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ABSTRACT

The long-term evolution of initially Gaussian eddies is studied in a reduced-gravity shallow-water model

using both linear and nonlinear quasigeostrophic theory in an attempt to understand westward-propagating

mesoscale eddies observed and tracked by satellite altimetry. By examining both isolated eddies and a large

basin seeded with eddies with statistical characteristics consistent with those of observed eddies, it is shown

that long-term eddy coherence and the zonal wavenumber–frequency power spectral density are best

matched by the nonlinear model. Individual characteristics of the eddies including amplitude decay, hori-

zontal length scale decay, and zonal and meridional propagation speed of a previously unrecognized quasi-

stable state are examined. The results show that the meridional deflections from purely westward flow

(poleward for cyclones and equatorward for anticyclones) are consistent with satellite observations. Exam-

ination of the fluid transport properties of the eddies shows that an inner core of the eddy, defined by the zero

relative vorticity contour, contains only fluid from the eddy origin, whereas a surrounding outer ring contains

a mixture of ambient fluid from throughout the eddy’s lifetime.

1. Introduction

Baroclinic Rossby waves have long been known to

play an important role in the spinup of the ocean

(Anderson and Gill 1975), and so their apparent direct

observation through satellite altimetry measurements of

global sea surface height (SSH) (Chelton and Schlax

1996) was a well celebrated result. These early observa-

tions were shown to differ in their predicted phase speed

from linearized quasigeostrophic theory, which moti-

vated numerous attempts to modify the classical theory

(e.g., Killworth et al. 1997; Tailleux and McWilliams

2001; Killworth and Blundell 2005). However, sub-

sequent observations from higher-resolution SSH fields

constructed from multiple satellite altimeters have cast

doubt on the original interpretation of the observations

as linear waves (Chelton et al. 2007, 2011). The en-

hanced observations now show more eddy-like struc-

tures that remain coherent for long durations, with

opposing meridional deflections for cyclones and anti-

cyclones, and suggest a significant degree of nonlinearity

through several nondimensional parameters. Motivated

by these observations, we examine the basic character-

istics of Rossby waves and eddies in a standard quasi-

geostrophic setting.

We consider both linear (b21 5 0) and nonlinear

(b21 6¼ 0) quasigeostrophic theory in a reduced-gravity

shallow-water model,

›

›t
(=2h 2 h) 1

›h

›x
1 b21 � J(h, =2h) 5 0, (1)

where the dimensionless variable h(x, y, t) is a sea level

height perturbation scaled by a representative value

h0 and the Jacobian is defined as J(a, b) 5 axby 2 aybx.

The nondimensional coefficient b21 5 U/(b0L2
R), where

U 5 gh0/( f0LR) is the geostrophic velocity scale associated

with h0, g is the acceleration of gravity, b0 is the me-

ridional gradient of the Coriolis parameter, and LR is the

Rossby radius of deformation. Equation (1) is typically

written with the nondimensional parameter b associated

with the planetary vorticity term [b(›h/›x)]; however,

the convention used here uses the long-wave time scale

of (b0LR)21 rather than the advective time scale LR/U so

that Eq. (1) reduces to a parameter independent form of

the linearized Rossby wave equation when b21 5 0.
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In the first set of experiments presented here, the

linear (b21 5 0) and nonlinear evolution of individual

Gaussian initialized eddies (Ae2r2/L2
, where A is the

amplitude and L is the radial length scale) are first

compared, and it is shown that the long-term coherence

of the observed eddies cannot be explained by the linear

theory. For the linear and nonlinear cases, a basin is then

seeded continuously for 150 yr with Gaussian eddies

with statistical characteristics that approximate those of

the eddies observed with altimetry. By considering the

zonal wavenumber–frequency power spectral density,

we are able to compare model results with observations

and it is shown that linear theory does not explain the

observed spectra and must be rejected.

In the second set of experiments, isolated Gaussian

initial conditions are modeled with the nonlinear equa-

tion for time durations much longer than in past studies.

It is shown that a previously unrecognized quasi-stable

eddy state emerges. Individual characteristics of these

eddies are then diagnosed including amplitude decay,

horizontal length scale decay, propagation speed, and

fluid transport properties. These provide baseline prop-

erties for comparison with the observations and other

theories. It is shown that the meridional deflections from

due westward propagation, the transport properties, and

zonal propagation speeds are generally consistent with

those of observed eddies.

2. Nonlinear dynamics

a. Waves versus eddies

To compare wave-like and eddy-like mesoscale fea-

tures, consider the single Rossby plane wave solution to

the fully nonlinear quasigeostrophic Eq. (1),

h(x, y, t) 5 N0 cos(kx 1 ly 2 vt 1 f), (2)

where N0 is a constant amplitude, k and l are zonal and

meridional wavenumbers, v 5 2k/(k2 1 l2 1 1) is the

nondimensional frequency, and f is a constant phase

(Pedlosky 1987). Although Eq. (2) solves both the line-

arized and nonlinear form of Eq. (1), only for b21 5 0 do

linear combinations of Rossby waves solve the nonlinear

Eq. (1). For long wavelengths, k, l � 1, the linearized

form of the equation is only weakly dispersive and so it is

conceivable that linear features might remain coherent

for long durations as observed in the altimetry data.

An initial comparison between the linear and non-

linear form of the equation can be made by considering

the evolution of an initially Gaussian sea surface height

perturbation. For all model runs, an equivalent depth of

D 5 80 cm (gravity wave phase speed of 2.8 m s21) was

used at latitude 248. This could equivalently be thought

of as a single 800-m layer with reduced gravitational

acceleration of approximately 1 cm s22. This corre-

sponds to the observed deformation radius LR 5 47 km

along 248 in the eastern North Pacific (Chelton et al.

1998) with time scale (b0LR)21 of 12 days, and the long-

wave Rossby wave speed is therefore cx 5 b0L2
R 5 4:7

cm s21. For a scale height of 10 cm these parameters

require setting b21 5 7.5, whereas for the linear form of

the equation they require setting b21 5 0.

An initial perturbation of h(x, y, 0) 5 N
0
e2r2/L2

with

amplitude N0 5 15 cm and length scale L 5 80 km was

modeled for 365 days using the two forms of the equa-

tion; the results are shown in Fig. 1. The linear evolution

is dominated by Rossby wave interference patterns, al-

though the sea surface maximum can still be observed

to propagate westward. The nonlinear evolution also

shows Rossby wave interference patterns but is domi-

nated by the coherent westward-propagating sea surface

maximum. The nonlinear anticyclonic eddy also shows

a much slower amplitude decay rate and an equatorward

deflection (McWilliams and Flierl 1979), both qualita-

tively consistent with the observations reported by

Morrow et al. (2004) and Chelton et al. (2007, 2011).

All experiments used pseudospectral methods (Canuto

2006) to compute spatial derivatives and fourth-order

Runge–Kutta time stepping to iterate forward in time,

still one of the more accurate and efficient iterative

techniques available (Durran 1991). To ensure numerical

stability, spectral vanishing viscosity was used to prevent

the buildup of energy at higher wavenumbers (Tadmor

1989). The premise is to construct a typical low-order

hyperviscosity operator, like those found in McWilliams

and Flierl (1979) or Maltrud and Vallis (1993), but then

to filter this operator such that low wavenumbers are

completely undamped. The original results obtained in

Tadmor (1989) that restrict the choices of this filter are

nicely reviewed in Karamanos and Karniadakis (2000).

This approach has since been used in other fluid models

with great success (Gelb and Gleeson 2001; Pasquetti

2005). Because the domain is doubly periodic, a sponge

layer was added to all four sides to prevent signals from

crossing the boundaries. The numerical model was vali-

dated by comparison with the steady dipole solution

found analytically in Flierl et al. (1980), by doubling the

resolution of all experiments from 4 to 2 km, and by

varying the damping techniques and damping parameters.

b. Eddy seeding experiment

To compare the wavenumber–frequency spectra of

observations with those of the linear and nonlinear

models, a basin 8300 km 3 3850 km was seeded by

modifying the instantaneous streamfunction at a random

sequence of times during the full 150 yr of the simulation
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with Gaussian eddies placed at random locations

throughout the domain. The seeded eddies had ampli-

tudes (both positive and negative), horizontal length scale

distributions, and spatial and temporal frequencies of oc-

currence that matched the statistics of the observed eddies

in a region of the subtropical North Pacific (Chelton et al.

2011). The simulation was run and continuously seeded

with these eddies throughout the domain for 150 yr.

The sea surface height 13 yr into the two model runs

is shown in Fig. 2. Because the linear model simply

evolves the phases of individual Rossby waves, the en-

ergy at individual wavenumbers cannot transfer to other

wavenumbers and changes only by virtue of the energy

continuously added by the eddy seeds. The sea surface

height for the linear model therefore consists of an

evolving interference pattern from the superposition of

waves with length scales unmodified from the original

eddy seeds. Conversely, the nonlinear model allows in-

teractions between wavenumbers and transfers energy

to different scales just as in the study of quasigeostrophic

turbulence (Vallis 2006). The nonlinear model run shows

a clear trend toward reduced energy at short wavelengths

(see Figs. 2, 3). Further, the eddies can be observed from

the animations in the online supplemental material

FIG. 1. The evolution of an initially Gaussian SSH of amplitude 15 cm and length scale 80 km. The linear form of

Eq. (1) with (left) b21 5 0 and (right) the value appropriate for the first baroclinic mode at 248 latitude, b21 5 7.5. The

contours are drawn for every 2 cm of height at odd values (e.g., 21, 1, 3 cm, etc.), and a thicker contour is drawn at 0 cm

to emphasize the interference pattern. The thick black line is the path of the SSH maximum. Animations for the two

cases shown in this figure are available in the supplemental material at the Journals Online Web site: http://dx.doi.org/

10.1175/2011JPO4601.s1.
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(available at the Journals Online Web site: http://

dx.doi.org/10.1175/2011JPO4601.s1) to interact by dis-

tortions, changes in their propagation paths, and merg-

ing, unlike the linear case.

The zonal frequency–wavenumber spectra in Fig. 3

show very different behaviors between the two models.

For the spatial domain, analysis was restricted to 1500 km

west of the easternmost eddy seeds to a box 5500 km in

zonal extent and 3600 km in meridional extent. For the

linear model, the spectral power is restricted to fre-

quencies below the meridional wavenumber l 5 0 of the

zonal Rossby wave dispersion relation. This is consistent

with theory, because waves with given zonal (k) and

nonzero meridional wavenumbers (l 6¼ 0) have frequen-

cies that remain below the frequency for l 5 0. The

spectral power for the nonlinear model is distributed

substantially differently than for the linear model. The

signals are essentially nondispersive for lower wave-

numbers for both models, whereas the energy at higher

wavenumbers remains centered near the same non-

dispersive slope for the nonlinear model but not the lin-

ear model. The zonal frequency–wavenumber spectrum

of the nonlinear model is very similar to that of the ob-

servations in Fig. 4, whereas the linear model fails to

explain the nondispersive structure observed.

It is noteworthy that small ‘‘spurs’’ of spectral power

extend a short distance along the dispersion relation for

both the model and the observations. In the case of the

observations, it is not clear from Fig. 4 whether this spur

of spectral variance is more consistent with either of the

modified Rossby wave theories than with the classical

theory. Distinguishing between these theories is not an

objective of this study, because the model considered here

is not capable of representing the processes of vertical

FIG. 2. SSH 13 yr into the eddy seeding experiment. Shown are (left) the evolved state using the linear equation

and (right) the evolved state using the nonlinear equation. Both experiments were seeded with the exact same

Gaussian eddies at the same times and locations. The domain shown is a subset of the entire modeled domain.

FIG. 3. Zonal frequency–wavenumber spectra for SSH of (left) the linear model and (right) the nonlinear model

from 110 yr of the eddy seeding experiment; 25 neighboring latitude bands were ensemble averaged. The black lines

are the maximum (meridional wavenumber l 5 0) Rossby wave zonal dispersion relation (curved) and its non-

dispersive limit (linear).
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shear or rough bottom topography that are the physical

basis for the modified theories. The spur of spectral power

along the dispersion relation in the case of the reduced-

gravity model considered here is investigated in more

detail from monopole experiments in section 4.

Figure 5 shows distributions of the deviation from due

west propagation of the eddies in the eddy seeding ex-

periments. The linear model shows no systematic pref-

erence for meridional deflection, matching the results of

purely westward propagation found for the isolated

Gaussian in Fig. 1. The spread of meridional deflection

angles is evidently attributable to randomness in the in-

terference patterns from the superposition of the waves in

the linear solution. In contrast, the eddies tracked in the

nonlinear model show distinct tendencies for poleward

and equatorward deflection for cyclonic and anticyclonic

eddies, respectively. This is consistent with the observa-

tions that show similarly opposing deflections of cyclones

and anticyclones. However, in the observations, the mean

deflection angle for combined cyclones and anticyclones

is rotated a small but significant amount equatorward

from due west (Chelton et al. 2011). This asymmetry

about due west in the observations cannot be explained

by quasigeostrophic theory because the meridional com-

ponent of Eq. (1) is antisymmetric with a change in height

polarity (h / 2h). The slight equatorward rotation of

the mean deflection angle from due west in the observa-

tions may be an indication of the effects of meridional

advection or the effects of vertical shear on the total po-

tential vorticity gradient vector from ambient currents

(Samelson 2010) that are not included in the zero mean

flow, reduced-gravity model considered here.

Figure 6 shows the distributions of the tracked eddy

speeds normalized by the long Rossby wave phase speed

cx 5 b0L2
R. The mean value of the distribution for the

linear model, m 5 0.54, falls far below the mean value of

the observations for the Northern Hemisphere, m 5

0.74. However, the mean value of the distribution from

nonlinear model, m 5 0.77, shows a significant increase

over the linear model that is comparable to the obser-

vations. The largest difference between the observations

and the nonlinear model is in the variability of the dis-

tributions. The failure of the nonlinear model to capture

the variability of the observations may be attributed to

the simplicity of the nonlinear model, which includes

only a single independent vertical mode and variations

in the Coriolis parameter as the only contribution to the

potential vorticity gradient; or, it could be an indication

of the importance of nongeostrophic effects that are not

included in the model.

The long-term coherence of the isolated eddies, the

wavenumber–frequency spectra from the eddy seeding

experiments, their meridional deflection, and their dis-

tribution of tracked speeds suggest that linearized qua-

sigeostrophic theory is not a viable theory to explain the

observed westward-propagating features. Nearly all of

the observed properties are well explained by nonlinear

quasigeostrophic theory confirming that the observed

signal represents eddies obeying nonlinear dynamics

rather than Rossby waves obeying linear dynamics.

3. Monopoles

a. The three states of evolution

The interest in eddies on a b plane has generated a long

history of analytical and numerical models attempting to

elucidate some of their basic properties, such as ampli-

tude decay and propagation speeds and directions. The

two-dimensional quasigeostrophic potential vorticity

equation [Eq. (1)] lacks many of the complexities asso-

ciated with multilayer quasigeostrophic or primitive

equation models yet remains sufficiently complex that the

FIG. 4. Zonal frequency–wavenumber spectra for SSH from the

merged Ocean Topography Experiment (TOPEX)/Poseidon–

European Remote Sensing Satellite (ERS) satellite altimetry data

along 248N in the western subtropical Pacific Ocean. The solid line

is computed from the radon transformation. The three dispersion

relations shown are from standard Rossby wave theory, the rough

bottom topography theory of Tailleux and McWilliams (2001),

and the vertical shear-modified theory of Killworth et al. (1997)

extended to the case of nonzero zonal wavenumber (Fu and

Chelton 2001), in order of increasing frequency along the left-hand

side of the plot.
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evolution properties of Gaussian initialized distur-

bances are still not completely understood. Previous

studies have typically recognized two distinct states in

the evolution of a quasigeostrophic eddy: an initiali-

zation period followed by what was assumed to be

a quasi-stable state (Sutyrin et al. 1994; Korotaev 1997;

Reznik et al. 2000). Here, we will argue that there are

actually three states: formation of the b gyre (initiali-

zation); an adjustment period (formerly believed to be

quasi stable); and a third quasi-stable, slowly decaying

state that has not previously been explored.

Typical amplitudes (5, 10, 15, and 20 cm) and radial

length scales (40, 60, 80, 100, and 120 km) were used to

initialize isolated Gaussians with parameters represen-

tative of latitude 248N in the eastern North Pacific.

These correspond to nondimensional amplitudes of 0.5,

1.0, 1.5, and 2.0 and nondimensional length scales of 0.85,

1.27, 1.69, 2.12, and 2.54. It is important to note that cy-

clonic eddies (negative amplitudes) can be safely omitted

from consideration because Eq. (1) is symmetric when

changing polarity, provided that the sign of y is flipped as

well. Formally, if s(x, y, t) is a solution to Eq. (1), then

~s(x, y, t) 5 2s(x, 2y, t) is also a solution of Eq. (1). Any

conclusions drawn here for anticyclonic eddies therefore

also apply to cyclonic eddies provided the terms equa-

torward and poleward are swapped.

For these Gaussian initializations, a quasi-stable west-

ward-propagating eddy generally emerges as the domi-

nant feature. When the model was initialized with non-

Gaussian solitary shapes, other solutions were more

likely to emerge (including eastward-propagating di-

poles), but the quasi-stable westward-propagating eddy

was still part of the solution, although sometimes with

very different amplitude and length scale than the ini-

tialization shape. These quasi-stable eddies are the focus

of this study, but we briefly consider the other two tran-

sient stages as well.

1) FORMATION OF THE b GYRE

The first component of an eddy’s evolution is the

formation of the b gyre, in which an initially axisym-

metric eddy evolves an azimuthal mode-one component

because of the b effect over a time scale (b0LR)21 ’

12 days (Fiorino and Elsberry 1989). The flow associated

FIG. 5. Meridional deflection of the (top) cyclonic and (bottom) anticyclonic eddies. (a) The linear model shows no preference for

equatorward or poleward deflection, whereas (b) the quasigeostrophic model shows cyclones have a poleward preference and anticyclones

an equatorward preference. (c) The satellite observations show a pattern similar to quasigeostrophic dynamics, but with the mean

propagation direction of the combined cyclonic and anticyclonic eddies rotated slightly equatorward.
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with the dipole structure of the gyre initially causes a

largely meridional deflection of the eddy, which then

eventually propagates more zonally. Analytical predictions

for the trajectory of an eddy have previously been found

to agree well with numerical simulations for time periods

less than (b0LR)21, after which the radiation of Rossby

waves strongly alters its evolution (Sutyrin and Flierl 1994;

Reznik and Dewar 1994).

This initialization period must be expected because

a Gaussian shape cannot be a stable solution for the

quasigeostrophic potential vorticity equation [Eq. (1)].

A radially symmetric shape like a Gaussian causes the

Jacobian to vanish, meaning that the advection of rela-

tive vorticity is trivial (advection is still present but

moves fluid parcels to locations of fluid parcels with

identical relative vorticity). Because the advective

nonlinearity is initially trivial, linear Rossby wave dis-

persion due to the b effect will necessarily cause the

initially Gaussian shape to become asymmetric as ex-

plored in Flierl (1977) (see Fig. 7). This asymmetry will

in turn induce nontrivial advection of relative vorticity

through the Jacobian term.

Here, we consider an explanation of the formation of

the b gyre valid for this short time scale initialization

period t , (b0LR)21. The initial disturbance is a positive

Gaussian and the resulting anticyclonic eddy can be

thought of as either the local sea surface maximum or

the local relative vorticity minimum. Recall that without

the dispersive and advective terms in Eq. (1) the initial

disturbance would propagate zonally with unaltered

shape at exactly the linear long-wave speed. The evo-

lution of the eddy can therefore be thought of as a de-

viation from perfectly zonal propagation by advection

and dispersion.

(i) Because the initial disturbance is radially symmet-

ric, the first time step is governed entirely by linear

dynamics. The disturbance maximum moves west-

ward; however, because of the dispersive relation-

ship between the group velocity and wavelength,

the signal associated with longer wavelengths will

travel farther westward, whereas the signal associ-

ated with shorter wavelengths will travel more

slowly westward (eastward for the very shortest

wavelengths). The net effect is a decrease in the

western slope and steepening of the eastern slope,

evidently because the shorter wavelengths, which

are required to describe steeper slopes, trail to the

east of the longest wavelengths, which are required

to describe shallower slopes.

(ii) As the gradient of the leading edge shallows and the

gradient of the trailing edge steepens, advection plays

a larger role (this is the formation of the b gyre). The

FIG. 6. Distributions of eddy speeds from the nonlinear model

normalized by the nondispersive Rossby wave phase speed: (top)–

(bottom) linear model, nonlinear model, altimeter observations.

The altimeter observations include eddies in the eastern sub-

tropical Pacific between 208 and 358N and between 1658 and 1108W.
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stronger equatorward flow on the east side of the

anticyclonic eddy considered here and weaker pole-

ward flow on the west side cause net equatorward

meridional advection of fluid at the eddy’s centroid

and therefore an equatorward deflection of the

anticyclonic eddy (McWilliams and Flierl 1979). Note

that this requires a height difference across the eddy,

consistent with the idea that the eddy formed from

the initial disturbance is best described by relative

vorticity contours rather than height contours, as

elucidated in more detail later. The initially equator-

ward deflection is particularly strong because the net

initial advection is exactly equatorward. The eddy

therefore initially translates to the southwest for this

Northern Hemisphere anticyclone.

(iii) After time periods of t ; (b0LR)21, an asym-

metric shape of the eddy forms to provide a

near advective–dispersive balance. This shape is

characteristic of both the adjustment period that

follows the b-gyre formation and the subsequent

long-term quasi-stable state. Dispersion moves

much of the signal to the region east of the eddy

maximum (as can be seen in the linear case of Fig. 1),

whereas advection moves fluid to the southwest-

ern region. These two effects do not completely

balance, with the difference being approximately

an order of magnitude less than their respective

individual values, and the net effect is to pull the

eddy to the southeast from otherwise due west-

ward propagation at the long-wave phase speed.

Linear dispersion is responsible for slowing the

westward propagation of the eddy, never quite reach-

ing the linear 4.7 cm s21 longwave speed (Flierl

1977), whereas the advection is responsible for

deflecting the anticyclonic eddy equatorward

(McWilliams and Flierl 1979).

FIG. 7. Contours (color shading) of height, relative vorticity, zonal-coordinate tracer, and fluid velocity for

a Gaussian initialized 15-cm-height, 80-km eddy on day 675 of its evolution. The e-fold contour (maximum height

divided by e) is shown in cyan. The instantaneous closed height contour in the comoving frame (red) and the contour

of zero relative vorticity (black) are also shown.
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2) ADJUSTMENT PERIOD

After time periods of t ; (b0LR)21, the eddy’s evolu-

tion is largely dictated by its energy loss due to the

excitation of Rossby waves (Flierl 1984). Figure 8 shows

changes in the decay rates of the length scale, amplitude,

and the zonal and meridional speed over the first 600 days

of the eddy evolution. There is a distinct adjustment

period over the first 200 days, t ; 20(b0LR)21, where the

changes are quite rapid. These values were obtained by

tracking the relative vorticity extremum and recording

the contour of zero relative vorticity, the local sea surface

maximum, and the sea surface height e-fold contour.

It was noted in Sutyrin et al. (1994) that at around

175 days (converted to the scales used here) a tripole

emerges in the potential vorticity field. The rapid changes

in eddy properties during the end of the adjustment

period (Fig. 8) may reflect processes associated with the

emergence of this tripole structure. Perhaps not coin-

cidentally, it is also around 200 days that analytical

predictions of the eddy path show qualitatively poor

agreement with numerical results (Sutyrin et al. 1994;

Korotaev 1997; Reznik et al. 2000).

For most of the cases considered here, the transition

from initialized Gaussian to quasi-stable, slowly decaying

eddy followed the pattern shown in Fig. 8. However,

some of the large length scale and small-amplitude Gauss-

ians (which have smaller Umax) took much longer and

sometimes never even reached the quasi-stable state,

instead dispersing with more wave-like characteristics

due to the weak nonlinearity of these eddies. This is

consistent with the results in Sutyrin et al. (1994), where

it was found that, given their chosen length scale, there

exists a critical intensity below which the tripole in the

potential vorticity field failed to emerge. The length of

the adjustment period depends on the height and length

of the initial Gaussian, but for most cases the quasi-stable

state is generally reached at approximately 100–200 days,

t ; 15(b0LR)21.

3) QUASI-STABLE STATE

The quasi-stable eddy state for a Northern Hemi-

sphere anticyclone always has the characteristic shape

shown in Fig. 7 that is necessary for maintaining the near

advective–dispersive balance. The height field is char-

acterized by a steep south-southeastern edge, whereas

the north-northwestern edge is particularly shallow. The

resulting geostrophic velocity field consists of strong flow

in the south-southeastern region and weak flow along

the north-northwestern edge. The asymmetry in the

height field is easily seen from the cyan e-fold contour.

FIG. 8. Time evolution of four properties for a Gaussian eddy initialized with 15-cm-amplitude and 80-km-length

scale: (top left) length scale decay rate, (top right) height decay rate, (bottom right) meridional speed, and (bottom

left) zonal speed. The b-gyre formation (initialization) occurs for times less than 11 days and is therefore not well

described in this figure. All four properties show the adjustment period of roughly 200 days before the eddy settles

into the quasi-stable state. Note that the speed plots are shown with a different vertical axis and the meridional speed

is nearly an order of magnitude slower than the zonal speed.
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In the comoving frame, the height field (equivalent to

the streamfunction or pressure field) becomes far more

symmetric. The resulting largest instantaneous closed

contour in the comoving frame is shown in red in Fig. 7;

if the flow were steady in that frame, the fluid in this

contour would be trapped and carried along with the

eddy. For the region to truly trap fluid, the eddy’s am-

plitude, length scale, shape, and translation speeds

would all have to remain constant. Figure 8 shows that

this is not the case.

The relative vorticity zero contour, where =2h 5 0,

shown in black in Fig. 7, remains nearly symmetric

throughout the eddy lifetime, unlike the e-fold contour

which was found to have far greater variability. For this

reason it was found that the automated eddy tracking

algorithm used in this monopole study was far more re-

liable when tracking the relative vorticity extremum and

the contour of zero relative vorticity than tracking the sea

surface height extremum and e-folding contour. Fol-

lowing Korotaev and Fedotov (1994), the inner core of

an anticyclonic eddy is defined here as the region con-

taining negative relative vorticity, whereas the outer ring

is the surrounding region of positive relative vorticity.

For the initial Gaussian disturbance, the e-fold con-

tour of sea surface height and contour of zero relative

vorticity are identical, but, as can be seen in Fig. 7, this is

not the case for the quasi-stable state. The height dif-

ference between the higher northwestern corner of the

contour of zero relative vorticity and the lower south-

eastern corner require a net fluid transport to the south-

west, which is responsible for the equatorward meridional

deflection of this Northern Hemisphere anticyclonic

eddy. Note that if we defined the eddy by contours of

constant sea surface height there could be no net merid-

ional transport across the eddy because the net transport

is
Ð b

ah
x

dx 5 h(b) 2 h(a), the difference of which is zero.

b. Meridional and zonal propagation speeds

The zonal speeds of the isolated eddies in the quasi-

stable regime were found to be dependent on the eddy

amplitude such that larger-amplitude eddies propa-

gate significantly faster than smaller-amplitude eddies,

as shown in Fig. 9. This is qualitatively consistent with

the observed eddies, for which the eddies with largest
1/3 amplitudes propagate about 20% faster than the

eddies with the 1/3 smallest amplitudes Chelton et al.

(2011) (see Figs. 19 and 20 and the related discussion in

section 4). Figure 9 also shows mild dependence on

eddy length scale with smaller eddies propagating

slightly more slowly. In general then, eddies larger in

both amplitude and length scale propagate faster than

eddies smaller in amplitude and length scale. The least

squares fit to the inverse amplitude was found to be

cx(A) 5 5.3A21 2 4.4 cm s21. This is suggestive of a

lower bound asymptote at 24.4 cm s21, which is close

to the linear long-wave speed of 4.7 cm s21.

FIG. 9. (top) Eddy speed vs amplitude. The amplitude, speed, and length scale are plotted for each day of the eddy’s

evolution starting at day 200 until day 730 or until the eddy can no longer be tracked. In total, 5139 points are plotted.

The black lines are the linear (inverse amplitude) best fit line to these points, cx(A) 5 5.5A21 2 4.4 cm s21 and

cy(A) 5 23.0A21 2 0.19 cm s21, whereas the red lines are from Eqs. (3) and (4). Points are colored with the eddy

length scale (in km), suggesting a weak speed dependence on length scale. The dashed gray lines are the maximum

group velocities of Rossby waves in the zonal and meridional directions. (bottom) The deviation of the eddy speed

from the predicted relationship normalized by the variability, suggesting weak speed dependence on length scale.

The results were filtered to only include isolated eddies in the quasi-stable state.
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That the zonal speed of the eddies is slower than the

linear long-wave speed is consistent with previous ex-

periments. The linear model considered in Flierl (1977)

suggests that this should be the case at least for linearized

Gaussians. In the case of the nonlinear model considered

here, this is also consistent with the notion of ‘‘wave drag’’

caused by the excitation of Rossby waves forcing a slower

propagation speed (Korotaev and Fedotov 1994).

The meridional speed of the eddy was similarly found

to depend significantly on the amplitude of the eddy,

as shown in Fig. 9; the meridional speed decreases with

increasing amplitude. The least squares fit to the in-

verse amplitude was found to be cy(A) 5 23.0A21 2

0.19 cm s21. Just as with the zonal propagation speed,

there appears to be a weak dependence on the length

scale of the eddy with meridional speed decreasing with

increasing amplitude. However, unlike the zonal propa-

gation speed, Fig. 9 shows the smaller-amplitude eddies

exceed the maximum meridional Rossby wave group

velocity. To obtain reliable meridional speeds, data points

with amplitudes less than 2.0 cm were discarded because

it was found that zonally propagating Rossby waves left

over from the initialization and adjustment periods were

interacting by catching up with the eddies (because their

zonal propagation speed decreases as they evolve) and

dramatically changing the meridional deflection.

Assuming that cx(A) asymptotes to the linear long-

wave speed of 4.7 cm s21 and then dividing the least

squares fit regression coefficient (5.3) by this value re-

veals an amplitude scale of approximately 1.1 cm. This

scale is suggestive of N
QG

5 D(b
0
L2

R)/(
ffiffiffiffiffiffiffi
gD
p

), the height

scale that arises when all coefficients of Eq. (1) are

forced to unity, which results in NQG 5 1.3 cm (in

contrast to choosing a preferred scale such as N0 5

10 cm as we have done). Given the observation that the

linear long-wave speed of b0L2
R appears to be a lower

bound asymptote, this suggests that the propagation

speed cx is dependent on the eddy amplitude A by

cx(A) 5 b0L2
R

�
NQG

jAj 2 1

�
. (3)

The corresponding meridional propagation would take

the form

cy(A) 5 2
b0L2

R

2

NQG

A
. (4)

These predicted dependencies are plotted in red in Fig. 9

and appear to most closely approximate the speed

dependencies of the eddies with the longest length

scales. To test the hypothesis that Eqs. (3) and (4) cor-

rectly describe the propagation speed dependency of

quasigeostrophic eddies on eddy amplitude, the same

experiment was run at latitude 358, where the linear

long-wave speed is 2.2 cm s21 and NQG 5 0.60 cm. The

results are shown in Fig. 10 and are consistent with the

hypothesis.

The small-amplitude limits of Eqs. (3) and (4) result in

seemingly nonsensical values. However, it is important

to note that these results are for coherent, identified

eddy features for which the length scale is also de-

creasing. The simultaneous decrease in amplitude and

length scale keeps the eddies nonlinear by maintaining

relatively large fluid velocities. Because the length scales

are also small in this limit, it is not clear exactly what

limiting speed should be expected.

FIG. 10. Propagation speed of eddy vs eddy amplitude. As in Fig. 9, but at latitude 358. The zonal and meridional inverse

amplitude best fits lines are cx(A) 5 1.0A21 2 2.0 cm s21 and cy(A) 5 20.71A21 2 0.032 cm s21, respectively.
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c. Trapped fluid conservation properties

If the fluid rotational speeds U in the eddy exceed its

translation speed c, transforming coordinates into the

comoving frame will result in closed streamlines within

the eddy. The outermost closed streamline bounds the

region where no fluid can escape, if the flow in the

translating frame is steady. However, these quasi-stable

eddies have slowly decaying amplitude and length scales

(Fig. 8). The region of trapped fluid and the amplitude

both decrease, meaning that the volume of trapped fluid

actually decreases with time.

Conservation of potential vorticity for a fluid parcel

has contributions from three terms, planetary vorticity,

relative vorticity, and vortex stretching,

d

dt

b0y

|{z}
planetary vorticity

1
g

f0

=2h

|fflfflffl{zfflfflffl}
relative vorticity

2
f0

D
h

|ffl{zffl}
vortex stretching

2
64

3
7550:

(5)

Figure 11 shows the relative contributions from each of

the three terms in potential vorticity conservation for

FIG. 11. Area-mean potential vorticity and energy within the entire trapped fluid region; the eddy core; and

the eddy ring of an 80-km, 15-cm Gaussian initialized eddy. The trends are the same for the other quasi-stable

eddies.
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a Gaussian initialized eddy with 15-cm amplitude and

80-km length scale. In Fig. 11a, the values are found by

integrating the terms over the entire instantaneous re-

gion of trapped fluid at each time and then dividing by its

area. The trends for the planetary vorticity, vortex

stretching, and total potential vorticity are the same for

all other eddies that reach the quasi-stable state.

Even though the region of trapped fluid changes in

time, it is clear how the planetary and vortex stretching

terms should change for the average fluid parcel in the

region. Because the eddy has a southward component of

propagation on a b plane (y decreases), the contribution

from planetary vorticity decreases in time (by de-

creases). The decay of the eddy’s amplitude (h de-

creases) causes an increase in contribution from vortex

stretching (2h increases). That the contribution from

relative vorticity remains nearly constant throughout

the eddy lifetime means that the eddy is maintaining

a ratio between the negative relative vorticity from the

eddy core and the positive relative vorticity in the outer

ring (see Fig. 7, top right).

Energy can be divided into two terms, the kinetic

energy

g2

f 2
0

(h2
x 1h2

y)

and the potential energy h2. Figure 11b shows decreasing

contributions of both kinetic and potential energy as the

eddy evolves. The initial ratios of kinetic energy to po-

tential energy depend on the initial conditions. For ex-

ample, the 80-km, 15-cm eddy considered in Fig. 11b is

initially dominated by potential energy, whereas a

40-km, 10-cm eddy is initially dominated by kinetic en-

ergy. Despite the partition differences for the two eddies,

both display similar evolution characteristics, with the av-

erage energy per fluid parcel decreasing over time. This

trend is similar to that described by Korotaev and Fedotov

(1994) and Korotaev (1997), who suggest that this may be

due to the radiation of energy by Rossby waves.

To investigate the advective properties of the eddies,

both a passive tracer and floats were added to the model.

The passive tracer W(x, y, t) is a scalar field with no

sources or sinks initialized with the value of its initial x

position and then allowed to evolve with the equation

›W

›t
1 u

›W

›x
1 y

›W

›y
5 0:

In addition to the passive tracer, floats were initialized

with positions at each grid cell. The float positions are

solved by estimating the velocity field at each time step

using bilinear interpolation. The fates of the tracer field

and floats over the lifetime of a westward-propagating

monopole are investigated separately for the eddy core

and the eddy ring in the following subsections.

1) EDDY CORE

We consider the eddy core first (recall that this is the

region whose outer boundary is defined as the zero rel-

ative vorticity contour where =2h 5 0). Fluid must be

entrained, exactly trapped, lost, or some combination of

entrainment and loss.

Can a new parcel of fluid be entrained in the eddy

core? Recall that the eddy core for an anticyclonic eddy

is a region of positive sea surface height and negative

relative vorticity and consider what it would take for

a fluid parcel with no height perturbation and no relative

vorticity to enter the eddy core. To join the eddy core,

the fluid parcel must increase its height and therefore

decrease its vortex stretching contribution to the total

potential vorticity. To balance this decrease in vortex

stretching, the particle must come from 35 km north of

the eddy for every 1 cm increase in height. In addition to

the decrease in potential vorticity from vortex stretch-

ing, the particle must also decrease its relative vorticity

from zero to become negative. If we consider the eddy at

the instant shown in Fig. 7 where the contour of zero

relative vorticity is at roughly 4 cm, this would mean

that, for a parcel of fluid to even reach the boundary of

the core, it must be displaced from its original rest lo-

cation 140 km north of the eddy. However, the eddy’s

radial length scale is much less than 140 km and, because

of the effect of the b gyre, the eddy is propagating

southwestward. We must therefore conclude that a new

fluid parcel will not be entrained in the eddy core. Ex-

actly this effect can be seen in the x-tracer panel in Fig. 7

where on day 675 the eddy core still only contains fluid

initially trapped within a region centered at (x, y) 5

(0, 0) when the eddy was formed.

Do fluid parcels on the eddy core boundary remain on

the boundary? For particles to remain on the =2h 5

0 contour, the fluid flow must be tangential to the contour,

and there can be no normal flow. To conserve potential

vorticity [Eq. (5)], these particles must therefore obey

b0

dy

dt
5

f0

D

dh

dt
(6)

throughout their lifetimes. During the time it takes

a parcel of fluid to circulate once around the core, the

condition is quite reasonable to meet. As computed

before, this only requires a particle to decrease its height

by 1 cm for every 35 km of meridional displacement.

Using Fig. 7, we can estimate the north–south extent of

the zero contour of relative vorticity to be 100 km, and
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so our condition would require that the northern edge of

the contour of zero relative vorticity be roughly 3 cm

higher than the southern edge. Figure 7 shows that this is

indeed the approximate difference. We can also use Eq.

(6) with the parameters from this problem to compute

a condition relating the meridional propagation to the

amplitude decay, and we find that

9:0
s

yr
� dy

dt
5

dh

dt
: (7)

This suggests that that meridional speed shown in Fig. 8

of approximately 0.5 cm s21 must be offset by a height

decay rate of approximately 4.5 cm yr21 if a parcel is to

remain on the zero contour. The observed height decay

rate falls short of meeting this condition and instead has

a decay rate closer to 3 cm yr21. Although these are

estimates, the values computed for Fig. 8 are from the

eddy maximum, and our condition in Eq. (7) is for the

=2h 5 0 contour, they are qualitatively correct. Such

a particle therefore does not conserve potential vorticity

and the assumption that particles remain on the contour

of zero relative vorticity must be incorrect. To conserve

potential vorticity [Eq. (5)] and account for this differ-

ence, this implies that particles must be increasing their

relative vorticity and crossing the boundary of zero

relative vorticity. The eddy core cannot entrain fluid and

because the condition in Eq. (7) is not exactly met then it

does not trap the fluid that defines its boundary, so the

eddy core must be shedding fluid (equivalently, the

boundary of the core is shrinking).

We can validate our entrainment conclusion with the

model by considering the floats within the eddy core on

day 675 and asking where they were on day zero. This

can be seen in Fig. 12 where a histogram of the initial x

and y positions of the fluid shows the fluid in the eddy

core consists entirely of a subset of approximately the

inner 50 km of the original fluid trapped in the core

during the initialization of the 80-km eddy. The top

panel of Fig. 13 shows these original float locations as

red dots on top of the sea surface height for day 675,

and the bottom panel shows the results of allowing

a passive tracer to advect with the flow. The individual

red dots are not discernible, because they are all clus-

tered tightly within the core of the eddy at its initial

center location of (x, y) 5 (0, 0). The fluid was given

a meridionally uniform color for each location in x on

day zero according to the rainbow palette at the bottom

of the figure.

Having established that no new fluid is entrained

within the propagating eddy core defined by the con-

tour of zero relative vorticity, we can more easily in-

terpret Fig. 11c. Because the total potential vorticity

becomes more negative on average, this implies that

the eddy core is shedding fluid with higher potential

vorticity.

Figure 14 shows the history of a float initially located in

the eddy core, which remains in the eddy core for all

730 days of the model run. The oscillations in the indi-

vidual contributions of the potential vorticity occur as the

float circulates around the eddy core. The parcel of fluid

tracked by the float finds that the total potential vorticity

remained conserved, but the surface height adjusted

to compensate for the loss of planetary vorticity from

the equatorward displacement of the eddy, whereas the

relative vorticity changed very little. The potential

vorticity for the fluid parcel is within 0.1% of its initial

value after 730 days. This is excellent confirmation that

the numerical scheme is accurate because individual

contributions to the potential vorticity vary by well

over 50%.

2) EDDY RING

The eddy ring consists of fluid with positive relative

vorticity, although with magnitude much smaller than

the eddy core. The same possibilities for trapped fluid

FIG. 12. Histograms of (top) the initial x position and (bottom)

the initial y position of the fluid on day 675 in the core of an 80-km,

15-cm Gaussian initialized eddy. At this time, the eddy extremum is

located at x 5 22247 km and y 5 2330 km. Thus, the core contains

only fluid from its starting point more than 2000 km away. An

animation of the passive tracer field is included in the online sup-

plemental material (available at the Journals Online Web site:

http://dx.doi.org/10.1175/2011JPO4601.s1).
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exist as with the core: fluid is either entrained, exactly

trapped, lost, or some combination of entrainment and

loss.

At the very least, the eddy ring will be collecting fluid

shed from the shrinking boundary of the eddy core. In

addition, however, the eddy ring will also entrain new

surrounding fluid. An increase in height (and therefore

a compensated increase in relative vorticity) is exactly

what a fluid parcel requires to join the eddy ring. This

can be seen from the histograms of the original loca-

tions of floats found in the ring on day 675, shown in

Fig. 15, where it is clear that the eddy ring has collected

(and also therefore released) fluid throughout its life-

time. These original float locations are shown in the top

panel of Fig. 13 as blue dots on top of the sea surface

height on day 675.

The average potential vorticity composition within

the eddy ring over time for the 80-km, 15-cm eddy is

shown in Fig. 11e. The contribution from planetary

vorticity decreases and the vortex stretching contribu-

tion increases; again, both of these are obvious. The

relative vorticity remains flat or mildly increases for all

eddies. The average potential vorticity trend always

decreases. This is because the ring is shedding fluid with

higher potential vorticity and acquiring new fluid with

lower potential vorticity, as we can see from the tracer in

Fig. 13 and the histograms in Fig. 15.

Figure 16 shows the potential vorticity composition for

a float that began in the eddy core, crossed to the eddy

ring (all while circulating around the eddy center causing

the oscillations) and was eventually ejected from the

eddy. Notice that the potential vorticity for this float does

not remain perfectly constant. Although most floats

throughout the domain do conserve potential vorticity

well, we find that floats crossing the relative vorticity zero

contour often undergo rapid changes in potential vorticity

while crossing the boundary. After examining a number

of individual floats, we believe that this is an artifact of the

strong gradients of u and y that are poorly resolved with

bilinear interpolation, which also typically coincide with

regions of strong potential vorticity gradients.

Although the linear model is generally associated with

the assumption that fluid parcel advection is negligible,

the Lagrangian motion implied by the geostrophic ve-

locity field can still be computed ex post facto. The

resulting motion is equivalent to the Stokes drift resulting

from the interaction of two or more Rossby waves with

the same frequency (not shown here). This can be seen in

Fig. 17, which shows the same tracer fluid experiment seen

in the bottom panel of Fig. 13 but using linear dynamics

FIG. 13. Location of fluid advected on day 675. (top) SSH with the instantaneous trapped fluid contour (red) and relative vorticity zero

contour (black). Blue circles show the day zero location of the floats in the eddy ring, whereas red circles show the location of floats in the

eddy core. (bottom) A passive tracer equal to the initial (day 0) value of the zonal coordinate.
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(when b21 5 0). The resulting fluid transports are still

valid provided that the advection of relative vorticity is

small compared to the other terms in the potential vor-

ticity Eq. (5), even if fluid parcels are advected at a finite

distance. However, because the dynamics substantially

change with the inclusion of the advection of relative

vorticity, as seen in Fig. 1, we know that this condition

is violated and the advection of relative vorticity is not

negligible. Even with this inconsistent assumption, al-

though fluid is transported over 1000 km, it still pales in

comparison to the distance and efficiency with which fluid

is transported by the coherent eddy in Fig. 13.

4. Discussion

Although it may seem surprising that the quasi-stable

state of isolated nonlinear eddies identified here has not

previously been identified, early numerical solutions of

isolated quasigeostrophic eddies, such as McWilliams

and Flierl (1979), have typically been restricted to times

roughly as long the adjustment period identified here,

likely because of computational resource limitations.

The numerical study of Sutyrin et al. (1994) and Lam

and Dritschel (2001) did consider times longer than the

adjustment period but not significantly longer and for

a smaller range of scales. Only by considering times after

the adjustment period and discarding eddies that failed

to reach the quasi-stable state do we find clear re-

lationships between eddy amplitude and propagation

speed, as in Fig. 9. The empirical Eqs. (3) and (4) appear

to describe this relationship accurately; an analytical

derivation of these equations would likely provide ad-

ditional insight into the nature of the quasi-stable state.

Previous studies have attempted to formulate ana-

lytical estimates of the westward propagation speed of

quasigeostrophic vortices by determining the speed

of the center of mass (McWilliams and Flierl 1979;

Cushman-Roisin et al. 1990). However, the center of

mass is determined by integration over the entire domain

(rather than a region localized around the eddy like the

contour of zero relative vorticity used here) and does not

appear to correlate with the speed of the tracked eddies.

The approaches found in Korotaev (1997) and Nycander

(2001) use the loss of energy through Rossby wave ra-

diation to estimate the propagation speeds and may

apply during the adjustment period but, based on com-

parisons to our numerical results, do not appear to apply

to the quasi-stable state. The results of the analytical

study Reznik et al. (2000) are only valid for time periods

extending into the adjustment period where the eddy

height decay rate is at its strongest and may explain

why their results significantly underestimate the eddy’s

lifetime.

Although the isolated eddies in section 3 and the basin

of eddies in section 2b are both governed by the same

equation, Eq. (1), it is not necessarily true that the

properties of one experiment applies to the other. First,

is the shape of nonlinear zonal frequency–wavenumber

FIG. 14. Contributions to the total potential vorticity for a float

initially at x 5 29 km and y 5 26 km. The float remains inside the

core of the eddy for all 730 days. On day 730, the float was located

at x 5 22400 km and y 5 2389 km.

FIG. 15. As in Fig. 12, but histograms of (a) the initial x position

and (b) the initial y position of the fluid in the ring on day 675.

Thus, the ring contains a mixture of fluid from throughout its

lifetime.
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spectra in Fig. 3 explained primarily by eddy–eddy in-

teraction, or is it already represented in the monopole

experiment? Second, does the eddy speed dependence

on amplitude and length scale as shown in Fig. 9 also

exist for the eddy seeding experiment?

In the first experiment, the zonal frequency–wavenumber

spectra in Fig. 3 were repeated for isolated monopoles

and are shown in Fig. 18. The spectra were averaged over

multiple y slices to capture the power from the whole

domain. The spectra of the isolated eddy and eddy basin

evolved with linear dynamics appear nearly identical,

and the spectra of the nonlinear experiments are also

quite similar, but with two noticeable differences. First,

the spectrum of the isolated eddy experiment shows a

somewhat more distinct spur of power following the

linear Rossby wave zonal dispersion relation than is

found in the spectrum from the eddy seeding experi-

ment. This is explained by the observation that the

Rossby waves shed from the initial disturbance is still

largely obeying linear dynamics in the monopole ex-

periment, whereas in the seeding experiment there is

relatively little free space between eddies (and there-

fore less room for features that obey linear dynamics).

Second, the spectrum from the nonlinear eddy seed-

ing experiment shows relatively less power at higher

FIG. 16. Contributions to the total potential vorticity for a float

initially at x 5 60 km and y 5 26 km. The float begins in the eddy

core, crosses to the ring, and is eventually lost by the eddy. On day

730, the float was located at x 5 21113 km and y 5 2227 km.

FIG. 17. Passive tracer on day 675 advected by an initially

Gaussian disturbance evolved with linear dynamics. The contours

of zero SSH are shown in black. As in Fig. 13 (bottom), but with

linear dynamics.

FIG. 18. Zonal frequency–wavenumber spectra for SSH of (left) the linear model and (right) the nonlinear model

from the 730-day evolution of an initially Gaussian SSH of amplitude 15 cm and length scale 80 km. The black lines

are the maximum (meridional wavenumber l 5 0) Rossby wave zonal dispersion relation (curved) and its non-

dispersive limit (linear).
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wavenumbers than in the monopole experiment. This

stronger shift in concentration of power from the larger

wavenumbers to the smaller wavenumbers likely arises

from the eddy–eddy interaction introduced in the eddy

seeding experiment. This is consistent with the up-scale

energy cascade of quasigeostrophic turbulence (Vallis

2006).

In the second experiment, it is shown that the eddy

speed dependence on amplitude and length scale shown

for isolated eddies in Fig. 9 also exists in the eddy seed

experiment as well as for the altimeter observations

(Chelton et al. 2011). Figure 19 shows the tracked eddies

from the nonlinear eddy seeding experiment separated

by amplitude and length scale. Just as for the isolated

monopoles, propagation speed is strongly dependent on

eddy amplitude and weakly dependent on eddy length

scale. Figure 20 shows that this relationship also holds

for the altimeter observations.

5. Conclusions

The long-term coherence of eddies observed and

tracked by satellite altimetry more closely matches the

evolution of isolated eddies in the nonlinear than in

the linear model. Further, the spectral properties of the

eddies observed by satellite altimetry are in excellent

FIG. 19. Distributions of eddy speeds from the nonlinear model normalized by the nondisperisve Rossby wave

phase speed separated into the eddies with (a) smallest 1/3 amplitudes; (b) largest 1/3 amplitudes; (c) smallest 1/3 length

scales; and (d) largest 1/3 length scales.
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agreement with the spectrum from the basin-scale eddy

seeding experiment for the nonlinear quasigeostrophic

model. Taken together, we find this to be convincing

evidence that the signals observed in the high-resolution

satellite observations (Chelton et al. 2007, 2011) repre-

sent eddies obeying nonlinear dynamics.

In an effort to understand the characteristics of qua-

sigeostrophic eddies, we conducted a study of the long-

term evolution of isolated eddies. Gaussian initialized

eddies have three distinct regimes in their evolution, of

which only two have previously been characterized. What

was once believed to be a quasi-stable state turns out

to be better characterized as an adjustment period, and

only at lifetimes of approximately 15(b0LR)21 does a

truly quasi-stable state emerge.

The quasi-stable state is characterized by zonal and

meridional propagation speeds strongly dependent on the

inverse amplitude of the eddy, with larger amplitudes

tending toward the long-wave limit of linear Rossby waves.

All propagation speeds for the monopole experiments are

slower than this limit, and this is thought to be an effect of

the wave drag caused by the excitation of Rossby waves.

This same speed dependence was found in the eddy

seeding experiment as well as the enhanced eddy resolving

FIG. 20. As in Fig. 19, but for the altimeter observations of eddies in the eastern subtropical Pacific between 208 and

358N and between 1658 and 1108W.
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observations (Chelton et al. 2007, 2011), which found zonal

propagation speeds to be strongly dependent on amplitude

and weakly dependent on length scale. However, the

nonlinear model has a smaller variability in the distribu-

tion of eddy speeds compared with the observations, and

we believe that this is a limitation of quasigeostrophic

theory or the neglect of the effects of variations in the

background mean flow on the potential vorticity gradient.

The quasigeostrophic eddies were shown to transport

a substantial amount of fluid over long distances. At any

point during an eddy’s lifetime, 100% of the fluid in the

core is from the initialization location, where the core is

defined as the region interior to the zero contour of the

relative vorticity. This is in contrast to the instantaneously

defined trapped fluid region, determined by transforming

into coordinates comoving with the eddy, which does not

well describe the boundary of the retained fluid. In this

sense, the core of the eddy is a ‘‘perfect’’ transporter of

fluid and carries the same parcels of fluid for thousands of

kilometers during its slow decay. The ring of fluid with

opposite signed relative vorticity fluid around the eddy is

approximately bounded by the zero contour of relative

vorticity and the region of trapped fluid but transports

fluid in a very different manner. The ring entrains and

sheds fluid throughout its lifetime, moving some parcels

of fluid hundreds of kilometers and others thousands of

kilometers.

In light of our conclusion that the satellite observa-

tions are not Rossby waves, these transport properties

have significant implications. Linear Rossby waves

cannot transport fluid nearly as effectively, and there-

fore most energy transferred is in the form of kinetic and

potential energy. The nonlinear eddies, in contrast, are

capable of transporting relatively large quantities of

fluid and therefore can carry energy in the form of heat,

in addition to the kinetic and potential energy carried by

wave fluctuations, as well as other material properties and

dissolved materials that may have biological importance.

A number of issues regarding the individual proper-

ties of quasigeostrophic eddies still need to be resolved.

Although an empirical relationship between the prop-

agation speed and the eddy amplitude was found, a sat-

isfactory analytical theory for this relationship has not

yet been developed. Further, we believe that the ideas of

radiative Rossby wave energy loss should be applicable

outside the adjustment period explored in Korotaev

(1997) and Nycander (2001). Analytical formulations

for the relationships between eddy amplitude decay

rates and propagation speed may be possible.

Acknowledgments. Much thanks to Michael G. Schlax

for eddy tracking in the seeding experiments and for

compiling the associated figures. This research was

supported by the National Science Foundation, Award

0621134, and by the National Aeronautics and Space

Administration, Grant NNX08AR37G.

REFERENCES

Anderson, D., and A. Gill, 1975: Spin-up of a stratified ocean, with

applications to upwelling. Deep-Sea Res., 22, 583–596.

Canuto, C., 2006: Spectral Methods: Fundamentals in Single Do-

mains. Springer, 563 pp.

Chelton, D. B., and M. Schlax, 1996: Global observations of oce-

anic Rossby waves. Science, 272, 234–238.

——, R. A. deSzoeke, M. G. Schlax, K. E. Naggar, and N. Siwertz,

1998: Geographical variability of the first baroclinic Rossby

radius of deformation. J. Phys. Oceanogr., 28, 433–460.

——, M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007:

Global observations of large oceanic eddies. Geophys. Res.

Lett., 34, L15606, doi:10.1029/2007GL030812.

——, ——, and ——, 2011: Global observations of nonlinear me-

soscale eddies. Prog. Oceanogr., doi:10.1016/j.pocean.2011.01.002,

in press.

Cushman-Roisin, B., B. Tang, and E. Chassignet, 1990: West-

ward motion of mesoscale eddies. J. Phys. Oceanogr., 20,

758–768.

Durran, D., 1991: The third-order Adams–Bashforth method: An

attractive alternative to leapfrog time differencing. Mon. Wea.

Rev., 119, 702–720.

Fiorino, M., and R. Elsberry, 1989: Some aspects of vortex struc-

ture related to tropical cyclone motion. J. Atmos. Sci., 46,
975–990.

Flierl, G., 1977: The application of linear quasigeostrophic dy-

namics to Gulf Stream rings. J. Phys. Oceanogr., 7, 365–379.

——, 1984: Rossby wave radiation from a strongly nonlinear warm

eddy. J. Phys. Oceanogr., 14, 47–58.

——, V. Larichev, J. McWilliams, and G. Reznik, 1980: The dy-

namics of baroclinic and barotropic solitary eddies. Dyn. At-

mos. Oceans, 5, 1–41.

Fu, L., and D. Chelton, 2001: Large-scale ocean circulation. Satellite

Altimetry and the Earth Sciences: A Handbook of Techniques

and Applications, L. Fu and A. Cazenave, Eds., International

Geophysics Series, Vol. 69, Academic Press, 133–169.

Gelb, A., and J. Gleeson, 2001: Spectral viscosity for shallow water

equations in spherical geometry. Mon. Wea. Rev., 129, 2346–2360.

Karamanos, G., and G. Karniadakis, 2000: A spectral vanishing

viscosity method for large-eddy simulations. J. Comput. Phys.,

163, 22–50.

Killworth, P., and J. Blundell, 2005: The dispersion relation for

planetary waves in the presence of mean flow and topography.

Part II: Two-dimensional examples and global results. J. Phys.

Oceanogr., 35, 2110–2133.

——, D. Chelton, and R. de Szoeke, 1997: The speed of observed

and theoretical long extratropical planetary waves. J. Phys.

Oceanogr., 27, 1946–1966.

Korotaev, G., 1997: Radiating vortices in geophysical fluid dy-

namics. Surv. Geophys., 18, 567–619.

——, and A. Fedotov, 1994: Dynamics of an isolated barotropic

vortex on a beta-plane. J. Fluid Mech., 264, 277–301.

Lam, J. S.-L., and D. Dritschel, 2001: On the beta-drift of an ini-

tially circular vortex patch. J. Fluid Mech., 436, 107–129.

Maltrud, M., and G. Vallis, 1993: Energy and enstrophy transfer in

numerical simulations of two-dimensional turbulence. Phys.

Fluids, 5A, 1760–1775.

1554 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 41



McWilliams, J., and G. Flierl, 1979: On the evolution of isolated,

nonlinear vortices. J. Phys. Oceanogr., 9, 1155–1182.

Morrow, R., F. Birol, D. Griffin, and J. Sudre, 2004: Divergent

pathways of cyclonic and anti-cyclonic ocean eddies. Geophys.

Res. Lett., 31, L24311, doi:10.1029/2004GL020974.

Nycander, J., 2001: Drift velocity of radiating quasigeostrophic

vortices. J. Phys. Oceanogr., 31, 2178–2185.

Pasquetti, R., 2005: High-order LES modeling of turbulent in-

compressible flow. C. R. Mec., 333, 39–49.

Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Spring-

Verlag, 710 pp.

Reznik, G., and W. Dewar, 1994: An analytical theory of distrib-

uted axisymmetric barotropic vortices on the b-plane. J. Fluid

Mech., 269, 301–301.

——, R. Grimshaw, and E. Benilov, 2000: On the long-term evo-

lution of an intense localized divergent vortex on the beta-

plane. J. Fluid Mech., 422, 249–280.

Samelson, R. M., 2010: An effective-b vector for linear planetary

waves on a weak mean flow. Ocean Modell., 32 (3–4), 170–

174.

Sutyrin, G., and G. Flierl, 1994: Intense vortex motion on the beta

plane: Development of the beta gyres. J. Atmos. Sci., 51, 773–

790.

——, J. Hesthaven, J. Lynov, and J. Rasmussen, 1994: Dynamical

properties of vortical structures on the beta-plane. J. Fluid

Mech., 268, 103–131.

Tadmor, E., 1989: Convergence of spectral methods for nonlinear

conservation laws. SIAM J. Numer. Anal., 26, 30–44.

Tailleux, R., and J. McWilliams, 2001: The effect of bottom pres-

sure decoupling on the speed of extratropical, baroclinic

Rossby waves. J. Phys. Oceanogr., 31, 1461–1476.

Vallis, G., 2006: Atmospheric and Oceanic Fluid Dynamics: Fun-

damentals and Large-Scale Circulation. Cambridge University

Press, 745 pp.

AUGUST 2011 E A R L Y E T A L . 1555


