is
subsequently transferred to larger scales under UUU triads.

Closure calculations for the joint evolution of U and V were performed
by Salmon (1978) to reveal quantitative details of the UUU and UVV
interactions just described ; these calculations yielded resultsin agreement
with previous numerical experiments and inferences by Rhines (1977). In
this, Salmon achieved a synthesis between classical baroclinic instability
analyses and a theory of fully developed turbulence. However, the problem
considered assumed statistically isotropic large-scale baroclinic energy and
constant Coriolis parameter.

A more difficult problem is posed when one prescribes a horizontally
uniform flow with mean vertical shear such that the upper layer translates
westward at a rate S faster than a uniform translation of the lower layer. By
geostrophy, S is proportional to a mean meridional gradient of depth-
averaged temperature. Horizontal anisotropy in eddy statistics must be
considered, and Salmon (1980) adopts an angular harmonic expansion after
Herring (1975). Since anisotropy is already included, Salmon further
includes variation of Coriolis parameter in -plane approximation. Equal
layer depths are assumed, as in Salmon (1978). However, since a coefficient
of surface Ekman drag is assumed in the lower layer, the layers are not
statistically identical and difference variance arises, which may be expressed
as

D, =k*ReW¥,r_,. (64)

Importantly, a correlation determining the meridional eddy heat flux,
with corresponding conversion from mean-flow energy to eddy energy,
now occurs and is given by

I, = —k*Im W,7_,. (65)

The closure calculation here becomes most tedious, involving com-
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plicated expressions for the co-evolutionof U, ¥, D, and I,.. There occurs
moreover a difficulty in principle—namely, that the determination of the
coefficient matrix pu leading to (22) is ambiguous, especially if the mean flow
is such as to support linearized instability. Somewhat arbitrarily, Salmon
(1980) adopted 8, ,, from (35) as a triad-interaction time scale. It is remarked
that the calculated results are not strongly sensitive to specification of 0.
Salmon (1980) further carried out an extensive sequence of direct numerical
experiments that were compared with closure calculations; some of the
results are shown in Figure 6. Similar results have been reported from
numerical experiments by Haidvogel & Held (1980).

Eddy heat flux is an illustration in which the closure calculation is both
tedious and, in part, uncertain. In comparison, the numerical empirical
approach may be more straightforward and more confident if the problem
is one such as “For given S, find the statistically stationary I,.” However, for
each different S, f, kg, or friction, a new I, would be found by another
numerical experiment (or experiments if ensemble averaging were in-
tended). On the other hand, closure expressions, though complicated, are
written algebraically and thus admit possible systematic approximation
procedures. Salmon (1980) has sought such a simplifying approximation for
I, by writing

I, = linear terms + nonlinear terms + friction, (66)

where the linear terms are straightforward:

linear terms = — [k, Bk2/k*(k* + k3)1Dx
+k SVt S(K2 —k?)(k2+K2)1U,. 67)

After evaluating the full closure expressions for nonlinear terms, Salmon
(1980) found some terms to be small and others to be nearly canceling, such
that contributions tending to dominate I, are derived from triads such as
q? « k* ~ p* Expanding in powers of small g*/k? leads to a diffusion-type
approximation:

k ok 0Ok

where Q = [% dq q*U(q), and k and q refer to continuous wave numbers.

nonlinear terms =~ 0(k, k, 0)3— Q|:l 9 k3 o —3I ], (68)

5.7 “Equatorial Funneling”

Consider quasi-geostrophic flow with stratification N(z) and nonuniform

Coriolis parameter f(y). We may rewrite the equilibrium spectrum (55) as
i

Ey=— —
B = T )

(69)
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Figure 6 Spectra of barotropic energy U(k), baroclinic energy V(k), and poleward heat flux
I(k) are predicted from closure theory (solid curves) and obtained from numerical simulations
(crosses). Dissipative, statistically stationary turbulence is maintained by a supercritical mean
meridional temperature gradient. Upper panels: § = 0. Lower panels: f # 0; mean tempera-
ture gradient has been increased so as to provide supercriticality (Salmon 1980).
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where k here is a horizontal rather than a three-dimensional wave vector, n
is a vertical mode number, and k, ! is the nth internal deformation radius.
The y-dependence of f enters parametrically through k72, which is an
increasing function of n and of f2. Thus, for given horizontal scale [k| *,
higher vertical modes are expected to have less energy. This tends to be
observed. However, the extent to which higher-mode energy is depressed
depends upon f2. In particular, as f2 — 0, one has k2 — 0 for all n. The
implication is that as one approaches the equator, higher vertical modes
become relatively increasingly energetic, although quasi geostrophy begins
to fail. Indeed, Luyten & Swallow (1976) document the surprising amount
of low-frequency energy in high vertical modes in the near-equatorial
ocean. Salmon (1982b,c) further explores this “equatorial funneling” effect
by employing constant N on an equatorial S-plane and comparing
equilibrium statistical theory with direct numerical simulation. The
simulation results shown in Figure 7 clearly show the tendency toward
accumulation of energy in higher vertical modes near the equator (y = 0).

5.8 Predictability

By “predictability,” we refer to the sensitivity of flow evolution to the
precision of initial conditions (Thompson 1957). This issue is one of great
importance in relation to practical forecasting of geophysical fields, since
(for any given precision of initial condition) forecast skill cannot be
improved above a theoretical predictability limit. Research may also be
directed toward identifying those areas in which improved resolution of
initial conditions might best raise the predictability limit. A number of
studies addressing these and related issues are collected in the volume
edited by Holloway & West (1984).

Theoretically, the question is posed by considering the evolution of pairs
of solutions begun from nearly identical initial conditions. Recalling the
discussion in Section 1, we consider pairs of trajectories emerging from a
phase volume that is smaller than our presumed resolving power. Denoting
the individual trajectories as {; and {, with Fourier representation {, , and
.k We seek to describe the evolution of second-order correlations

Zy Linli—xs
Ry =Re (il -x)» Jj=3—i

where the ensemble average is over all pairs originating from the prescribed
phase volume.
Entropy for the system of pairs follows from (15a):

1
Hy =53 In(Z2—R)). M)
k

(70)
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Figure7 Meridional profiles ofkinetic energy in vertical modesn = 0, 1,2,3,4, and 5 areshown at 0, 10, and 30 weeks from a numerical simulation of
layered quasi-geostrophic motion in an equatorial S-plane ocean. The equator is at y = 0. After 30 weeks, high-vertical-mode energy is collected near

the equator (Salmon 1982b,c).
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Initially the two realizations are highly correlated (R, =~ Z,) and entropy is
small. As time unfolds, trajectories usually will diverge, R, will diminish,
and H, will increase for cases where Z, is stationary. Thus H, naturally
measures the developing informational uncertainty when, say, {, is used to
forecast (,.

Absolute statistical equilibrium for this problem is a relatively trivial
extension of previous results and yields R, = 0 and Z, = Z{*?, where Z{*?
is the equilibrium spectrum for each realization (;. In the condition of
absolute equilibrium, {; retains no predictive skill relative to, say, {,.
Interest in this problem is therefore directed to the question of approach to
statistical equilibrium, i.e. to the rate at which ¢, loses predictive value with
respect to (,. The problem is then one of disequilibrium statistical
mechanics, which may include also the influences of dissipation and of
external forcing.

Closure-theoretical models of type (22) have been evaluated for systems of
pairs of realizations as expressed in moments (70). Lorenz (1969), Leith
(1971), and Leith & Kraichnan (1972) have so treated the case of
predictability of two-dimensional turbulence. Numerical simulations by
Basdevant et al. (1981), McWilliams & Chow (1981), Vallis (1983), and
Holloway (1983b) have extended the earlier results to include the effects of
Rossby-wave propagation and of baroclinicity.

Carnevale & Holloway (1982) have considered explicitly the rate of
change of entropy (71) in predictability experiments, obtaining

d ZF.— R W
~H, = g 2 _ 19 4+ 52k TR 72
dt 2 k%}q kqulpq ; Vi z ZE_RE ( )

k

Here 0, is a nonnegative quantity that might be given as (35), and Qﬁm isa
nonnegative expression involving products of Z, and R, across the
spectrum. Nonnegativity of the first term on the right-hand side of (72)
reflects the basic result of Carnevale et al. (1981). Entropy decreases
through dissipation, where v, > 0 are expansion coefficients of a dissipation
operator. External forcing enters through F, and W,, where Fy is the
variance of forcing acting upon ;. However, just as we cannot prescribe
initial { precisely, we possibly cannot prescribe precisely the forcing upon
different realizations of {. Thus, W, is taken to be the cross-correlation
between forcings of two realizations. If the forcing realizations are
uncorrelated, then W;, = 0, whereas identical forcing has W, = R,. In either
case external forcing increases H,, where forcing is considered to derive
from an unknown stochastic process.

Derivation of (72) clarified an earlier theoretical dilemma. Usual
measures of predictability have consisted of measuring the difference or
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Figure 8 Entropy provides a measure of the degradation of forecast information with
increasing forecast period for the case of barotropic motion on a f-plane. Entropy is observed
herefrom specificrealizations,and henceit suffers fluctuations, whereasentropy growth would
be monotonic on ensemble average for unforced, nondissipative motion. Three values of 8 are
indicated, from 8 = 0 up to B = B, (approximately terrestrial). It is seen that 8 suppresses
entropy growth, thereby yielding enhanced predictability (Carnevale & Holloway 1982).

distance between two realizations of { according to some metric. Resulting
measures might be variance of 500-mbar height fields (effectively ‘P),
variance of difference velocity, or variance of difference vorticity. A
theoretical dilemma was that none of these measures demonstrably
satisfied the intuitive property that “uncertainty” should monotonically
increase, on average, with increasing time apart from direct influences of
forcing or dissipation. Entropy (71) as an information-theoretical measure
of uncertainty satisfies the intuitive Second Law expectation. Nonetheless,
(71) appears not to be so useful as a measure of forecast skill, since it tends to
be dominated by forecast information concerning small scales of motion, as
discussed by Carnevale & Vallis (1984).

Evolution of experimental entropy, ie. (71) as determined from a single
pair of realizations rather than as an average over the ensemble of pairs, is
shown in Figure 8. Three cases are shown in which f rangesfrom zero up to
a value that is approximately terrestrial. It is seen that larger f suppresses
the growth of H,, enhancing predictability.

5.9 Stirring of Tracer Fields

The preceding examples may be extended to include advection of passive
tracer fields. By passive, we mean that the tracer concentration has no direct
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influence on the velocity field. The statistical mechanics of the velocity field
are therefore unaffected, and we are concerned only with the statistical
mechanics of the tracer.

For a tracer concentration field ¢(x,t) advected by nondivergent, two-
dimensional flow, the equation of motion is

%¢+J(‘{’,¢+G'x)+@¢(¢)=é"¢. (73)

Here ¢ is the departure from a large-scale background field {¢) = G-x, 9,
is a dissipation operator, &, is any external source for ¢, and ¥ is the stream
function from a velocity field that might satisfy (24), for example.

In the simplest case, we consider (73) with G=9%,=6,=0 and
boundary conditions consisting either of a closed, impermeable basin or of
periodicity for - and ¢-fields. Spectrally truncated equations conserve ¢>
and ¢q, where g is potential vorticity under the assumption that @ = & = 0
in (24). In particular, if we consider the uncorrelated case ¢q = 0, then
absolute statistical equilibrium is simply equipartition

@y = {pxp-xy = C (74)

independent of the statistical distribution of the advecting velocity field that
brings about (74)!

Even in this simplest case, one may entertain an apparent paradox.
Consider an unforced, nondissipative evolution from initial conditions in
which ¢ and g are given identical probability distributions. Fields ¢ and g
only evolve under advection by the same stream function '¥'. One might
therefore suppose that distributions of ¢ and g will evolve similarly. On the
other hand, evolution of g is constrained by conservation of energy as well
as of g2, and so g should evolve to a statistical distribution different from
that of ¢. Evolution from identical initial probability distributions to
different equilibrium distributions is indeed what happens, as seen in Figure
9.

The disequilibrium statistical mechanics of tracer stirring in statistically
homogeneous, isotropic, two-dimensional turbulence have been con-
sidered by Lesieur et al. (1981) and by Lesieur & Herring (1985), with the
latter authors considering also the case with tracer-vorticity correlation
¢ # 0. Introduction of B induces anisotropy in the vorticity field (as
discussed in a previous illustration). However, the effect of § is even more
marked with respect to the tracer field. This is seen both in numerical
simulations (Haidvogel & Keffer 1984) and in theory (Holloway &
Kristmannsson 1984). In addition to 5, one may also impose a uniform
background gradient G in the tracer concentration, which allows investi-
gation of the phenomenon of net turbulent transport of tracer substance.
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Figure9 Spectra of tracer variance and of
vorticity variance illustrate the evolution of
unforced, nondissipative flow. One-
dimensional spectra shown in the figure are
the sums of modal variances @, and Z, in
circular wave bands of radius k = [K|.
Initial spectra of tracer (&, ) and of vorticity
(Zy) are identical (shown shaded). At a later
time, @, and Z, (shown as solid curves)
have approached their separate equipar-
tition or maximum-entropy solutions
. (shown as dashed curves) (Holloway &
Kristmannsson 1984).

The mean spatial flux of substance is given by

{ug) =Zm

L 52 Im T, (75)

where I', = {{¢ ). Disequilibrium evolution of ®, and I'y is then given
by Holloway & Kristmannsson (1984) as

d 2z (G x k
(E + 2xk+2yk> O, = 0, — z_(ka_) Im T, (76a)
and
d 7' (G x k
(E + i(uk+vk + Ky +7’|‘+ '}’k>r‘k = —i % Zk, (76b)

where y, and 7, are expressions given by weighted sums over spectra of {
only, while Q, involves products of spectra of { and of ¢. Also, «, is the
transform of the dissipation operator Z,, and v, is the transform of
dissipation acting on the vorticity field. Wave dispersion such as (36)
appears explicitly as iw, in (76b). Equations (76a,b) are evaluated together
with an equation such as (34) for the evolution of the vorticity spectrum.
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Anitem to note is that G appears as the inhomogeneous part of (76b), in
which quantities y, and #, do not depend upon ®, or I'y and are thus
independent of G. The result is that the statistically stationary, dis-
equilibrium solution for I'y is linearly dependent upon G. Consequently we
may express (75) as

{ug) = —(Z Dk) 'G, (77

where D, are spectral contributions to an overall “eddy diffusivity” tensor
D.

“Eddy diffusivity” is a popular notion in many practical applications but
is usually perforce introduced in an ad hoc, often suspect, manner. The
development given above permits systematic theoretical derivation of D. In
particular, Holloway & Kristmannsson (1984) examine the role of f in
inducing anisotropy into D such that meridional diffusivity D,, may be
greatly reduced relative to the zonal diffusivity D, . The theoretical results
concerning anisotropic D were demonstrated to emerge as well in
numerical experiments.

A very important remark should be made here. What we have just
described is a systematic derivation of eddy diffusivity D as regards a
passive tracer. This must not be construed as lending broader support to ad
hoc application of eddy-diffusion ideas. In particular, one ought to be
cautioned against the very popular idea that eddies necessarily support
down-gradient mixing of potential vorticity (Green 1970, Welander 1973,
Rhines & Young 1982).

Indeed this illustration provides a clear counterexample. A meridional
component of G will drive a meridional transport of passive tracer (i.e. the
eddies exhibit D, > 0 with respect to the tracer). For the same problem, 3 is
the meridional gradient of g that one might imagine driving a meridional
vorticity flux. However, in the absence of an external source for mean
momentum, nonzero meridional vorticity flux would violate zonal momen-
tum balance. Thus we observe that the same eddies that support down-
gradient tracer transport are unable to transport potential vorticity. In
other circumstances, gradient transports of vorticity may occur; the point
emphasized here is that ad hoc supposition of gradient transport of
vorticity is a haphazard proposition.

Differences between vorticity and a passive tracer are also seen in their
transport in k-space. Recall the systematic differences that appeared
between passive tracer and vorticity with regard to absolute equilibrium (cf.
Figure 9). Corresponding differences can be identified in the disequilibrium
evolution of the two fields. Holloway & Kristmannsson (1984) dem-
onstrated that the coefficient y, in the passive-tracer variance equation
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(76a) is systematically larger than a coefficient #, that occurs in vorticity-
variance equations. This results in more efficient transfer of passive-tracer
variance to small scales. A visual display of the difference in behavior is
shown in Figure 10 from a numerical simulation. The cause of the difference
is wave-number local interactions, which are most efficient at transferring
passive-tracer variance but which become vanishingly inefficient at trans-
ferring vorticity variance under the idealization of two-dimensional
geometry. The different behavior is also evident at large scales, for which
two-dimensional turbulence tends to produce a reverse cascade of kinetic
energy toward still larger scales yielding asymptotically a kinetic-energy
spectrum as k™53 (Kraichnan 1967). On the same large scales, classical
arguments since Obukhov’s (1949) discussion apply ; these indicate a direct
cascade of tracer variance toward smaller scales with a tracer-variance
spectrum also asymptotically approaching k~5/3. On the same subrange,
tracer and velocity variances cascade in opposite directions! The dominant
transfer mechanisms on such scales tend to be fairly local in wave number.
Only for widely scale-disparate interactions such that small-scale features
are strained directly by large-scale flow is it admissible to consider vorticity
approximately as a passive tracer.

5.10 Plankton Patchiness

An extension from the preceding section is to consider the role that
horizontal advection plays in maintaining the patchiness of the field of
primary productivity in the upper ocean. In fact a vast wealth of biological
dynamics and of vertical exchange processes are believed to be involved.
However, it is interesting to consider to what extent horizontal differential
advection might dominate other sources of variability.

Consider only the simplest kind of biological dynamics, consisting of
exponential increase or decrease of populations. Let ¢(x,t) be the vertical
integral of the logarithm of biomass concentration. Logarithms are useful
here both because concentration is nonnegative and because actual
populations are observed to be approximately lognormally distributed. Let
the verticallyintegrated horizontal velocity in the upper ocean be described
by a transport stream function ¥. Then a plausible model for evolution of ¢
is (73), where &4(x, t) is taken to be the vertical integral of the rate coefficient
for exponential increase or decrease. Effects of vertical shear in the velocity
field are not included explicitly but are treated as a shear-dispersion effect
(Kullenberg 1972, Young et al. 1982) expressed as a diffusion 2.

If we consider &, to be some random field with prescribed spatial and
temporal statistics, then, given the statistical evolution of W, we seek the
statistical evolution of ¢. Forcing on account of the biological dynamics &,
and dissipation by shear dispersion 9, are essential, so that only the
disequilibrium treatment is of interest.
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(c) $(X,2.5 Lppns) (d} §(X,2.5 Lypn)
Figure 10 Spatial fields of passive tracer ¢ and vorticity { are shown from a spinning-down
numerical experiment. At t = 0 (a, b) the two fields have identical spectral distributions. At a
later time (c, d) the passive-tracer field has evolved higher-wave-number features than the
vorticity field. Thus it is hazardous to think of vorticity as a passive tracer (Holloway &
Kristmannsson 1984).

Suppose that & has structure only on large scales, ie. &, has variance
only for, say, k < k;. The temporal variability of &, is another matter; we
may consider two extremes:

1. &, changes randomly over time scales that are short compared with
eddy-advection time scales.
2. &4 is constant over time.



Annu. Rev. Fluid Mech. 1986.18:91-147. Downloaded from www.annualreviews.org
by Marine Biological Laboratory - Woods Hole Oceanographic Institution on 04/18/13. For personal use only.

132 HOLLOWAY

The extremes are selected because they span the range of interesting time
dependences and because each is tractable under closure theory.
Case 1 yields essentially (76a) without G:

d
(E + 2Kk+2v1s>q)k = QO+ Sy, (78)

where each of the terms is as previously (for details, see Holloway &
Kristmannsson 1984) except for the inclusion of S,, which is the variance of
the temporal fluctuations in &,

Case 2 requires that we consider the cross-correlation A, = {¢,r_,)
between the plankton burden ¢ and the “frozen” rate-coefficient field
& 4(x,t) = r(x). Closure equations are

p .

(E + 2Kk+2yk>(1)k = 0p+A,, (79a)
d o

(E + "k'*"}’k)Ak =8y = {rr—w)- (79b)

Numerical experiments have been performed by D. Ramsden (un-
published) for cases 1 and 2 and have been compared with a theoretical
evaluation using (78) and (79). Some of these results are seen in Figure 11.
We have posed the plankton-patchiness question in terms of the horizontal
wave-number spectrum of the logarithm of plankton burden. For the
simple biological dynamics assumed here, it is seen that there is agreement
between theory and numerical experiment for the shape of the spectrum
and the growth dynamics, nonlinear transfer, and shear dispersion that
maintain that spectrum.

It may be noteworthy that certain questions about patchiness can be
answered from (78) and (79) by inspection. For example, it has been
speculated that the very different time dependences assumed for &, in cases
1 and 2 might lead to very different characteristics of patchiness. How-
ever, in terms of the shape of spectrum ®,, such differences are slight.
If we assume approximate statistical stationarity, then A, from (79b) is
Sy/(kx+ 7). If 8 is given the same form as S,, then A, on the right-hand
side of (79a) will be more red than will S, in (78) when it is taken into ac-
count that x, + 7, tend to be increasing functions of k. Therefore, in case 2,
@, will be slightly more red on the scales subject to direct biological forc-
ing. Over all k not directly forced, S, and A, vanish and no discernible dif-
ference between cases 1 and 2 is expected. Numerical simulations have been
performed that indeed demonstrate no significant difference between
cases 1 and 2 as regards the shape of @, over scales not directly forced.
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Figure 11 Horizontal wave-number spectra of plankton patchiness are compared from
numerical simulations and from closure theory. Case 2, in which random rate coefficient field
&4 is constant in time, is considered here. Upper panels: Plankton spectra from numerical
experiments are shown at successive times, becoming essentially stationary after a nominal
time t = 4. The spectrum of the rate field &, is shown hatched. Instantaneous traces of the
turbulent transfer function T(k) are shown. Lower panels: Stationary spectra and transfer
function are evaluated from closure theory using (79). In this figure, T(k) > O indicates
turbulence providing a source of patchiness variance at wave number k; T(k) < O indicates
turbulence removing variance. The simple balance is that “biological dynamics” & is here
assumed to generate patchiness at large length scale (low k), which is transferred by turbulence
toshortlength scales where variance is dissipated by explicitly modeled diffusion (D. Ramsden,
unpublished).
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5.11 Internal Gravity Waves|Buoyant Turbulence

A final illustration is included to demonstrate different space and time
scales and different dynamics that are amenable to the statistical-mechanics
approach. A most striking observation, first suggested by Garrett & Munk
(1972), is that internal oceanic fluctuating fields on length scales from
0(10 m) to O(1000 m) and time scales from the inertial frequency f to the
buoyancy frequency N exhibit remarkably reproducible variance spectra
from many different locations in different oceans during different seasons. If
the fluctuating fields are attributed to a random superposition of internal
inertial-gravity waves, then the result is to observe a seemingly “universal”
spectrum of internal-wave variance, commonly denoted the GM spectrum.
In fact, some departures from universality are observed. The problem is
being actively researched and is discussed in recent reviews by Garrett &
Munk (1979), Munk (1981), and Olbers (1983); page space requires that the
present recount be extremely superficial as regards the observations.

The GM spectral model assumes linearized internal-wave modes, to
which a variance spectrum is empirically fit. No further dynamics are
assumed in setting the empirical form of the variance spectrum. This
empirical form has evolved through a number of revisions and was recently
listed by Munk (1981) in terms of vertical modes j of an exponentially
stratified ocean as an energy spectrum

B(@,]) = bNoNEGB@)H() 0
with

B@ =2 L @i, 1)

H(j) = H, (407" (81b)

where b is a scale depth of 1.3km, Ny = 52 x 10™?s~ !, and E, andj, are fit
parameters taking values near E, = 6 x 107, j, = 3. A depth-dependent
vertical wave number may be assigned to j under WKB approximation
as k, =jN(z)/bN,. On the assumption that underlying dynamics
are linearized waves [hence satisfying precisely a dispersion relation
o = +9Q(k;,j)], and with a further ad hoc assumption of statistical iso-
tropy in the horizontal, one may convert spectral density in (w,j) as in
(80) into spectral density in (k,, k).

The intriguing property of (80) is that it is specified not only in form but
also in absolute amplitude per E,. (One is cautioned that this result is
empirical and hence subject to continuing update.) Reproducibility of (80)
has attracted a great deal of theoretical attention.
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An overall account of the oceanic internal-wave field would entail
analyses of forcing and dissipation mechanisms (cf. the reviews cited above).
However, a simple remark is that apparent energetic sources are rion-
uniformly distributed in space or in time, and thus do not simply account
for the universality of (80).

An early consideration was whether the GM spectrum might represent
an equilibriumdistribution. Observed internal dissipation rates in the ocean
are highly intermittent but tend to be small, yielding estimates of energy
residence times of O(10 days). Perhaps such times would permit an
approach to absolute equilibrium. Nondissipative invariants ofthe motion
are total energy and net horizontal wave momentum. Under horizontal
isotropy, net momentum vanishes, leaving only the energy invariant. Then
simple energy equipartition would anticipate spectral density

E(ky, k) o< ky, (82)

where k; is the magnitude of the horizontal wave vector.

One sees that (82) is far from (80). Most investigators have therefore
sought to explain (80) by including essential roles offorcing and dissipation.
However, Allen & Joseph (1985a) have examined the detailed dynamics
leading to absolute equilibrium among internal waves. Depending upon
how one elects to impose high-wave-number cutoffs to prevent ultraviolet
catastrophe, Allen & Joseph show that some marginal spectra calculated
from (82) may resemble some of the observations from which (80)
was constructed. Nonetheless, other significant discrepancies remain.
Moreover, these considerations have not taken account of a spectrum of
geostrophic turbulence [cf. (55)], which would be in equilibrium with the
internal-wave spectrum. Further efforts by Allen & Joseph (1985b) seek to
address this question. (See also Errico (1984), as discussed in Section 5.6.)

Much greater effort has been expended in exploring a disequilibrium
account. Here there was hope, based upon the GM assumption of
underlying linearized wave dynamics, that one might proceed perturba-
tively in smallness of wave amplitude. Then the spectral evolution might be
guided by weak wave resonant-interaction theory [essentially (17) with (20)
and (21)]. Detailed calculations of this type have been examined by Miiller
& Olbers (1975), Olbers (1976), McComas & Bretherton (1977), McComas
(1977), and Pomphrey et al. (1980). Analytically derived approximations to
the spectral evolution equation are given by McComas & Bretherton (1977)
and McComas & Miiller (1981a); these provide clearer insight into some of
the mechanismsinvolved and lead to an overall scenario for energy balance
as proposed by McComas & Miller (1981b).

However, thereare twomainreasonsto doubt the validity of calculations
to date. The first concern is for finite strength of interaction. In usual
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derivations, weak wave-interaction theory depends upon multiple time
scaling, such that systematic energy transfer is only effected on time scales
long compared with the wave period [cf. Benney & Saffman (1966) or
Benney & Newell (1969)]. At GM amplitudes, the above-cited calculations
appear to violate this premise by anticipating energy transfer on time scales
much shorter than the wave period (Holloway 1980). Since this result is self-
contradictory, it should not be used to estimate actual interaction time
scales. There are further ambiguities concerning the notion of “interaction
time,” as argued between McComas & Miiller (1981a) and Holloway
(1982). Moreover, it is not clear that criteria based solely upon wave period
are appropriate. Finite-amplitude theory (Holloway 1979) suggests the
importance of a “group period” given by a characteristic packet length
divided by the group speed, whereas the theory of stochastic differential
equations (Van Kampen 1981) indicates the role of a Kubo-number
criterion, as further discussed by Miiller et al. (1985).

The second concern may prove even more troublesome. It has been
recognized for some time that oceanic observations contain fluctuations
that are other than internal waves; these are sometimes referred to as
“contaminations” (Miiller et al. 1978). Laboratory studies (as reviewed by
Lin & Pao 1979) and three-dimensional numerical simulations (Riley et al.
1981) show that collapsing, stably stratified turbulence readily sorts into
nonlinear internal waves together with quasi-two-dimensional vortices,
sometimes called “pancake,” “blini,” or “vortical” modes. Holloway (1981,
1983a) points out that when one considers incompressible, stably stratified
flow including a background component of uniform rotation, a complete
eigenfunction representation requires three fields, two of which are the
upward- and downward-propagating internal waves, while the third field is
geostrophic motion as considered in Section 5.6. The problem is seriously
compounded by the necessity of calculating not only energetic exchanges
among the internal waves but also exchanges between the geostrophic and
internal-wave branches, along with the geostrophic turbulence considered
previously. At higher wave numbers, nonlinear interaction will broaden the
frequency distributions associated with the separate eigenfunctions, leading
to overlapping frequency distributions. This picture is sketched in Figure
12. Here we imagine spectra of internal waves and of geostrophic
turbulence entwined on all scales.

The difficulties just described are daunting. As a means of exploring
finite-amplitude effects on the purely internal wave-wave interaction,
Carnevale & Frederiksen (1983) have considered an idealization in which
motion is restricted to lie in a vertical plane and the Earth’s rotation is
neglected. Equations of motion can then be given in terms of the horizontal
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component {{x,z,t)of a vorticity field and a density-anomaly field p(x, z,t):

0 0
d & 3
FTAR IR SR (83b)

where W is the stream function in the vertical (x, z) plane and V2 is the two-
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Figure 12 Solution surfaces for thelinear dispersion relation @ = + € and the surface w = 0
areshown as hatched surfaces in w, k,, k,-space. For a particular aspect ratio k,/k, = tan ¢, the
natural frequencies @ = +, and w = 0 are given by the intersection of the dispersion
relations (hatched surfaces) and the plane k./k, = tan ¢. These intersections are the straight
lines labeled @ = +wq, w = 0, and w = — w,. Because of nonlinear interactions, energy will
bedistributed about the natural frequencies. This relative distribution of energy is sketched as
fanlike curves, which may be regarded as contours of relative energy density, decreasing away
from the natural frequencies. At large wave numbers, the fans become very broad, with the
different branches overlapping, This figure emphasizes the presence of threeinteracting modes
at all scales, as well as a continuous transition from more wavelike dynamics at small wave
number to more turbulent dynamics at higher wave numbers (Holloway 1983a).
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dimensional Laplacian. Two linearized wave modes are then given by
ai = k| £ pus (84)

where W, and p, are wave-vector expansion coefficients for ¥ and
p. Carnevale & Frederiksen (1983) then consider both equilibrium
and disequilibrium [i.e. closure equations such as (23), differing from
weak wave-interaction theory on account of pu # 0] distributions for
A; = {aya® ). Furthermore, Frederiksen & Bell (1983, 1984) have per-
formed numerical simulations of (83), testing the theoretical results from
Carnevale & Frederiksen.

6. SUMMARY AND OUTLOOK

The methods reviewed in this paper tend to lie outside the mainstreams of
GFD research. Many calculations (not shown explicitly in this review) are
complicated and laborious as well as uncertain on some points. A reader
may wonder why one ought to bother. There may be two reasons why.

1. The statistical mechanics of macroscale geophysical flows provides
a synthesizing point of view. Observations of atmospheric and oceanic
fields as well as output from high-resolution numerical simulations tend to
place us in a role of onlookers in a seemingly chaotic landscape of
overlapping/competing flow mechanisms. Explosively mounting volumes
of field observations and of simulation output threaten to overwhelm an
empirical attitude toward either nature or computer. Statistical mechanics
here suggests at least a sense of direction, i.e. we perceive processes of
entropy generation and a tendency toward entropy maximization.

2. Point of view, as such, may be only a matter of taste. It is just as
important that the methods described here provide a prescription for
quantitative calculation and that these calculations have been repeatedly
tested for a variety of problems against empirical results collected from
numerical simulations.

Throughout we have sought to compare results from equilibrium and
disequilibrium methods. The two methods are related by entropy, which we
understand in terms of probability distributions for macroscale flows. In
this we proceed from the view of information theory, noting thatentropy as
(7) or (8) may be extended to include the specific thermodynamicentropy of
the fluid. Novelty is seen in that the same entropy functional accounts for
establishment of planetary-scale flow regimes.

Exercise of equilibrium methods requires an artificial idealization. We are
obliged to represent a continuous flow in a system of finite degrees of
freedom while neglecting external forcing or dissipation. Should one throw
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out such problems as unphysical? There are at least three reasons why the
answer is no.

Firstly, although physical systems are unable to achieve absolute
equilibrium on account of forcing and dissipation, the disparity between
equilibrium statistics and physically realized statistics indicates the direc-
tion in which nonlinear interactions will tend to move a physical system.
The physical systems seek to establish the highest entropy states available
subject to externally imposed forcing and dissipation.

Secondly, certain quite physically realistic features emerge with absolute
equilibrium. Essentially, it is the distribution of variances across wave
number that is most affected by dissipation, which is usually presumed to
act selectively at high wave number. Cross-correlations such as the degree
of barotropy at different scales, the correlation of flow with underlying
topography, and even the establishment of basin-scale circulation are not
sensitively dependent upon a presence of small-scale dissipation.

Thirdly, how close a physical flow comes to absolute equilibrium may be
characterized by a ratio of time scales: an energetic “residence” time
compared with a “mixing” or entropy-generation time.

In comparison with equilibrium methods, disequilibrium calculations
(closure methods) are more tedious and depend upon procedures that are
not rigorously established. However, the calculations permit forcing,
dissipation, and time-evolving statistics. In comparing closure calculations
with the empirical approach based upon numerical simulations, it is
noteworthy that closure equations deal directly with statistical quantities
and hence do not require averaging across numerical experiments.
Relationships among statistical quantities are revealed directly.
Dependence of statistical quantities upon external parameters such as § is
made explicit so that, for example, derivatives of statistics with respect to
may be evaluated analytically rather than depending upon differencing
among sequences of numerical experiments. In many cases, complicated
closure expressions permit analytical reduction by systematic approxima-
tion procedures.

For the most part, this paper has illustrated the application of
equilibrium and disequilibrium statistical mechanics for a variety of geo-
physical flows. Let us recap just a few points:

1. Maximum-entropy solutions indicate the emergence of predictable,
mean, ocean-basin-scale circulationfrom random initial flow. This result
contradicts a popular notion that maximum entropy implies “complete
disorder” and hence no large-scale mean flow.

2. A novel account of western intensification is suggested, whereby



Annu. Rev. Fluid Mech. 1986.18:91-147. Downloaded from www.annualreviews.org
by Marine Biological Laboratory - Woods Hole Oceanographic Institution on 04/18/13. For personal use only.

140 HOLLOWAY

intensification of oceanic currents near western basin boundaries acts as
a mechanism for entropy generation. At maximum-entropy equilibrium,
western intensification would vanish. The readily observed physical
phenomenon is thus viewed as a natural disequilibrium process in ocean
circulations.

3. The shape of the main thermocline is seen to emerge spontaneously as a
maximum-entropy result.

4. Persistent correlation between geostrophic eddies and underlying
topography results from entropy maximization. Disequilibrium calcu-
lations extend the maximum-entropy results, producing good agreement
with dissipative numerical experiments.

5. Equilibrium arguments provide a basis for anticipating N/f scaling
in stratified, geostrophic flow. For bounded flows, the result is to antici-
pate a tendency toward barotropy on scales larger than the internal
deformation radius.

6. Disequilibrium theory provides a unifying treatment ranging from
small-amplitude baroclinic instability up through fully developed
baroclinic turbulence. Under an imposed meridional temperature
gradient, theory predicts both the form and amplitude of a spectrum of
poleward eddy heat flux.

7. An extension of equilibrium results for baroclinic flow suggests the
enhancement of high-vertical-mode, low-frequency oceanic currents
near the equator, as indeed is observed.

8. Disequilibrium study of the transport of passive tracers by geostrophic
turbulence obtains the basis for a gradient flux while revealing the role of
B-inducing anisotropy among the components of a horizontal eddy
diffusivity tensor. Marked differences between transport of vorticity and
of passive tracer are identified. An extension to nonconservative tracers
provides a simple model for horizontal plankton patchiness in the upper
ocean.

9. Entropy provides an information-theoretical measure of the intrinsic
degradation of forecast skill with increasing forecast period. Closure
theory provides a quantitative account of how geophysical effects such
as those due to  may enhance predictability.

Exercises of equilibrium and disequilibrium statistical mechanics pro-
vide a wealth of insights, along with detailed quantitative calculations, over
a wide range of geophysical fluid phenomena. The reader may foresee
further applications. Already we have anticipated that the difficult three-
dimensional problem involving interactions among internal inertial-
gravity waves and geostrophic modes will be solved. On other points,
methodology for disequilibrium calculations admits continuing improve-
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ment. For example, a question concerning the induction of systematic
frequency shifts among interacting finite-amplitude waves remains open.

Although the methods discussed in this paper have been illustrated
with regard to Eulerian field statistics, corresponding implications for
Lagrangian particle statistics have been considered by Kraichnan (1966)
and Larcheveque & Lesieur (1981).

In closing it is appropriate to mention two areas in which caution should
be observed. The first is the problem of spatial statistical inhomogeneity.
Disequilibrium calculations, in particular, are so tedious that they are really
only practicable when spatial fields can be expanded upon particularly
simple basis functions as exp(ik-x). One approach to extending such
problems is a quasi-homogeneity expansion, such as that of Carnevale &
Martin (1982) or Carnevale & Frederiksen (1983), in which one supposes a
two-length-scale separation so that the field fluctuations occur over shorter
length scales while the fluctuation statistics vary over a longer length scale.
In the limit of infinite scale separation, this kind of inhomogeneity has been
included in the baroclinic heat-transport or tracer-stirring illustrations
given previously. With limited vertical resolution, Salmon (1980) included
vertical inhomogeneity in his studies of two-layer geostrophic turbulence.
However, for most cases, if statistics are inhomogeneous on lengths
comparable to the energetic eddy scales, then disequilibrium calculations
are not yet feasible.

The second point of caution concerns intermittency effects. Both the
equilibrium and disequilibrium statistical distributions that have been
considered are only up to second order in correlations. If one further
supposed distributions to be joint-normal, this description would be
complete. At absolute equilibrium such joint-normality is indeed predicted.
Numerical experiments for tracer stirring permit a test of this prediction.
Holloway & Kristmannsson (1984) have examined various derivative

kurtoses, e.g. Kg(¢) = |V@|*/|VP|?, of tracer fields. For normally dis-
tributed ¢, we have K = 3 for all such K. From an experiment without
forcing or dissipation, initialized with normally distributed ¢ but with
spectra far from equilibrium, Figure 13 shows various K(¢) rising to
supranormal values during the early disequilibrium stage of rapid entropy
generation. However, as a maximum-entropy condition is approached, the
K(¢) are seen to relax toward K = 3.

Although intermittency vanishes at absolute equilibrium, itis a persistent
feature of disequilibrium flows and thus is of concern for realistic
applications. Numerical experiments on two-dimensional turbulence
(Fornberg 1977, Basdevant et al. 1981, McWilliams 1984) show a charac-
teristic tendency for a vorticity field to “condense” into a collection of
relatively isolated vortices. Measuring intermittency by vorticity kurtosis
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K,;, McWilliams (1984) reports values of K; up to 40 in some spin-down
experiments. Basdevant et al. (1981) suggest that such intermittency effects
may account for a steepening in the high-wave-number portions of spectra.

It remains a matter of controversy as to what extent non-joint-normality
threatens the exercise of closure theory as in (23). Such theories, which are
termed “quasi-normal” are often supposed to depend upon proximity to
joint-normality. The fourth cumulant discardin a weak-wave theory, which
leads to (20) and (21), is usually argued on a basis of “random-phase
approximation” or joint-normality. However, the fact that one calculates
an energy transfer because {yyy) # 0 already requires a violation of
random phase. Introduction of the coefficient matrix u leading to (22)
further recognizes the violation of random phase. Thus it is in the nature of
these closure schemes to suppose nonnormality. The danger is that there is
not a deductive basis upon which to determine that departures from joint-
normality are being treated approximately correctly. In an effort to assess
the skill of closure theory, Herring & McWilliams (1985) make direct
comparisons between closure calculations and very high resolution
numerical simulations of decaying two-dimensional turbulence. It is found
that simulations indeed producesteeper high-wave-number spectra, as also

K(o)

1§ s
Figure 13 Time evolution of various derivative kurtoses of tracer field ¢ are shown from an
unforced, nondissipative numerical experiment. Traces are labeled to show kurtoses of the
following quantities : (a) ¢ itself, (b) d¢p/0x, (c) d¢/dy, and (d) V*¢ (Holloway & Kristmannsson
1984).
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indicated by Basdevant et al. (1981), and that departures of simulation
results from closure-theoretical results tend to be larger for larger vorticity
kurtoses (near K; & 9 in the comparisons by Herring & McWilliams). It
may be encouraging with regard to geophysical applications that inclusion
of even a very modest value of § has been shown to contain K, at values near
3 (Holloway 1984). Nonetheless, disequilibrium flows are seen to exhibit the
qualitative impression of intermittency or of “phase-trapping” in coherent
structures. Such behavior is not precluded by second-order correlation
closure methods but neither is this possible behavior explicitly considered.

Clearly there are limitations, as well as points that are in open doubt,
with regard to the statistical mechanics of complicated geofluid systems.
However, there are also many applications in which statistical-mechanics
methods provide not only insight but also good quantitative skill. The way
certainly is open to further application. Resolving some points that are in
doubt and overcoming present limitations remain as powerful challenges.
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