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Preface to the fifth edition

Since the publication of the fourth edition of this book in 2000 the use of statis-
tics and chemometrics methods in the teaching and practice of the analytical sci-
ences has continued to expand rapidly. Once again this new edition seeks to
reflect these developments while retaining the basic aims of previous editions,
which adopted a pragmatic and as far as possible non-mathematical approach to
statistical calculations. We have also continued to include in the text examples
solved with the aid of Microsoft Excel® and the familiar statistics package
Minitab®, both widely available to teachers, students and researchers, and both in
a welcome process of continuing development. Extras and macros for both pro-
grams are available through the Internet, in many cases without charge. The
graphic and other facilities offered by these programs are further exploited in the
Instructors’ Manual, which is again available to accompany this edition, and still
further updates and examples for teachers and students are provided through the
associated website. As in the last edition the solutions to the exercises given in
this book are only outline ones – full solutions are given in the Instructors’
Manual.

The main areas where new material has appeared in this edition are in
Chapters 4–8. Chapter 4 includes an expanded treatment of control charts and
additional material on uncertainty and on proficiency testing schemes. In
Chapter 5 there is more material on the use of regression lines for method com-
parisons. Chapter 6 reflects the continuing growth of importance of robust
methods, and Chapter 7 provides extra sections on factorial designs and on the
simplex optimization method. The use of multivariate methods is now very com-
mon, so Chapter 8 includes an extended discussion of the principal components
and partial least squares regression methods, and more on neural networks. In the
earlier chapters on basic statistics the main changes are the greater emphasis on
the Grubbs outlier test and a move of the section of Kolmogorov methods to
Chapter 3. The bibliographies for each chapter have been updated, with rather
more annotations than in the past, and with more emphasis on publications from
standards organizations.

As always we are very grateful to colleagues and correspondents who have
pointed out minor errors (we remain responsible for any that are still there) and
made other constructive suggestions. Once again we thank the Royal Society
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x Preface to the fifth edition

of Chemistry for permission to use examples taken from papers published in
The Analyst, one of the world’s leading journals in this field. And we thank Simon
Lake and his colleagues at Pearson Education for their patience, enthusiasm and pro-
fessional expertise in a perfect mix.

James N. Miller
Jane C. Miller
October 2004
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Preface to the first edition

To add yet another volume to the already numerous texts on statistics might seem
to be an unwarranted exercise, yet the fact remains that many highly competent sci-
entists are woefully ignorant of even the most elementary statistical methods. It is
even more astonishing that analytical chemists, who practise one of the most quan-
titative of all sciences, are no more immune than others to this dangerous, but
entirely curable, affliction. It is hoped, therefore, that this book will benefit analyt-
ical scientists who wish to design and conduct their experiments properly, and
extract as much information from the results as they legitimately can. It is intended
to be of value to the rapidly growing number of students specializing in analytical
chemistry, and to those who use analytical methods routinely in everyday labora-
tory work.

There are two further and related reasons that have encouraged us to write this
book. One is the enormous impact of microelectronics, in the form of microcom-
puters and hand-held calculators, on statistics: these devices have brought lengthy
or difficult statistical procedures within the reach of all practising scientists. The
second is the rapid development of new ‘chemometric’ procedures, including
pattern recognition, optimization, numerical filter techniques, simulations and
so on, all of them made practicable by improved computing facilities. The last
chapter of this book attempts to give the reader at least a flavour of the potential
of some of these newer statistical methods. We have not, however, included any
computer programs in the book – partly because of the difficulties of presenting
programs that would run on all the popular types of microcomputer, and partly
because there is a substantial range of suitable and commercially available books
and software.

The availability of this tremendous computing power naturally makes it all the
more important that the scientist applies statistical methods rationally and cor-
rectly. To limit the length of the book, and to emphasize its practical bias, we have
made no attempt to describe in detail the theoretical background of the statistical
tests described. But we have tried to make it clear to the practising analyst which
tests are appropriate to the types of problem likely to be encountered in the labora-
tory. There are worked examples in the text, and exercises for the reader at the end
of each chapter. Many of these are based on the data provided by research papers
published in The Analyst. We are deeply grateful to Mr. Phil Weston, the Editor, for
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xii Preface to the first edition

allowing us thus to make use of his distinguished journal. We also thank our col-
leagues, friends and family for their forbearance during the preparation of the book;
the sources of the statistical tables, individually acknowledged in the appendices;
the Series Editor, Dr. Bob Chalmers; and our publishers for their efficient coopera-
tion and advice.

J. C. Miller
J. N. Miller
April 1984
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Glossary of symbols

a – intercept of regression line
b – gradient of regression line
c – number of columns in two-way ANOVA
C – correction term in two-way ANOVA
C – used in Cochran’s text for homogeneity of variance
F – the ratio of two variances
G – used in Grubbs’ test for outliers
h – number of samples in one-way ANOVA
µ – arithmetic mean of a population
M – number of minus signs in Wald–Wolfowitz runs test
n – sample size
N – number of plus signs in Wald–Wolfowitz runs test
N – total number of measurements in two-way ANOVA
ν – number of degrees of freedom
P(r) – probability of r
Q – Dixon’s Q, used to test for outliers
r – product–moment correlation coefficient
r – number of rows in two-way ANOVA
r – number of smallest and largest observations omitted in trimmed

mean calculations
R2 – coefficient of determination
R′2 – adjusted coefficient of determination
rs – Spearman rank correlation coefficient
s – standard deviation of a sample
sy/x – standard deviation of y-residuals
sb – standard deviation of slope of regression line
sa – standard deviation of intercept of regression line

– standard deviation of y-residuals of weighted regression line
– standard deviation of x-value estimated using regression line

sB – standard deviation of blank
– standard deviation of extrapolated x-value
– standard deviation of x-value estimated by using weighted regres-

sion line
σ – standard deviation of a population

sx0w

sxE

sx0

s(y/x)w
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xvi Glossary of symbols

– measurement variance
– sampling variance

t – quantity used in the calculation of confidence limits and in
significance testing of mean (see Section 2.4)

T – grand total in ANOVA
T1 and T2 – test statistics used in the Wilcoxon rank sum test
w – range
wi – weight given to point on regression line

– arithmetic mean of a sample
x0 – x-value estimated by using regression line
x0 – outlier value of x
x∼i – pseudo-value in robust statistics
xE – extrapolated x-value

– arithmetic mean of weighted x-values
X2 – quantity used to test for goodness-of-fit

– y-values predicted by regression line
– arithmetic mean of weighted y-values

yB – signal from blank
z – standard normal variable

yw

ŷ

xw

x

σ 2
1

σ 2
0
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.

1 Introduction

1.1 Analytical problems

Practising analytical chemists face both qualitative and quantitative problems. As
an example of the former, the presence of boron in distilled water is very damag-
ing in the manufacture of microelectronic components – ‘Does this distilled water
sample contain any boron?’. Again, the comparison of soil samples is a common
problem in forensic science – ‘Could these two soil samples have come from the
same site?’. In other cases the problems posed are quantitative. ‘How much albu-
min is there in this sample of blood serum?’, ‘How much lead in this sample of tap-
water?’, ‘This steel sample contains small quantities of chromium, tungsten and
manganese – how much of each?’: these are typical examples of single-component
or multiple-component quantitative analyses.

Modern analytical chemistry is overwhelmingly a quantitative science. In many
cases a quantitative answer will be much more valuable than a qualitative one. It
may be useful for an analyst to claim to have detected some boron in a distilled
water sample, but it is much more useful to be able to say how much boron is pre-
sent. The person who requested the analysis could, armed with this quantitative
answer, judge whether or not the level of boron was of concern or consider how it
might be reduced. But if it was known only that some boron was present it would be
hard to judge the significance of the result. In other cases, it is only a quantitative
result that has any value at all. For example, almost all samples of (human) blood
serum contain albumin; the only question is, how much?

Even where a qualitative answer is required, quantitative methods are used to
obtain it. In reality, an analyst would never simply report ‘I can/cannot detect boron
in this water sample’. A quantitative method capable of detecting boron at, say, lev-
els of 1 µg ml−1 would be used. If the test gave a negative result, it would then be
described in the form ‘This sample contains less than 1 µg ml−1 boron’. If the test
gave a positive result the sample would be reported to contain at least 1 µg ml−1

boron (with other information too – see below). Quantitative approaches might also
be used to compare two soil samples. For example, they might be subjected to a par-
ticle size analysis, in which the proportions of the soil particles falling within a num-
ber, say 10, of particle-size ranges are determined. Each sample would then be
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2 1: Introduction

. .

characterized by these 10 pieces of data, which could then be used (see Chapter 8)
to provide a quantitative assessment of their similarity.

1.2 Errors in quantitative analysis

Since quantitative studies play a dominant role in any analytical laboratory, it must
be accepted that the errors that occur in such studies are of supreme importance.
Our guiding principle will be that no quantitative results are of any value unless they
are accompanied by some estimate of the errors inherent in them. This principle naturally
applies not only to analytical chemistry but to any field of study in which numer-
ical experimental results are obtained. It is illustrated by the following simple exam-
ples, which also foreshadow the types of statistical problem we shall meet and solve
in subsequent chapters.

Suppose a chemist synthesizes an analytical reagent that is believed to be entirely
new. The compound is studied using a spectrometric method and gives a value of
104 (normally, most of our results will be cited in carefully chosen units, but in this
hypothetical example purely arbitrary units can be used). From suitable reference
books, the chemist finds that no compound previously discovered has yielded a
value of more than 100 when studied by the same method under the same experi-
mental conditions. The question thus naturally arises, has our chemist really dis-
covered a new compound? The answer to this question evidently lies in the degree
of reliance that we can place on that experimental value of 104. What errors are
associated with it? If further study indicates that the result is correct to within 2
(arbitrary) units, i.e. the true value probably lies in the range 104 ± 2, then a new
material has probably been discovered. If, however, investigations show that the
error may amount to 10 units (i.e. 104 ± 10), then it is quite likely that the true
value is actually less than 100, in which case a new discovery is far from certain. So
a knowledge of the experimental errors is crucial (in this case as in every other) to
the proper interpretation of the results. In statistical terms this example would
involve the comparison of the experimental result (104) with a reference value
(100): this topic is studied in detail in Chapter 3.

Analysts commonly perform several replicate determinations in the course of a
single experiment. (The value and significance of such replicates are discussed in
detail in the next chapter.) Suppose an analyst performs a titrimetric experiment
four times and obtains values of 24.69, 24.73, 24.77 and 25.39 ml. (Note that titra-
tion values are reported to the nearest 0.01 ml; this point is also discussed further in
Chapter 2.) All four values are different, because of the variations inherent in
the measurements, and the fourth value (25.39 ml) is substantially different from
the other three. So can this fourth value be safely rejected, so that (for example) the
mean titre is reported as 24.73 ml, the average of the other three readings? In stat-
istical terms, is the value 25.39 ml an ‘outlier’? The important topic of outlier rejec-
tion is discussed in detail in Chapters 3 and 6.

Another frequent problem involves the comparison of two (or more) sets of
results. Suppose that an analyst measures the vanadium content of a steel sample by
two separate methods. With the first method the average value obtained is 1.04%,
with an estimated error of 0.07%, and with the second method, the average value is
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Types of error 3

. .

0.95% with an error of 0.04%. Several questions arise from these results. Are the two
average values significantly different, or are they indistinguishable within the limits
of the experimental errors? Are the errors in the two methods significantly different?
Which of the mean values is closer to the truth? Again, Chapter 3 discusses these
and related questions.

Many instrumental analyses are based on graphical methods. Instead of making
repeated measurements on the same sample, we perform a series of measurements
on a small group of standards, which have known analyte concentrations covering
a considerable range. We can then set up a calibration curve that is used to estimate
by interpolation the concentrations of test samples studied by the same procedure.
In practice all the measurements (those utilizing the standards and those on the test
samples) will be subject to errors. So it is necessary to assess the errors involved in
drawing the calibration graph; to estimate the error in the concentration of a single
sample determined by using the graph; and to estimate the limit of detection of the
method, i.e. the smallest quantity of analyte that can be detected with a particular
degree of confidence. These procedures are described in Chapter 5.

These examples represent only a fraction of the possible problems arising from
the occurrence of experimental errors in quantitative analysis. But such problems
have to be tackled if the quantitative data are to have any real meaning. Clearly,
therefore, we must study the various types of error in more detail.

1.3 Types of error

Experimental scientists make a fundamental distinction between three types of
error. These are known as gross, random, and systematic errors. Gross errors are
readily described: they may be defined as errors that are so serious that there is no
real alternative to abandoning the experiment and making a completely fresh start.
Examples would include a complete instrument breakdown, accidentally dropping
or discarding a crucial sample, or discovering during the course of the experiment
that a supposedly pure reagent was in fact badly contaminated. Such errors (which
occur occasionally even in the best-regulated laboratories!) are normally very easily
recognized. In our discussion we thus have only to distinguish carefully between
random and systematic errors.

We can best make this distinction by careful study of a real experimental situ-
ation. Four students (A–D) each perform an analysis in which exactly 10.00 ml of
exactly 0.1 M sodium hydroxide is titrated with exactly 0.1 M hydrochloric acid. Each
student performs five replicate titrations, with the results shown in Table 1.1.

Table 1.1 Random and systematic errors

Student Results (ml) Comment

A 10.08 10.11 10.09 10.10 10.12 Precise, biased
B 9.88 10.14 10.02 9.80 10.21 Imprecise, unbiased
C 10.19 9.79 9.69 10.05 9.78 Imprecise, biased
D 10.04 9.98 10.02 9.97 10.04 Precise, unbiased
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4 1: Introduction

. .

The results obtained by student A have two characteristics. First, they are all very
close to each other; all the results lie between 10.08 and 10.12 ml. In everyday terms
we would say that the results are highly repeatable. The second feature is that they
are all too high: in this experiment (somewhat unusually) we know that the correct
result should be exactly 10.00 ml. Evidently two entirely separate types of error have
occurred within this student’s experiment. First, there are random errors – these
cause replicate results to differ from one another, so that the individual results fall on both
sides of the average value (10.10 ml in this case). Random errors affect the precision,
or repeatability, of an experiment. In the case of student A it is clear that the ran-
dom errors are small, so we say that the results are precise. In addition, however,
there are systematic errors – these cause all the results to be in error in the same
sense (in this case they are all too high). The total systematic error (note that in a
given experiment there may be several sources of systematic error, some positive and
others negative: see Chapter 2) is called the bias of the measurement. The random
and systematic errors here are readily distinguishable by inspection of the results,
and may also have quite distinct causes in terms of experimental technique and
equipment (see Section 1.4). We can extend these principles to the data obtained by
student B, which are in direct contrast to those of student A. The average of B’s five
results (10.01 ml) is very close to the true value, so there is no evidence of bias, but
the spread of the results is very large, indicating poor precision, i.e. substantial ran-
dom errors. Comparison of these results with those obtained by student A shows
clearly that random and systematic errors can occur independently of one another.
This conclusion is reinforced by the data of students C and D. Student C’s work has
poor precision (range 9.69–10.19 ml) and the average result (9.90 ml) is (negatively)
biased. Student D has achieved both precise (range 9.97–10.04 ml) and unbiased
(average 10.01 ml) results. The distinction between random and systematic errors is
summarized in Table 1.2, and in Figure 1.1 as a series of dot-plots. This simple graph-
ical method of displaying data, in which individual results are plotted as dots on a
linear scale, is frequently used in exploratory data analysis (EDA, also called initial
data analysis, IDA: see Chapters 3 and 6).

In most analytical experiments the most important question is – how far is the
result from the true value of the concentration or amount that we are trying to
measure? This is expressed as the accuracy of the experiment. Accuracy is defined
by the International Standards Organization (ISO) as ‘the closeness of agreement

Table 1.2 Random and systematic errors

Random errors Systematic errors

Affect precision – repeatability or Produce bias – an overall deviation of a 
reproducibility result from the true value even when 

random errors are very small
Cause replicate results to fall on either side Cause all results to be affected in one sense 

of a mean value only – all too high or all too low
Can be estimated using replicate Cannot be detected simply by using 

measurements replicate measurements
Can be minimized by good technique Can be corrected, e.g. by using standard 

but not eliminated methods and materials
Caused by both humans and equipment Caused by both humans and equipment
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. .

Another important area of terminology is the difference between reproducibility
and repeatability. We can illustrate this by an extension of our previous experiment.
In the normal way student A (for example) would do the five replicate titrations in
rapid succession; very probably the whole exercise would not take more than an hour
or so. The same set of solutions and the same glassware would be used throughout,
the same preparation of indicator would be added to each titration flask, and the
temperature, humidity and other laboratory conditions would remain much the
same. In such circumstances the precision measured would be the within-run preci-
sion: this is called the repeatability. Suppose, however, that for some reason the

In summary, precision describes random error, bias describes systematic error,
and the accuracy, i.e. closeness to the true value of a single measurement or a
mean value, incorporates both types of error.

between a test result and the accepted reference value’ of the analyte. Under this
definition the accuracy of a single result may be affected by both random and sys-
tematic errors. The accuracy of an average result also has contributions from both
error sources, but even if systematic errors are absent, the average result will prob-
ably not equal the reference value exactly, because of the occurrence of random
errors (see Chapters 2 and 3). The results obtained by student B exemplify these
principles. Four of this student’s five measurements show significant inaccuracy,
i.e. are well removed from the true value of 10.00. But the average of B’s results
(10.01) is very accurate, so it seems that the inaccuracy of the individual results is
largely due to random errors and not to systematic ones. By contrast, all of student
A’s individual results, and the resulting average, are inaccurate: given the good pre-
cision of this student’s work, it seems certain that these inaccuracies are due to sys-
tematic errors. It should be noted that, contrary to the implications of many
dictionaries, accuracy and precision have entirely different meanings in the study
of experimental errors.

Figure 1.1 Bias and precision – dot-plots of the data in Table 1.1.

a

b

c

d

9.70 10.00 10.30

Correct 
result

Titrant volume, ml
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One further lesson may be learned from the titration experiment. It is easy to
appreciate that the data obtained by student C are unacceptable, and that those of
student D are the most acceptable. Sometimes, however, it may happen that two
methods are available for a particular analysis, one of which is believed to be precise
but biased, and the other imprecise but without bias. In other words we may have
to choose between the types of results obtained by students A and B respectively.
Which type of result is preferable? It is impossible to give a dogmatic answer to this
question, because in practice the choice of analytical method will often be based on
other factors such as cost, ease of automation, speed of analysis, and so on. But it is
important to realize that a method which is substantially free from systematic errors
may still, if it is very imprecise, give an average value that is (by chance) a long way
from the correct value. On the other hand, a method that is precise but biased (e.g.
student A) can be converted into one that is both precise and unbiased (e.g. student
D) if the systematic errors can be discovered and hence removed. Random errors can
never be eliminated, though by careful technique we can minimize them, and by
making repeated measurements we can measure them and evaluate their signifi-
cance. Systematic errors can in many cases be removed by careful checks on our
experimental technique and equipment. This crucial distinction between the two
major types of error is further explored in the next section.

When an analytical laboratory is supplied with a sample and requested to deter-
mine the concentrations of one of its constituents, it will doubtless estimate, or per-
haps know from experience, the extent of the major random and systematic errors
occurring. The customer supplying the sample may well want this information sum-
marized in a single statement, giving the range within which the true concentration is
reasonably likely to lie. This range, which should be given with a probability (i.e. ‘it is
95% probable that the concentration lies between . . . and . . .’), is called the uncer-
tainty of the measurement. Uncertainty estimates are now very widely used in ana-
lytical chemistry, and are discussed in more detail in Chapter 4.

1.4 Random and systematic errors in titrimetric analysis

The example of the students’ titrimetric experiments showed clearly that random
and systematic errors can occur independently of one another, and thus presum-
ably arise at different stages of the experiment. A complete titrimetric analysis in

• Repeatability describes the precision of within-run replicates

• Reproducibility describes the precision of between-run replicates

• The reproducibility of a method is normally expected to be poorer (i.e. with
larger random errors) than its repeatability

titrations were performed by different staff on five different occasions in different
laboratories, using different pieces of glassware and different batches of indicator. It
would not be surprising to find a greater spread of the results in this case. This set of
data would reflect the between-run precision of the method, i.e. its reproducibility.
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aqueous solution with a colorimetric indicator can be regarded as having the fol-
lowing steps.

1 Making up a standard solution of one of the reactants. This involves (a) weighing
a weighing bottle or similar vessel containing some solid material, (b) transferring
the solid material to a standard flask and weighing the bottle again to obtain by
subtraction the weight of solid transferred (weighing by difference), and (c) filling
the flask up to the mark with water.

2 Transferring an aliquot of the standard material to a titration flask with the aid
of a pipette. This involves both filling and draining the pipette properly.

3 Titrating the liquid in the flask with a solution of the other reactant, added from
a burette. This involves (a) filling the burette and allowing the liquid in it to drain
until the meniscus is at a constant level, (b) adding a few drops of indicator solu-
tion to the titration flask, (c) reading the initial burette volume, (d) adding liquid
to the titration flask from the burette a little at a time until, using a colour
change, the end-point is judged to have been reached, and (e) measuring the final
level of liquid in the burette.

Even an elementary analysis of this type thus involves some 10 separate steps, the
last seven of which are normally repeated several times, giving replicate results. In
principle, we should examine each step to evaluate the random and systematic
errors that might occur. In practice, it is simpler to examine separately those stages
which utilize weighings (steps 1(a) and 1(b)), and the remaining stages involving the
use of volumetric equipment. (It is not intended to give detailed descriptions of the
experimental techniques used in the various stages. Similarly, methods for calibrat-
ing weights, glassware, etc., will not be given.) Important amongst the contributions
to the errors are the tolerances of the weights used in the gravimetric steps, and of
the volumetric glassware. Standard specifications for these tolerances are issued by
such bodies as the British Standards Institute (BSI) and the American Society for
Testing and Materials (ASTM). The tolerance of a top-quality 100-g weight can be as
low as ±0.25 mg, although for a weight used in routine work the tolerance would be
up to four times as large. Similarly the tolerance for a grade A 250-ml standard flask
is ±0.12 ml: grade B glassware generally has tolerances twice as large as grade A glass-
ware. If a weight or a piece of glassware is within the tolerance limits, but not of
exactly the correct weight or volume, a systematic error will arise. Thus, if the stan-
dard flask actually has a volume of 249.95 ml, this error will be reflected in the
results of all the experiments based on the use of that flask. Repetition of the experi-
ment will not reveal the error: in each replicate the volume will be assumed to be
250.00 ml when in fact it is less than this. If, however, the results of an experiment
using this flask are compared with the results of several other experiments (e.g. in
other laboratories) done with other flasks, then if all the flasks have slightly differ-
ent volumes they will contribute to the random variation, i.e. the reproducibility, of
the results.

Weighing procedures are normally associated with very small random errors. In
routine laboratory work a ‘four-place’ balance is commonly used, and the random
error involved should not be greater than ca. 0.0002 g (the next chapter describes in
detail the statistical terms used to express random errors). If the quantity being
weighed is normally ca. 1 g or more, it is evident that the random error, expressed
as a percentage of the weight involved, is not more than 0.02%. A good standard
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material for volumetric analysis should (amongst other characteristics) have as high
a formula weight as possible, in order to minimize these random weighing errors
when a solution of a given molarity is being made up. In some analyses ‘microbal-
ances’ are used to weigh quantities of a few milligrams – but the errors involved are
likely to be only a few micrograms.

Systematic errors in weighings can be appreciable, and have a number of well-
established sources. These include adsorption of moisture on the surface of the
weighing vessel; failure to allow heated vessels to cool to the same temperature as
the balance before weighing; corroded or dust-contaminated weights; and the buoy-
ancy effect of the atmosphere, which acts to a different extent on objects of differ-
ent density. For the most accurate work, weights must be calibrated against
standards furnished by statutory bodies and standards authorities (see above). This
calibration can be very accurate indeed, e.g. to ±0.01 mg for weights in the range
1–10 g. Some simple experimental precautions can be taken to minimize these
systematic weighing errors. Weighing by difference (see above) cancels systematic
errors arising from (for example) the moisture and other contaminants on the
surface of the bottle (see also Section 2.12). If such precautions are taken, the errors
in the weighing steps will be small, and it is probable that in most volumetric exper-
iments weighing errors will be negligible compared with the errors arising from the
use of volumetric equipment. Indeed, gravimetric methods are generally used for
the calibration of an item of volumetric glassware, by weighing (in standard condi-
tions) the water that it contains or delivers, and standards for top-quality calibra-
tion experiments (Chapter 5) are made up by using weighings rather than volume
measurements.

In volumetric steps random errors arise in the use of volumetric glassware. In fill-
ing a 250-ml standard flask to the mark, the error (i.e. the distance between
the meniscus and the mark) might be about ±0.03 cm in a flask neck of diameter ca.
1.5 cm. This corresponds to a volume error of only about 0.05 ml – only 0.02% of
the total volume of the flask. The error in reading a burette graduated in 0.1 ml divi-
sions is ca. 0.01–0.02 ml. Each titration involves two such readings (the errors of
which are not simply additive – see Chapter 2). If the titration volume is ca. 25 ml,
the percentage error is again very small. The experimental conditions should be
arranged so that the volume of titrant is not too small (say not less than 10 ml),
otherwise the errors will become appreciable. (This precaution is analogous to
choosing a standard compound of high formula weight to minimize the weighing
error.) Even though a volumetric analysis involves several steps, in each of which a
piece of volumetric glassware is used, it is apparent that the random errors should
be small if the experiments are performed with care. In practice a good volumetric
analysis should have a relative standard deviation (see Chapter 2) of not more than
about 0.1%. Until recently such precision was not normally attainable in instru-
mental analysis methods, and it is still not common.

Volumetric procedures incorporate several important sources of systematic error.
Chief amongst these are the drainage errors in the use of volumetric glassware, cali-
bration errors in the glassware, and ‘indicator errors’. Perhaps the commonest error
in routine volumetric analysis is to fail to allow enough time for a pipette to drain
properly, or a meniscus level in a burette to stabilize. Pipette drainage errors have a
systematic as well as a random effect: the volume delivered is invariably less than it
should be. The temperature at which an experiment is performed has two effects.
Volumetric equipment is conventionally calibrated at 20°C, but the temperature in
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an analytical laboratory may easily be several degrees different from this, and many
experiments, for example in biochemical analysis, are carried out in ‘cold rooms’ at
ca. 4°C. The temperature affects both the volume of the glassware and the density
of liquids.

Indicator errors can be quite substantial – perhaps larger than the random errors
in a typical titrimetric analysis. For example, in the titration of 0.1 M hydrochloric
acid with 0.1 M sodium hydroxide, we expect the end-point to correspond to a pH
of 7. In practice, however, we estimate this end-point by the use of an indicator such
as methyl orange. Separate experiments show that this substance changes colour
over the pH range ca. 3–4. If, therefore, the titration is performed by adding alkali
to acid, the indicator will yield an apparent end-point when the pH is ca. 3.5, i.e.
just before the true end-point. The systematic error involved here is likely to be as
much as 0.2%. Conversely, if the titration is performed by adding acid to alkali, the
end-point indicated by the methyl orange will actually be a little beyond the true
end-point. In either case the error can be evaluated and corrected by performing a
blank experiment, i.e. by determining how much alkali or acid is required to pro-
duce the indicator colour change in the absence of the acid (alkali).

In any analytical procedure, classical or instrumental, it should be possible to
consider and estimate the sources of random and systematic error arising at each
separate stage of the experiment, as outlined above for titrimetric methods. It is very
desirable for the analyst to do this, in order to avoid major sources of error by care-
ful experimental design (see Sections 1.5 and 1.6). It is worth noting, however, that
titrimetric analyses are rather unusual in that they involve no single step having an
error that is far greater than the errors in the other steps. In many analyses the over-
all error is in practice dominated by the error in a single step: this point is further
discussed in the next chapter.

1.5 Handling systematic errors

Much of the remainder of this book will deal with the evaluation of random errors,
which can be studied by a wide range of statistical methods. In many cases we shall
assume for convenience that systematic errors are absent (though methods which
test for the occurrence of systematic errors will be described). But first we must dis-
cuss systematic errors in more detail – how they arise, and how they may be coun-
tered. The titration example above shows that systematic errors cause the mean
value of a set of replicate measurements to deviate from the true value. It follows
that (a) in contrast to random errors, systematic errors cannot be revealed merely by
making repeated measurements, and that (b) unless the true result of the analysis is
known in advance – an unlikely situation! – very large systematic errors might occur,
but go entirely undetected unless suitable precautions are taken. In other words, it
is all too easy to overlook substantial sources of systematic error. A few examples will
clarify both the possible problems and their solutions.

The levels of transition metals in biological samples such as blood serum are
frequently important. Many determinations have been made of the levels of
(for example) chromium in serum – with startling results. Different workers, all
studying pooled serum samples from healthy subjects, have obtained chromium

SCA_C01.qxd  3/29/05  3:49 PM  Page 9



10 1: Introduction

. .

concentrations varying from <1 to ca. 200 ng ml−1. In general the lower results
have been obtained more recently, and it has gradually become apparent that the
earlier, higher values were due at least in part to contamination of the samples by
chromium from stainless-steel syringes, tube caps, and so on. The determination
of traces of chromium, for example by atomic-absorption spectrometry, is in prin-
ciple relatively straightforward, and no doubt each group of workers achieved
results which seemed satisfactory in terms of precision, but in a number of cases
the large systematic error introduced by the contamination was entirely over-
looked. Similarly, the normal levels of iron in sea-water are now known to be in
the parts per billion (ng ml−1) range, but until relatively recently the concentra-
tion was thought to be much higher, perhaps tens of µg ml−1. This misconception
arose from the practice of sampling and analysing sea-water in ship-borne envi-
ronments containing high ambient iron levels. Methodological systematic errors
of this kind are extremely common.

Another class of systematic error that occurs widely arises when false assumptions
are made about the accuracy of an analytical instrument. A monochromator in a
spectrometer may gradually go out of adjustment, so that errors of several nano-
metres in wavelength settings arise, yet many photometric analyses are undertaken
without appropriate checks being made. Very simple devices such as volumetric
glassware, stopwatches, pH-meters and thermometers can all show substantial sys-
tematic errors, but many laboratory workers regularly use these instruments as
though they are without bias. Moreover, the increasing availability of instruments
controlled by microprocessors or microcomputers has reduced to a minimum the
number of operations and the level of skill required of their operators. In these cir-
cumstances the temptation to regard the instruments’ results as beyond reproach is
overwhelming, yet such instruments (unless they are ‘intelligent’ enough to be self-
calibrating – see Section 1.7) are still subject to systematic errors.

Systematic errors arise not only from procedures or apparatus; they can also arise
from human bias. Some chemists suffer from astigmatism or colour-blindness (the
latter is more common amongst men than women) which might introduce errors
into their readings of instruments and other observations. Many authors have
reported various types of number bias, for example a tendency to favour even over
odd numbers, or 0 and 5 over other digits, in the reporting of results. It is thus
apparent that systematic errors of several kinds are a constant, and often hidden,
risk for the analyst, so the most careful steps to minimize them must be considered.

Several different approaches to this problem are available, and any or all of them
should be considered in each analytical procedure. The first precautions should be
taken before any experimental work is begun. The analyst should consider carefully
each stage of the experiment to be performed, the apparatus to be used and the sam-
pling and analytical procedures to be adopted. At this earliest stage the likely sources
of systematic error, such as the instrument functions that need calibrating, the steps
of the analytical procedure where errors are most likely to occur, and the checks that
can be made during the analysis, must be identified. Foresight of this kind can be
immensely valuable (similar advance attention should be given to the sources of
random error and is normally well worth the time invested. For example, only a
little forethought should have revealed the possibility of contamination in the
chromium determinations described above).

The second line of defence against systematic errors lies in the design of
the experiment at every stage. We have already seen (Section 1.4) that weighing by
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difference can remove some systematic gravimetric errors: these can be assumed to
occur to the same extent in both weighings, so the subtraction process eliminates
them. A further example of thoughtful experimental planning is provided by the
spectrometer wavelength problem described above. If the concentration of a sample
of a single material is to be determined by absorption spectrometry, two procedures
are possible. In the first, the sample is studied in a 1-cm path-length spectrometer
cell at a single wavelength, say 400 nm, and the concentration of the test compon-
ent is determined from the well-known equation A = εbc (where A, ε, c and b are
respectively the measured absorbance, the accepted reference value of the molar
absorptivity (units l mole−1 cm−1) of the test component, the molar concentration of
this analyte, and the path-length (cm) of the spectrometer cell). Several systematic
errors can arise here. The wavelength might, as already discussed, be (say) 405 nm
rather than 400 nm, thus rendering the reference value of ε inappropriate; this ref-
erence value might in any case be wrong; the absorbance scale of the spectrometer
might exhibit a systematic error; and the path-length of the cell might not be
exactly 1 cm. Alternatively, the analyst might use the calibration graph approach
outlined in Section 1.2 and discussed in detail in Chapter 5. In this case the value of
ε is not required, and the errors due to wavelength shifts, absorbance errors and
path-length inaccuracies should cancel out, as they occur equally in the calibration
and test experiments. Provided that the conditions are indeed equivalent for the test
and calibration samples (e.g. the same cell is used and the wavelength and
absorbance scales do not alter during the experiment), all the major sources of sys-
tematic error are in principle eliminated.

A formidable protection against systematic errors is the use of standard reference
materials and methods. Before the experiment is started, each piece of apparatus is
calibrated by an appropriate procedure. We have seen that volumetric equipment
can be calibrated by the use of gravimetric methods. Similarly, spectrometer wave-
length scales can be calibrated with the aid of standard light-sources which have
narrow emission lines at well-established wavelengths, and spectrometer absorbance
scales can be calibrated with standard solid or liquid filters. In analogous fashion,
most pieces of equipment can be calibrated so that their systematic errors are known
in advance. The importance of this area of chemistry (and other experimental sci-
ences) is reflected in the extensive work of bodies such as the National Physical
Laboratory and LGC (Laboratory of the Government Chemist) (in the UK), the
National Institute for Science and Technology (NIST) (in the USA) and similar organ-
izations elsewhere. Whole volumes have been written on the standardization of
particular types of equipment, and a number of commercial organizations specialize
in the sale of certified reference materials (CRMs).

A further check on the occurrence of systematic errors in a method is to compare
the results with those obtained from a different method. If two unrelated methods
are used to perform one analysis, and if they consistently yield results showing only
random differences, it is a reasonable presumption that no significant systematic
errors are present. For this approach to be valid, each step of the two experiments has
to be independent. Thus in the case of serum chromium determinations, it would
not be sufficient to replace the atomic-absorption spectrometry step by a colorimet-
ric method or by plasma spectrometry. The systematic errors would only be revealed
by altering the sampling methods also, e.g. by minimizing or eliminating the use of
stainless-steel equipment. A further important point is that comparisons must be
made over the whole of the concentration range for which an analytical procedure is
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to be used. For example, the bromocresol green dye-binding method for the deter-
mination of albumin in serum correlates well with alternative methods
(e.g. immunological methods) at normal or high levels of albumin, but when the
albumin levels are abnormally low (these are inevitably the cases of most clinical
interest!) the agreement between the two methods is poor, the dye-binding method
giving consistently (and erroneously) higher albumin concentrations. The statistical
approaches used in method comparisons are described in detail in Chapters 3 and 5.

The prevalence of systematic errors in everyday analytical work is well illustrated by
the results of collaborative trials. If an able and experienced analyst finds 10 ng ml−1

of a drug in a urine sample, it is natural to suppose that other analysts would obtain
closely similar results for the same sample, any differences being due to random errors
only. Unfortunately, this is far from true in practice. Many collaborative studies involv-
ing different laboratories, when aliquots of a single sample are examined by the same
experimental procedures and types of instrument, show variations in the results much
greater than those expected from random errors. The inescapable conclusion is that in
many laboratories substantial systematic errors, both positive and negative, are going
undetected or uncorrected. The obvious importance of this situation, which has seri-
ous implications for all analytical scientists, has encouraged many studies of the
methodology of collaborative trials and proficiency testing schemes, and of the
statistical evaluation of their results. Such schemes have recently led to dramatic
improvements in the quality of analytical results in many fields. These topics are dis-
cussed in more detail in Chapter 4.

Tackling systematic errors:

• Foresight: identifying problem areas before starting experiment
• Careful experimental design, e.g. use of calibration methods
• Checking instrument performance
• Use of standard reference materials and other standards
• Comparison with other methods for the same analyte(s)
• Participation in proficiency testing schemes

1.6 Planning and design of experiments

Many chemists regard statistical tests as methods to be used only to assess the results
of completed experiments. While this is indeed a crucial area of application of statis-
tics, we must also be aware of the importance of statistical concepts in the planning
and design of experiments. In the previous section the value of trying to predict sys-
tematic errors in advance, thereby permitting the analyst to lay plans for countering
them, was emphasized. The same considerations apply to random errors. As will be
seen in Chapter 2, the combination of the random errors of the individual parts of
an experiment to give an overall error requires the use of simple statistical formulae.
In practice, the overall error is often dominated by the error in just one stage of the
experiment, other errors having negligible effects when all the errors are combined
correctly. Again it is obviously desirable to try to identify, before the experiment begins,
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where this single dominant error is likely to arise, and then to try to minimize it.
Although random errors can never be eliminated, they can certainly be minimized
by particular attention to experimental techniques: improving the precision of a
spectrometric experiment by using a constant temperature sample cell would be a
simple instance of such a precaution. For both random and systematic errors, there-
fore, the moral is clear: every effort must be made to identify the serious sources of
error before practical work starts, so that the experiment can be designed to min-
imize such errors.

There is another and more subtle aspect of experimental design. In many analyses,
one or more of the desirable features of the method (for example sensitivity, selectiv-
ity, sampling rate, low cost, etc.) will be found to depend on a number of experimen-
tal factors. Identifying the important factors and optimizing them, thereby obtaining
the best sensitivity, selectivity, etc., is an essential preliminary step in many analyses.
For example, in enzymatic analyses, the concentration of the analyte, which is often
the substrate (the compound that is changed in the reaction catalysed by the enzyme),
is determined from the rate of the reaction. This rate in practice depends upon
(amongst other factors) the pH of the reaction mixture, and the temperature. How are
the optimum conditions, e.g. those giving the maximum reaction rate, to be found?
The analyst could perform a series of experiments, in each of which the enzyme con-
centration and the temperature are kept constant but the pH is varied. In each case
the rate of the enzyme-catalysed reaction would be determined and an optimum pH
value would thus be obtained. A second series of reaction-rate experiments could then
be performed, with the pH maintained at that value, but the temperature varied. A
possible optimum temperature would thus be found. This approach to the optimiza-
tion of the experiment is clearly tedious: in more realistic examples many more than
two experimental factors might need investigation. Moreover the method assumes
that the factors (pH and temperature) affect the reaction rate in an independent way.
This might not be true. For example, the optimum pH might depend upon tempera-
ture and vice versa, i.e. these factors may affect the reaction rate in an interactive way,
so the conditions established in the two series of experiments might not be the truly
optimum ones. This simple example suggests that, even when the factors affecting an
experiment are easily identified, experimental optimization can be a formidable prob-
lem. These very important aspects of statistics as applied to analytical chemistry are
considered in more detail in Chapter 7.

1.7 Calculators and computers in statistical calculations

The rapid growth of chemometrics – the application of mathematical methods to
the solution of chemical problems of all types – is due to the ease with which large
quantities of data can be handled, and complex calculations done, with calculators
and computers. These devices are available to the analytical chemist at several lev-
els of complexity and cost. Hand-held calculators are extremely cheap, very reliable,
and capable of performing many of the routine statistical calculations described in
this book with a minimal number of keystrokes. Pre-programmed functions allow
calculations of mean and standard deviation (see Chapter 2) and correlation and lin-
ear regression (see Chapter 5). Other calculators can be programmed by the user to
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perform additional calculations such as confidence limits (see Chapter 2), signifi-
cance tests (see Chapter 3) and non-linear regression (see Chapter 5). For many
applications in laboratories performing analytical research or routine analyses, cal-
culators of these types will be more than adequate. Their main disadvantage is their
inability to handle very large quantities of data.

Personal computers (PCs) are now found in all chemical laboratories. Most ana-
lytical scientists have their own PCs on their desks and portable PCs facilitate the
recording and calculation of data in the field. Many laboratory instruments are now
devoid of manual controls, being entirely controlled by a linked PC which in turn
handles and reports the data obtained. Additional functions of the PC can include
checking instrument performance, diagnosing and reporting malfunctions, storing
large databases (e.g. of digitized spectra) and comparing analytical data with the
databases, optimizing operating conditions (see Chapter 7), and selecting and using
a variety of calibration calculations. One concern is that the software provided with
computer-controlled instruments is not always explained to the user: there is a risk
of having a data set interpreted via (for example) a calibration routine which is not
defined and might not always be appropriate. This is an undesirable situation,
though the desire of instrument companies to try to protect costly dedicated soft-
ware from piracy is understandable.

A wealth of excellent general statistical software is available for PCs. The memory
capacity and speed of the computers are now more than adequate for work with all
but the largest data sets, and PCs are routinely provided with word processors, which
greatly aid the compilation of analytical reports and papers. Also universally avail-
able are spreadsheet programs. These, though originally designed for financial cal-
culations, are often more than adequate for statistical work, having many built-in
statistical functions and excellent graphical presentation facilities. The popularity of
spreadsheets derives from their speed and simplicity in use, and their ability to per-
form almost instant ‘what if’ calculations: for example, what would the mean and
standard deviation of a set of results be if one suspect piece of data is omitted?
Spreadsheets are designed to facilitate rapid data entry, and data in spreadsheet for-
mat can easily be exported to the more specialist suites of statistics software.
Microsoft Excel® is the most widely used spreadsheet, and offers most of the statis-
tical facilities that many users of this book should need. A number of examples of
its application are provided in later chapters, and the bibliography lists some books
which describe and enhance its application to statistical problems. Useful ‘add-on’
facilities for Excel are widely available, often as Internet downloads.

More advanced calculation facilities are provided by specialized suites of statistical
software. Amongst these Minitab® is very widely used in educational establishments
and research laboratories. In addition to the expected simple statistical functions, it
offers many more advanced calculations, including multivariate methods (see
Chapter 8), initial data analysis (IDA) and non-parametric tests (see Chapter 6),
experimental design (see Chapter 7) and many quality control methods (Chapter 4).
More specialized and excellent programs for various types of multivariate analysis are
also available for PCs: the best known is The Unscrambler®. New and updated ver-
sions of these programs, with extra facilities and/or improved user interfaces, appear
at regular intervals. Although some help facilities are available in every case, it is fair
to say that the software is usually designed for users rather than students, and does
not have a strongly tutorial emphasis. But a program specifically designed for tuto-
rial purposes, VAMSTAT II®, is a valuable tool, with on-screen tests for students and
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clear explanations of many important methods. This and other tutorial programs are
listed in the Bibliography.

Yet another advantageous feature of PCs is that they can readily be ‘networked’.
PCs in the same or neighbouring laboratories, or indeed linked laboratories in dif-
ferent continents, can be connected so that both operating software and data can be
freely passed from one to another. An obvious benefit of such networks is in the
establishment of Laboratory Information Management Systems (LIMS) which allow
large numbers of analytical specimens to be identified and tracked as they move
through a laboratory. This is achieved by barcoding or similar systems, and the PCs
attached to analytical instruments send data to a central computer which (for exam-
ple) prints a summary report, including a statistical evaluation.

It is most important for the analytical chemist to remember that the availability
of all these data-handling facilities increases rather than decreases the need for a
sound knowledge of the principles underlying statistical calculations. A computer
or calculator will rapidly perform any statistical test or calculation selected by the
user, whether or not that procedure is suitable for the data under study. For example, a
linear least squares program will determine a straight line to fit any set of x and y
values, even in cases where visual inspection would show at once that such a pro-
gram is entirely inappropriate (see Chapter 5). Again, a simple program for testing
the significance of the difference between the means of two data sets may assume
that the variances (see Chapter 2) of the two sets are similar: but the program will
blindly perform the calculation on request and provide a ‘result’ even if the vari-
ances actually differ significantly. Even quite comprehensive suites of computer
programs often fail to provide advice on the choice of statistical method appropri-
ate to a given set of data. The analyst must thus use both a knowledge of statistics
and common sense to ensure that the correct calculation is performed.
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Exercises

1 A standard sample of pooled human blood serum contains 42.0 g of albumin per
litre. Five laboratories (A–E) each do six determinations (on the same day) of the
albumin concentration, with the following results (g l−1 throughout):

A 42.5 41.6 42.1 41.9 41.1 42.2
B 39.8 43.6 42.1 40.1 43.9 41.9
C 43.5 42.8 43.8 43.1 42.7 43.3
D 35.0 43.0 37.1 40.5 36.8 42.2
E 42.2 41.6 42.0 41.8 42.6 39.0

Comment on the bias, precision and accuracy of each of these sets of results.

2 Using the same sample and method as in question 1, laboratory A makes six fur-
ther determinations of the albumin concentration, this time on six successive
days. The values obtained are 41.5, 40.8, 43.3, 41.9, 42.2 and 41.7 g l−1. Comment
on these results.
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3 The number of binding sites per molecule in a sample of monoclonal antibody is
determined four times, with results of 1.95, 1.95, 1.92 and 1.97. Comment on the
bias, precision and accuracy of these results.

4 Discuss the degrees of bias and precision desirable or acceptable in the following
analyses:

(i) Determination of the lactate concentration of human blood samples.

(ii) Determination of uranium in an ore sample.

(iii) Determination of a drug in blood plasma after an overdose.

(iv) Study of the stability of a colorimetric reagent by determination of its
absorbance at a single wavelength over a period of several weeks.

5 For each of the following experiments, try to identify the major probable sources
of random and systematic errors, and consider how such errors may be mini-
mized:

(i) The iron content of a large lump of ore is determined by taking a single small
sample, dissolving it in acid, and titrating with ceric sulphate after reduction
of Fe(III) to Fe(II).

(ii) The same sampling and dissolution procedure is used as in (i) but the iron is
determined colorimetrically after addition of a chelating reagent and extrac-
tion of the resulting coloured complex into an organic solvent.

(iii) The sulphate content of an aqueous solution is determined gravimetrically
with barium chloride as the precipitant.
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2 Statistics of repeated
measurements

2.1 Mean and standard deviation

In Chapter 1 we saw that it is usually necessary to make repeated measurements in
many analytical experiments in order to reveal the presence of random errors. This
chapter applies some fundamental statistical concepts to such a situation. We will start
by looking again at the example in Chapter 1 which considered the results of five repli-
cate titrations done by each of four students. These results are reproduced below.

(2.1)The mean, x, of n measurements is given by x =
∑xi

n

Student Results (ml)

A 10.08 10.11 10.09 10.10 10.12
B 9.88 10.14 10.02 9.80 10.21
C 10.19 9.79 9.69 10.05 9.78
D 10.04 9.98 10.02 9.97 10.04

Two criteria were used to compare these results, the average value (technically known
as a measure of location) and the degree of spread (or dispersion). The average value
used was the arithmetic mean (usually abbreviated to the mean), which is the sum
of all the measurements divided by the number of measurements.

In Chapter 1 the spread was measured by the difference between the highest and
lowest values (the range). A more useful measure, which utilizes all the values, is the
standard deviation, s, which is defined as follows:

The standard deviation, s, of n measurements is given by

(2.2)s = √∑
i

(xi − x)2/(n − 1)
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.

The calculation of these statistics can be illustrated by an example.

Example 2.1.1

Find the mean and standard deviation of A’s results.

xi

10.08 −0.02 0.0004
10.11 0.01 0.0001
10.09 −0.01 0.0001
10.10 0.00 0.0000
10.12 0.02 0.0004

Totals 50.50 0 0.0010

Note that is always equal to 0.∑(xi − x)

s = √∑
i

(xi − x)2/(n − 1) = √0.001/4 = 0.0158 ml

x =
∑xi

n
=

50.50
5

= 10.1 ml

(xi − x)2(xi − x)

The answers to this example have been arbitrarily given to three significant figures:
further discussion of this important aspect of the presentation of results is considered
in Section 2.8. The reader can check that the standard deviations of the results of
students B, C and D are 0.172, 0.210, and 0.0332 ml respectively, giving quantitative
confirmation of the assessments of precision made in Chapter 1.

In practice, it is most unusual to make these calculations on paper. All except the
most basic pocket calculators will give the results if the values of xi are keyed in.
However, care must be taken that the correct key is pressed to obtain the standard
deviation. Some calculators give two different values for the standard deviation, one
calculated by using equation (2.2) and the other calculated with the denominator of
this equation, i.e. (n − 1), replaced by n. (The reason for these two different forms is
explained on p.20.) Obviously, for large values of n the difference is negligible.
Alternatively, readily available computer software can be used to perform these
calculations (see Chapter 1).

The square of s is a very important statistical quantity known as the variance; its
value will become apparent later in this chapter when we consider the propagation
of errors.

Variance = the square of the standard deviation, s2
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.

Another widely used measure of spread is the coefficient of variation (CV), also
known as the relative standard deviation (RSD), which is given by .100 s/x

Coefficient of variation (CV) = relative standard deviation (RSD) = .100 s/x

The CV or RSD, the units of which are obviously per cent, is an example of a
relative error, i.e. an error estimate divided by an estimate of the absolute value
of the measured quantity. Relative errors are frequently used in the comparison of
the precision of results which have different units or magnitudes, and are again
important in calculations of error propagation.

2.2 The distribution of repeated measurements

Although the standard deviation gives a measure of the spread of a set of results about
the mean value, it does not indicate the shape of the distribution. To illustrate this we
need a large number of measurements such as those in Table 2.1. This gives the results
of 50 replicate determinations of the nitrate ion concentration in a particular water
specimen, given to two significant figures.

These results can be summarized in a frequency table (Table 2.2). This table
shows that, in Table 2.1, the value 0.46 µg ml−1 appears once, the value 0.47 µg ml−1

appears three times and so on. The reader can check that the mean of these results is
0.500 µg ml−1 and the standard deviation is 0.0165 µg ml−1. The distribution of the
results can most easily be appreciated by drawing a histogram as in Figure 2.1. This
shows that the distribution of the measurements is roughly symmetrical about the
mean, with the measurements clustered towards the centre.

This set of 50 measurements is a sample from the very large (in theory infinite)
number of measurements which we could make of the nitrate ion concentration. The
set of all possible measurements is called the population. If there are no systematic
errors, then the mean of this population, denoted by µ, is the true value of the nitrate
ion concentration which we are trying to determine. The mean of the sample gives
us an estimate of µ. Similarly, the population has a standard deviation, denoted by σ.
The value of the standard deviation, s, of the sample gives us an estimate of σ. Use of
equation (2.2) gives us an unbiased estimate of σ. If n, rather than (n − 1), is used in
the denominator of the equation, the value of s obtained tends to underestimate σ
(see p.19).

Table 2.1 Results of 50 determinations of nitrate ion concentration, in µg ml−1

0.51 0.51 0.51 0.50 0.51 0.49 0.52 0.53 0.50 0.47
0.51 0.52 0.53 0.48 0.49 0.50 0.52 0.49 0.49 0.50
0.49 0.48 0.46 0.49 0.49 0.48 0.49 0.49 0.51 0.47
0.51 0.51 0.51 0.48 0.50 0.47 0.50 0.51 0.49 0.48
0.51 0.50 0.50 0.53 0.52 0.52 0.50 0.50 0.51 0.51
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The measurements of nitrate ion concentration given in Table 2.2 have only
certain discrete values, because of the limitations of the method of measurement.
In theory a concentration could take any value, so a continuous curve is needed
to describe the form of the population from which the sample was taken. The
mathematical model usually used is the normal or Gaussian distribution which
is described by the equation

(2.3)

Its shape is shown in Figure 2.2. There is no need to remember this complicated for-
mula, but some of its general properties are important. The curve is symmetrical
about µ and the greater the value of σ the greater the spread of the curve, as shown
in Figure 2.3. More detailed analysis shows that, whatever the values of µ and σ, the
normal distribution has the following properties.

y =
1

σ√2π
 exp{−(x − µ)2/2σ 2}

.

Table 2.2 Frequency table for measurements of
nitrate ion concentration

Nitrate ion concentration Frequency
(µg ml−1)

0.46 1
0.47 3
0.48 5
0.49 10
0.50 10
0.51 13
0.52 5
0.53 3

For a normal distribution with mean µ and standard deviation σ, approximately
68% of the population values lie within ±1σ of the mean, approximately 95% of
the population values lie within ±2σ of the mean, and approximately 99.7% of
the population values lie within ±3σ of the mean.

10

5

0
0.46 0.48 0.50 0.52

Fr
eq

ue
nc

y

Nitrate ion concentration, µg/ml

Figure 2.1 Histogram of the nitrate ion concentration data in Table 2.2.
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These properties are illustrated in Figure 2.4. This would mean that, if the nitrate ion
concentrations (in µg ml−1) given in Table 2.2 are normally distributed, then about
68% should lie in the range 0.483–0.517, about 95% in the range 0.467–0.533 and
99.7% in the range 0.450–0.550. In fact 33 of the 50 results (66%) lie between 0.483
and 0.517, 49 (98%) between 0.467 and 0.533, and all the results between 0.450 and
0.550, so the agreement with theory is fairly good.

For a normal distribution with known mean, µ, and standard deviation, σ, the
exact proportion of values which lie within any interval can be found from tables,
provided that the values are first standardized so as to give z-values. This is done
by expressing a value of x in terms of its deviation from the mean in units of stan-
dard deviation, σ. That is

Standardized normal variable, (2.4)z =
(x − µ)

σ

y

xµ

Figure 2.2 The normal distribution, y = exp[−(x − µ)2/2σ 2]/ . The mean is indicated by µ.σ √2π 

Figure 2.3 Normal distributions with the same mean but different values of the standard
deviation.

y

xµ

s.d. = σ2

σ1 > σ2

s.d. = σ1

Table A.1 (Appendix 2) gives the proportion of values, F(z), that lie below a given value
of z. F(z) is called the standard normal cumulative distribution function. For exam-
ple the proportion of values below z = 2 is F(2) = 0.9772 and the proportion of values
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below z = −2 is F(−2) = 0.0228. Thus the exact value for the proportion of measurements
lying within two standard deviations of the mean is 0.9772 − 0.0228 = 0.9544.

.

Example 2.2.1

If repeated values of a titration are normally distributed with mean 10.15 ml
and standard deviation 0.02 ml, find the proportion of measurements which
lie between 10.12 ml and 10.20 ml.

Standardizing the first value gives z = (10.12 − 10.15)/0.02 = −1.5.
From Table A.1, F(−1.5) = 0.0668.

Standardizing the second value gives z = (10.20 − 10.15)/0.02 = 2.5.
From Table A.1, F(2.5) = 0.9938.

Thus the proportion of values between x = 10.12 to 10.20 (which corresponds
to z = −1.5 to 2.5) is 0.9938 − 0.0668 = 0.927.

The reader should be warned that there is considerable variation in the format of tables
for calculating proportions from z values. Some tables give only positive z values, so
the proportions for negative z values then have to be deduced using considerations of
symmetry. Values of F(z) can also be found using Excel® or Minitab®.

y

x

µ – 1σ µ + 1σ
y

y

x

x

µ

µ – 2σ µ + 2σµ

µ – 3σ µ + 3σµ

(i)

68%

(ii)

95%

(iii)

99.7%

Figure 2.4 Properties of the normal distribution: (i) approximately 68% of values lie within ±1σ of
the mean; (ii) approximately 95% of values lie within ±2σ of the mean; (iii) approximately 99.7%
of values lie within ±3σ of the mean.
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Although it cannot be proved that repeated measurements of a single analytical
quantity are always normally distributed, there is considerable evidence that this
assumption is generally at least approximately true. Also, we shall see when we come
to look at sample means that any departure of a population from normality is not
usually important in the context of the statistical tests most frequently used.

The normal distribution is applicable not only to repeated measurements made
on the same specimen. It also often fits the distribution of results obtained when the
same quantity is measured for different materials from similar sources. For example,
if we measured the concentration of albumin in blood sera taken from healthy adult
humans we would find the results were approximately normally distributed.

2.3 Log-normal distribution

In situations where one measurement is made on each of a number of specimens,
distributions other than the normal distribution can also occur. In particular the
so-called log-normal distribution is frequently encountered. For this distribution,
frequency plotted against the logarithm of the concentration (or other characteristics)
gives a normal distribution curve. An example of a variable which has a log-normal
distribution is the antibody concentration in human blood sera. When frequency is
plotted against concentration for this variable, the asymmetrical curve shown in
Figure 2.5(a) is obtained. If, however, the frequency is plotted against the logarithm
(e.g. to the base 10) of the concentration, an approximately normal distribution is
obtained, as shown in Figure 2.5(b). Another example of a variable which may follow
a log-normal distribution is the particle size of the droplets formed by the nebulizers
used in flame spectroscopy. Particle size distributions in atmospheric aerosols may
also take the log-normal form, and the distribution is used to describe equipment
failure rates and in gene expression analysis. Minitab® allows this distribution to be
simulated and studied. However, by no means all asymmetrical population distribu-
tions can be converted to normal ones by the logarithmic transformation.

The interval containing a given percentage of the measurements for a variable
which is log-normally distributed can be found by working with the logarithms of the
values. The distribution of the logarithms of the blood serum concentration shown in
Figure 2.5(b) has mean 0.15 and standard deviation 0.20. This means that approxi-
mately 68% of the logged values lie in the interval 0.15 − 0.20 to 0.15 + 0.20, that is
−0.05 to 0.35. Taking antilogarithms we find that 68% of the original measurements
lie in the interval 10−0.05 to 100.35, that is 0.89 to 2.24. The antilogarithm of the mean
of the logged values, 100.15 = 1.41, gives the geometric mean of the original distribution,
where the geometric mean is given by . See also Section 2.10.

2.4 Definition of a ‘sample’

In this chapter the word ‘sample’ has been introduced and used in its statistical
sense of a group of objects selected from the population of all such objects, for
example a sample of 50 measurements of nitrate ion concentration from the

n√x1 x2 ⋅ ⋅ ⋅  xn
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(infinite) population of all such possible measurements, or a sample of healthy
human adults chosen from the whole population in order to measure the con-
centration of serum albumin for each one. The Commission on Analytical
Nomenclature of the Analytical Chemistry Division of the International Union of
Pure and Applied Chemistry has pointed out that confusion and ambiguity can
arise if the term ‘sample’ is also used in its colloquial sense of the ‘actual material
being studied’ (Commission on Analytical Nomenclature, 1990). It recommends
that the term sample is confined to its statistical concept. Other words should be
used to describe the material on which measurements are being made, in each
case preceded by ‘test’, for example test solution or test extract. We can then talk
unambiguously of a sample of measurements on a test extract, or a sample of
tablets from a batch. A test portion from a population which varies with time,
such as a river or circulating blood, should be described as a specimen.
Unfortunately this practice is by no means usual, so the term ‘sample’ remains in
use for two related but distinct uses.

.
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Figure 2.5 (a) An approximately log-normal distribution: concentration of serum
immunoglobulin M antibody in male subjects. (b) The results in (a) plotted against the
logarithm of the concentration.
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2.5 The sampling distribution of the mean

We have seen that, in the absence of systematic errors, the mean of a sample of mea-
surements provides us with an estimate of the true value, µ, of the quantity we are
trying to measure. However, even in the absence of systematic errors, the individual
measurements vary due to random errors and so it is most unlikely that the mean
of the sample will be exactly equal to the true value. For this reason it is more useful
to give a range of values which is likely to include the true value. The width of this
range depends on two factors. The first is the precision of the individual measure-
ments, which in turn depends on the standard deviation of the population. The sec-
ond is the number of measurements in the sample. The very fact that we repeat
measurements implies we have more confidence in the mean of several values than
in a single one. Intuitively we would expect that the more measurements we make,
the more reliable our estimate of µ, the true value, will be.

To pursue this idea, let us return to the nitrate ion determination described in
Section 2.2. In practice it would be most unusual to make 50 repeated measurements
in such a case: a more likely number would be five. We can see how the means of
samples of this size are spread about µ by treating the results in Table 2.2 as 10 sam-
ples, each containing five results. Taking each column as one sample, the means are
0.506, 0.504, 0.502, 0.496, 0.502, 0.492, 0.506, 0.504, 0.500 and 0.486. We can see
that these means are more closely clustered than the original measurements. If
we continued to take samples of five measurements and calculated their means,
these means would have a frequency distribution of their own. The distribution of
all possible sample means (in this case an infinite number) is called the sampling
distribution of the mean. Its mean is the same as the mean of the original popula-
tion. Its standard deviation is called the standard error of the mean (s.e.m.). There
is an exact mathematical relationship between the latter and the standard deviation,
σ, of the distribution of the individual measurements:

For a sample of n measurements,

standard error of the mean (s.e.m.) = (2.5)σ/√n 

As expected, the larger n is, the smaller the value of the s.e.m. and consequently the
smaller the spread of the sample means about µ.

The term ‘standard error of the mean’ might give the impression that gives
the difference between µ and . This is not so: gives a measure of the variabil-
ity of , as we shall see in the next section.

Another property of the sampling distribution of the mean is that, even if the
original population is not normal, the sampling distribution of the mean tends to
the normal distribution as n increases. This result is known as the central limit
theorem. This theorem is of great importance because many statistical tests are
performed on the mean and assume that it is normally distributed. Since in practice
we can assume that distributions of repeated measurements are at least approxi-
mately normally distributed, it is reasonable to assume that the means of quite small
samples (say >5) are normally distributed.

x
σ/√n x

σ/√n 
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2.6 Confidence limits of the mean for large samples

Now that we know the form of the sampling distribution of the mean we can
return to the problem of using a sample to define a range which we may reason-
ably assume includes the true value. (Remember that in doing this we are assum-
ing systematic errors to be absent.) Such a range is known as a confidence interval
and the extreme values of the range are called the confidence limits. The term
‘confidence’ implies that we can assert with a given degree of confidence, i.e. a
certain probability, that the confidence interval does include the true value. The
size of the confidence interval will obviously depend on how certain we want to
be that it includes the true value: the greater the certainty, the greater the interval
required.

Figure 2.6 shows the sampling distribution of the mean for samples of size n. If
we assume that this distribution is normal then 95% of the sample means will lie in
the range given by:

(2.6)

(The exact value 1.96 has been used in this equation rather than the approximate
value, 2, quoted in Section 2.2. The reader can use Table A.1 to check that the pro-
portion of values between z = −1.96 and z = 1.96 is indeed 0.95.)

In practice, however, we usually have one sample, of known mean, and
we require a range for µ, the true value. Equation (2.6) can be rearranged to give
this:

(2.7)

Equation (2.7) gives the 95% confidence interval of the mean. The 95% confidence
limits are .

In practice we are unlikely to know σ exactly. However, provided that the sample is
large, σ can be replaced by its estimate, s.

x ± 1.96σ/√n

x − 1.96(σ/√n ) < µ < x + 1.96(σ/√n )

µ − 1.96(σ/√n ) < x < µ + 1.96(σ/√n )

y

µ

95%

x–nµ – 1.96σ nµ + 1.96σ

Figure 2.6 The sampling distribution of the mean, showing the range within which 95% of
sample means lie.
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Other confidence limits are sometimes used, in particular the 99% and 99.7%
confidence limits.

For large samples, the confidence limits of the mean are given by

(2.8)

where the value of z depends on the degree of confidence required.

For 95% confidence limits, z = 1.96
For 99% confidence limits, z = 2.58
For 99.7% confidence limits, z = 2.97

x ± zs/√n

Example 2.6.1

Calculate the 95% and 99% confidence limits of the mean for the nitrate ion
concentration measurements in Table 2.1.

We have = 0.500, s = 0.0165 and n = 50. Using equation (2.8) gives the 95%
confidence limits as:

and the 99% confidence limits as:

x ± 2.58s/√n = 0.500 ± 2.58 × 0.01651/√50 = 0.500 ± 0.0060 µg ml−1

x ± 1.96s/√n = 0.500 ± 1.96 × 0.0165/√50 = 0.500 ± 0.0046 µg ml−1

x

In this example it is interesting to note that although the original measurements
varied between 0.46 and 0.53, the 99% confidence interval for the mean is from
0.494 to 0.506.

2.7 Confidence limits of the mean for small samples

As the sample size gets smaller, s becomes less reliable as an estimate of σ. This can
be seen by again treating each column of the results in Table 2.2 as a sample of size
five. The standard deviations of the 10 columns are 0.009, 0.015, 0.026, 0.021,
0.013, 0.019, 0.013, 0.017, 0.010 and 0.018. We see that the largest value of s is
nearly three times the size of the smallest. To allow for this, equation (2.8) must be
modified.

For small samples, the confidence limits of the mean are given by

(2.9)x ± tn − 1s/√n
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The subscript (n − 1) indicates that t depends on this quantity, which is known as the
number of degrees of freedom, d.f. (usually given the symbol ν). The term ‘degrees
of freedom’ refers to the number of independent deviations which are used in
calculating s. In this case the number is (n − 1), because when (n − 1) deviations are
known the last can be deduced since . The value of t also depends on the
degree of confidence required. Some values of t are given in Table 2.3. A more com-
plete version of this table is given in Table A.2 in Appendix 2.

For large n, the values of tn − 1 for confidence intervals of 95% and 99% respectively
are very close to the values 1.96 and 2.58 used in Example 2.6.1. The following exam-
ple illustrates the use of equation (2.9).

∑
i

(xi − x) = 0

(xi − x)

.

Example 2.7.1

The sodium ion content of a urine specimen was determined by using an
ion-selective electrode. The following values were obtained: 102, 97, 99, 98,
101, 106 mM. What are the 95% and 99% confidence limits for the sodium
ion concentration?

The mean and standard deviation of these values are 100.5 mM and 3.27 mM
respectively. There are six measurements and therefore 5 degrees of freedom.
From Table A.2 the value of t5 for calculating the 95% confidence limits is 2.57
and from equation (2.9) the 95% confidence limits of the mean are given by:

Similarly the 99% confidence limits are given by:

100.5 ± 4.03 × 3.27/√6 = 100.5 ± 5.4 mM

100.5 ± 2.57 × 3.27/√6 = 100.5 ± 3.4 mM

Table 2.3 Values of t for confidence intervals

Degrees of freedom Values of t for confidence interval of

95% 99%

2 4.30 9.92
5 2.57 4.03

10 2.23 3.17
20 2.09 2.85
50 2.01 2.68

100 1.98 2.63

2.8 Presentation of results

As has already been emphasized, no quantitative experimental result is of any value
unless it is accompanied by an estimate of the errors involved in its measurement. A
common practice in analytical chemistry literature is to quote the mean as the estimate
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of the quantity measured and the standard deviation as the estimate of the precision.
Less commonly, the standard error of the mean is sometimes quoted instead of the
standard deviation, or the result is given in the form of the 95% confidence limits of
the mean. (Uncertainty estimates, see Chapter 4, are also sometimes used.) Since there
is no universal convention it is obviously essential to state the form used and, provided
that the value of n is given, the three forms can be easily inter-converted by using
equations (2.5) and (2.9).

A related aspect of presenting results is the rounding-off of the answer. The
important principle here is that the number of significant figures given indicates
the precision of the experiment. It would clearly be absurd, for example, to give
the result of a titrimetric analysis as 0.107846 M – no analyst could achieve the
implied precision of 0.000001 in ca. 0.1, i.e. 0.001%. In practice it is usual to
quote as significant figures all the digits which are certain, plus the first uncertain
one. For example, the mean of the values 10.09, 10.11, 10.09, 10.10 and 10.12
is 10.102, and their standard deviation is 0.01304. Clearly there is uncertainty
in the second decimal place; the results are all 10.1 to one decimal place, but
disagree in the second decimal place. Using the suggested method the result
would be quoted as:

If it was felt that this resulted in an unacceptable rounding-off of the standard
deviation, then the result could be given as:

where the use of a subscript indicates that the digit is given only to avoid loss of
information. The reader could decide whether it was useful or not.

Similarly, when confidence limits are calculated [see equation (2.9)], there
is no point in giving the value of to more than two significant figures.
The value of should then be given to the corresponding number of decimal
places.

The number of significant figures quoted is sometimes used instead of a specific
estimate of the precision of a result. For example, 0.1046 M is taken to mean that
the figures in the first three decimal places are certain but there is doubt about the
fourth. Sometimes the uncertainty in the last figure is emphasized by using the for-
mats 0.104(6) M or 0.1046 M, but it remains preferable to give a specific estimate of
precision such as the standard deviation.

One problem which arises is whether a 5 should be rounded up or down. For
example, if 9.65 is rounded to one decimal place, should it become 9.6 or 9.7? It is
evident that the results will be biased if a 5 is always rounded up; this bias can be
avoided by rounding the 5 to the nearest even number giving, in this case, 9.6.
Analogously, 4.75 is rounded to 4.8.

When several measured quantities are to be used to calculate a final result (see
Section 2.11) these quantities should not be rounded-off too much or a needless loss
of precision will result. A good rule is to keep one digit beyond the last significant
figure and leave further rounding until the final result is reached. The same advice
applies when the mean and standard deviation are used to apply a statistical test
such as the F- and t-tests (see Chapter 3): the unrounded values of and s should be
used in the calculations.

x

x
tn − 

1s/√n

x ± s = 10.102 ± 0.013 (n = 5)

x ± s = 10.10 ± 0.01 (n = 5)
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2.9 Other uses of confidence limits

Confidence intervals can be used as a test for systematic errors as shown in the
following example.

.

Example 2.9.1

The absorbance scale of a spectrometer is tested at a particular wavelength with
a standard solution which has an absorbance given as 0.470. Ten measure-
ments of the absorbance with the spectrometer give = 0.461, and s = 0.003.
Find the 95% confidence interval for the mean absorbance as measured by the
spectrometer, and hence decide whether a systematic error is present.

The 95% confidence limits for the absorbance as measured by the spectrometer
are [equation (2.9)]:

(The value of t9 was obtained from Table A.2.)

Since the confidence interval does not include the known absorbance of 0.470,
it is likely that a systematic error has occurred.

x ± tn − 

1s/√n = 0.461 ± 2.26 × 0.003/√10 = 0.461 ± 0.002

x

In practice the type of problem in Example 2.9.1 is usually tackled by a different, but
related, approach (see Example 3.2.1).

Confidence limits can also be used in cases where measurements are made on
each of a number of specimens. Suppose, for example, that the mean weight of a
tablet in a very large batch is required: it would be too time-consuming to weigh
each tablet. Similarly, if the mean iron content is measured using a destructive
method of analysis such as atomic-absorption spectrometry, it is clearly impossible
to examine every tablet. In each case, a sample could be taken from the batch
(which in such instances forms the population), and from the mean and standard
deviation of the sample a confidence interval could be found for the mean value of
the quantity measured.

2.10 Confidence limits of the geometric mean 
for a log-normal distribution

In Section 2.3 it was mentioned that measurements on a number of different spec-
imens may not be normally distributed. If they come from a log-normal distribu-
tion, then the confidence limits should be calculated taking this fact into account.
Since the log of the measurements is normally distributed, it is more accurate to
work with the logarithms of the measurements when calculating a confidence
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interval. The confidence interval obtained will be the confidence interval for the
geometric mean.

Example 2.10.1

The following values (expressed as percentages) give the antibody concentration
in human blood serum for a sample of eight healthy adults.

2.15, 1.13, 2.04, 1.45, 1.35, 1.09, 0.99, 2.07

Calculate the 95% confidence interval for the geometric mean, assuming that
the antibody concentration is log-normally distributed.

The logarithms (to the base 10) of these values are:

0.332, 0.053, 0.310, 0.161, 0.130, 0.037, −0.004, 0.316

The mean of these logged values is 0.1669, giving 100.1669 = 1.47 as the geomet-
ric mean of the original values. The standard deviation of the logged values is
0.1365.

The 95% confidence limits for the logged values are:

Taking antilogarithms of these limits gives the 95% confidence interval of the
geometric mean as 1.13 to 1.91.

0.1669 ± 2.36 × 0.1365/√8 = 0.1669 ± 0.1139 = 0.0530 to 0.2808

2.11 Propagation of random errors

In experimental work, the quantity to be determined is often calculated from a com-
bination of observable quantities. We have already seen, for example, that even a
relatively simple operation such as a titrimetric analysis involves several stages, each
of which will be subject to errors (see Chapter 1). The final calculation may involve
taking the sum, difference, product or quotient of two or more quantities or the rais-
ing of any quantity to a power.

It is most important to note that the procedures used for combining random and
systematic errors are completely different. This is because random errors to some
extent cancel each other out, whereas every systematic error occurs in a definite and
known sense. Suppose, for example, that the final result of an experiment, x, is given
by x = a + b. If a and b each have a systematic error of +1, it is clear that the system-
atic error in x is +2. If, however, a and b each have a random error of ±1, the random
error in x is not ±2: this is because there will be occasions when the random error in
a is positive while that in b is negative (or vice versa).

This section deals only with the propagation of random errors (systematic errors
are considered in Section 2.12). If the precision of each observation is known then
simple mathematical rules can be used to estimate the precision of the final result.
These rules can be summarized as follows.
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2.11.1 Linear combinations

In this case the final value, y, is calculated from a linear combination of measured
quantities a, b, c, etc., by:

y = k + kaa + kbb + kcc + . . . (2.10)

where k, ka, kb, kc, etc., are constants. Variance (defined as the square of the standard
deviation) has the important property that the variance of a sum or difference of
independent quantities is equal to the sum of their variances. It can be shown that if
σa, σb, σc, etc., are the standard deviations of a, b, c, etc., then the standard deviation
of y, σy, is given by:

.

(2.11)σy = √(kaσa)
2 + (kbσb)

2 + (kcσc)
2 + ⋅ ⋅ ⋅

Example 2.11.1

In a titration the initial reading on the burette is 3.51 ml and the final reading
is 15.67 ml, both with a standard deviation of 0.02 ml. What is the volume of
titrant used and what is its standard deviation?

Volume used = 15.67 − 3.51 = 12.16 ml

Standard deviation = √(0.02)2 + (−0.02)2 = 0.028 ml

This example illustrates the important point that the standard deviation for the final
result is larger than the standard deviations of the individual burette readings, even
though the volume used is calculated from a difference. It is, however, less than the
sum of the standard deviations.

2.11.2 Multiplicative expressions

If y is calculated from an expression of the type:

y = kab/cd (2.12)

(where a, b, c and d are independent measured quantities and k is a constant) then
there is a relationship between the squares of the relative standard deviations:

(2.13)
σy

y
= √�σa

a �
2

+ �σb

b �
2

+ �σc

c �
2

+ �σd

d �
2
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It can be seen that the relative standard deviation in the final result is not much
larger than the largest relative standard deviation used to calculate it (i.e. 2% for If).
This is mainly a consequence of the squaring of the relative standard deviations
and illustrates an important general point: any efforts to improve the precision of
an experiment need to be directed towards improving the precision of the least pre-
cise values. As a corollary to this, there is no point in wasting effort in increasing
the precision of the most precise values. This is not to say that small errors are
unimportant: small errors at many stages of an experiment, such as the titrimetric
analysis discussed in detail in Chapter 1, will produce an appreciable error in the
final result.

It is important to note that when a quantity is raised to a power, e.g. b3, then the
error is not calculated as for a multiplication, i.e. b × b × b, because the quantities
involved are not independent. If the relationship is:

y = bn (2.14)

then the standard deviations of y and b are related by:

Example 2.11.2

The quantum yield of fluorescence, φ, is calculated from the expression:

φ = If/kclI0ε

where the quantities involved are defined below, with an estimate of their
relative standard deviations in brackets:

I0 = incident light intensity (0.5%)
If = fluorescence intensity (2%)
ε = molar absorptivity (1%)
c = concentration (0.2%)
l = path-length (0.2%)
k is an instrument constant.

From equation (2.13), the relative standard deviation of φ is given by:

RSD = √22 + 0.22 + 0.22 + 0.52 + 12 = 2.3%

(2.15)
σy

y  =  nσb

b 

(The modulus sign means that the magnitude of the enclosed quantity is taken
without respect to sign, e.g. −2= 2.)
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..

(2.16)σy =  σx

dy
dx 

Example 2.11.3

The absorbance, A, of a solution is given by A = −log T where T is the trans-
mittance. If the measured value of T is 0.501 with a standard deviation of
0.001, calculate A and its standard deviation.

We have:

A = −log 0.501 = 0.300

Also:

dA/dT = −(log e)/T = −0.434/T

so from equation (2.17):

σA = σT(−log e/T) = 0.001 × (−0.434/0.501) = 0.00087

It is interesting to note that for this widely used experimental method we can also
find the conditions for which the relative standard deviation is a minimum. The rel-
ative standard deviation (r.s.d.) of A is given by:

Differentiation of this expression with respect to T shows that the r.s.d. of A is a
minimum when T = 1/e = 0.368.

2.12 Propagation of systematic errors

The rules for the combination of systematic errors can also be divided into three
groups.

r.s.d. of A = 100σA/A =
100σT log e

T log T

2.11.3 Other functions

If y is a general function of x, y = f(x), then the standard deviations of x and y are
related by:
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2.12.1 Linear combinations

If y is calculated from measured quantities by use of equation (2.10), and the sys-
tematic errors in a, b, c, etc., are ∆a, ∆b, ∆c, etc., then the systematic error in y, ∆y, is
calculated from:

∆y = ka∆a + kb∆b + kc∆c + . . . (2.17)

(∆y/y) = (∆a/a) + (∆b/b) + (∆c/c) + (∆d/d) (2.18)

Remember that the systematic errors are either positive or negative and that these
signs must be included in the calculation of ∆y.

The total systematic error can sometimes be zero. Suppose, for example, a balance
with a systematic error of −0.01 g is used for the weighings involved in making a
standard solution. Since the weight of the solute used is found from the difference
between two weighings, the systematic errors cancel out. It should be pointed out
that this applies only to an electronic balance with a single internal reference weight.
Carefully considered procedures, such as this, can often minimize the systematic
errors, as described in Chapter 1.

2.12.2 Multiplicative expressions

If y is calculated from the measured quantities by use of equation (2.12) then relative
systematic errors are used:

When a quantity is raised to some power, then equation (2.15) is used with
the modulus sign omitted and the standard deviations replaced by systematic
errors.

2.12.3 Other functions

The equation used is identical to equation (2.16) but with the modulus sign omitted
and the standard deviations replaced by systematic errors.

In any real analytical experiment both random and systematic errors will occur.
The estimated combined error in the final result is now referred to as the uncertainty.
The uncertainty combines random and systematic errors and provides a realistic range
of values within which the true value of a measured quantity probably lies. This topic
is dealt with in detail in Chapter 4.
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Exercises

1 The reproducibility of a method for the determination of selenium in foods
was investigated by taking nine samples from a single batch of brown rice and
determining the selenium concentration in each. The following results were
obtained:

0.07 0.07 0.08 0.07 0.07 0.08 0.08 0.09 0.08 µg g−1

(Moreno-Domínguez, T., García-Moreno, C. and Mariné-Font, A. 1983. Analyst
108: 505)

Calculate the mean, standard deviation and relative standard deviation of these
results.

2 Seven measurements of the pH of a buffer solution gave the following results:

5.12 5.20 5.15 5.17 5.16 5.19 5.15

Calculate (i) the 95% and (ii) the 99% confidence limits for the true pH. (Assume
that there are no systematic errors.)

3 Ten replicate analyses of the concentration of mercury in a sample of commercial
gas condensate gave the following results:

23.3 22.5 21.9 21.5 19.9 21.3 21.7 23.8 22.6 24.7 ng ml−1

(Shafawi, A., Ebdon, L., Foulkes, M., Stockwell, P. and Corns, W. 1999. Analyst
124: 185)

Calculate the mean, standard deviation, relative standard deviation and 99% con-
fidence limits of the mean.

.

SCA_C02.qxd  3/29/05  3:51 PM  Page 37



38 2: Statistics of repeated measurements

.

Six replicate analyses on another sample gave the following values:

13.8 14.0 13.2 11.9 12.0 12.1 ng ml−1

Repeat the calculations for these values.

4 The concentration of lead in the bloodstream was measured for a sample of
50 children from a large school near a busy main road. The sample mean was
10.12 ng ml−1 and the standard deviation was 0.64 ng ml−1. Calculate the 95%
confidence interval for the mean lead concentration for all the children in the
school.

About how big should the sample have been to reduce the range of the
confidence interval to 0.2 ng ml−1 (i.e. ±0.1 ng ml−1)?

5 In an evaluation of a method for the determination of fluorene in sea-water, a
synthetic sample of sea-water was spiked with 50 ng ml−1 of fluorene. Ten repli-
cate determinations of the fluorene concentration in the sample had a mean of
49.5 ng ml−1 with a standard deviation of 1.5 ng ml−1.

(Gonsález, M. A. and López, M. H. 1998. Analyst 123: 2217)

Calculate the 95% confidence limits of the mean. Is the spiked value of
50 ng ml−1 within the 95% confidence limits?

6 A 0.1 M solution of acid was used to titrate 10 ml of 0.1 M solution of alkali and
the following volumes of acid were recorded:

9.88 10.18 10.23 10.39 10.21 ml

Calculate the 95% confidence limits of the mean and use them to decide whether
there is any evidence of systematic error.

7 This problem considers the random errors involved in making up a standard
solution. A volume of 250 ml of a 0.05 M solution of a reagent of formula
weight (relative molecular mass) 40 was made up, the weighing being done by
difference. The standard deviation of each weighing was 0.0001 g: what were
the standard deviation and relative standard deviation of the weight of reagent
used? The standard deviation of the volume of solvent used was 0.05 ml.
Express this as a relative standard deviation. Hence calculate the relative
standard deviation of the molarity of the solution.

Repeat the calculation for a reagent of formula weight 392.

8 The solubility product of barium sulphate is 1.3 × 10−10, with a standard deviation of
0.1 × 10−10. Calculate the standard deviation of the calculated solubility of barium
sulphate in water.
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3 Significance tests

3.1 Introduction

One of the most important properties of an analytical method is that it should be
free from systematic error. This means that the value which it gives for the amount
of the analyte should be the true value. This property of an analytical method may
be tested by applying the method to a standard test portion containing a known
amount of analyte (Chapter 1). However, as we saw in the last chapter, even if there
were no systematic error, random errors make it most unlikely that the measured
amount would exactly equal the standard amount. In order to decide whether the
difference between the measured and standard amounts can be accounted for by
random error, a statistical test known as a significance test can be employed. As its
name implies, this approach tests whether the difference between the two results is
significant, or whether it can be accounted for merely by random variations.
Significance tests are widely used in the evaluation of experimental results. This
chapter considers several tests which are particularly useful to analytical chemists.

3.2 Comparison of an experimental mean with a known value

In making a significance test we are testing the truth of a hypothesis which is known
as a null hypothesis, often denoted by H0. For the example in the previous para-
graph we adopt the null hypothesis that the analytical method is not subject to sys-
tematic error. The term null is used to imply that there is no difference between the
observed and known values other than that which can be attributed to random vari-
ation. Assuming that this null hypothesis is true, statistical theory can be used to cal-
culate the probability that the observed difference (or a greater one) between the
sample mean, and the true value, µ, arises solely as a result of random errors. The
lower the probability that the observed difference occurs by chance, the less likely
it is that the null hypothesis is true. Usually the null hypothesis is rejected if the
probability of such a difference occurring by chance is less than 1 in 20 (i.e. 0.05 or
5%). In such a case the difference is said to be significant at the 0.05 (or 5%) level.

x,
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Using this level of significance there is, on average, a 1 in 20 chance that we shall
reject the null hypothesis when it is in fact true. In order to be more certain that we
make the correct decision a higher level of significance can be used, usually 0.01 or
0.001 (1% or 0.1%). The significance level is indicated by writing, for example,
P (i.e. probability) = 0.05, and gives the probability of rejecting a true null hypoth-
esis. It is important to appreciate that if the null hypothesis is retained it has not been
proved that it is true, only that it has not been demonstrated to be false. Later in
the chapter the probability of retaining a null hypothesis when it is in fact false will
be discussed.

If (i.e. the calculated value of t without regard to sign) exceeds a certain 
critical value then the null hypothesis is rejected. The critical value of t for a parti-
cular significance level can be found from Table A.2. For example, for a sample size
of 10 (i.e. 9 degrees of freedom) and a significance level of 0.01, the critical value is
t9 = 3.25, where, as in Chapter 2, the subscript is used to denote the number of
degrees of freedom.

t

In order to decide whether the difference between and µ is significant, that
is to test H0: population mean = µ, the statistic t is calculated:

(3.1)

where = sample mean, s = sample standard deviation and n = sample size.x

t = (x − µ)√n/s

x

Example 3.2.1

In a new method for determining selenourea in water, the following values
were obtained for tap water samples spiked with 50 ng ml−1 of selenourea:

50.4, 50.7, 49.1, 49.0, 51.1 ng ml−1

(Aller, A. J. and Robles, L. C. 1998. Analyst 123: 919).

Is there any evidence of systematic error?

The mean of these values is 50.06 and the standard deviation is 0.956.
Adopting the null hypothesis that there is no systematic error, i.e. µ = 50, and
using equation (3.1) gives

From Table A.2, the critical value is t4 = 2.78 (P = 0.05). Since the observed
value of is less than the critical value the null hypothesis is retained: there
is no evidence of systematic error. Note again that this does not mean that
there are no systematic errors, only that they have not been demonstrated.

t

t =
(50.06 − 50)√5

0.956
= 0.14
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In order to decide whether the difference between two sample means and
is significant, that is to test the null hypothesis, H0: µ1 = µ2, the statistic t is

calculated:

(3.2)t =
(x1 − x2)

s√1
n1

+
1
n2

x2

x1

The use in significance testing of critical values from statistical tables was adopted
because it was formerly too tedious to calculate the probability of t exceeding the
experimental value. Computers have altered this situation, and statistical software
usually quotes the results of significance tests in terms of a probability. If the indi-
vidual data values are entered in Minitab, the result of performing this test is shown
below.

t-Test of the mean

Test of mu = 50.000 vs mu not = 50.000

Variable N Mean StDev SE Mean T P
selenour 5 50.060 0.956 0.427 0.14 0.90

This gives the additional information that Since this probability
is much greater than 0.05, the result is not significant at P = 0.05, in agreement with
the previous calculation. Obviously the power to calculate an exact probability is a
great advantage, removing the need for statistical tables containing critical values.
The examples in this book, however, use critical values, as not all readers may have
access to suitable software, and many scientists continue to perform significance
tests with the aid of hand-held calculators, which do not normally provide P values.
Also in cases where the individual data values are not provided, Minitab or Excel, for
example, cannot be used. However, where the calculation can be performed using
these programs, the P value will also be quoted.

3.3 Comparison of two experimental means

Another way in which the results of a new analytical method may be tested is
by comparing them with those obtained by using a second (perhaps a reference)
method. In this case we have two sample means and . Taking the null hypoth-
esis that the two methods give the same result, that is H0: µ1 = µ2, we need to test
whether differs significantly from zero. If the two samples have standard
deviations which are not significantly different (see Section 3.5 for a method of
testing this assumption), a pooled estimate, s, of the standard deviation can be
calculated from the two individual standard deviations s1 and s2.

(x1 − x2)

x2x1

P �t > 0.14� = 0.90.

.
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Another application of this test is illustrated by the following example where it is
used to decide whether a change in the conditions of an experiment affects the
result.

Example 3.3.1

In a comparison of two methods for the determination of chromium in rye
grass, the following results (mg kg−1 Cr) were obtained:

Method 1: mean = 1.48; standard deviation 0.28
Method 2: mean = 2.33; standard deviation 0.31

For each method five determinations were made.
(Sahuquillo, A., Rubio, R. and Rauret, G. 1999. Analyst 124: 1)

Do these two methods give results having means which differ significantly?

The null hypothesis adopted is that the means of the results given by the two
methods are equal. From equation (3.3), the pooled value of the standard devi-
ation is given by:

From equation (3.2):

There are 8 degrees of freedom, so (Table A.2) the critical value t8 = 2.31
(P = 0.05): since the experimental value of is greater than this the differ-
ence between the two results is significant at the 5% level and the null hypoth-
esis is rejected. In fact since the critical value of t for P = 0.01 is about 3.36, the
difference is significant at the 1% level. In other words, if the null hypothesis
is true the probability of such a large difference arising by chance is less than
1 in 100.

t

t =
2.33 − 1.48

0.295√1
5 + 1

5

= 4.56

 s = 0.295

 s2 = ([4 × 0.282]) + [4 × 0.31]2)/(5 + 5 − 2) = 0.0873

where s is calculated from:

(3.3)

and t has n1 + n2 − 2 degrees of freedom.

This method assumes that the samples are drawn from populations with equal
standard deviations.

s2 =
(n1 − 1)s1

2 + (n2 − 1)s2
2

(n1 + n2 − 2)
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Example 3.3.2

In a series of experiments on the determination of tin in foodstuffs, samples
were boiled with hydrochloric acid under reflux for different times. Some of
the results are shown below:

Refluxing time (min) Tin found (mg kg−1)

30 55, 57, 59, 56, 56, 59
75 57, 55, 58, 59, 59, 59

(Analytical Methods Committee. 1983. Analyst 108: 109)

Does the mean amount of tin found differ significantly for the two boiling times?

The mean and variance (square of the standard deviation) for the two times are:

30 min = 57.00 = 2.80

75 min = 57.83 = 2.57

The null hypothesis is adopted that boiling has no effect on the amount of tin
found. By equation (3.3), the pooled value for the variance is given by:

s2 = (5 × 2.80 + 5 × 2.57)/10 = 2.685

s = 1.64

From equation (3.2):

There are 10 degrees of freedom so the critical value is t10 = 2.23 (P = 0.05). The
observed value of t (= 0.88) is less than the critical value so the null hypoth-
esis is retained: there is no evidence that the length of boiling time affects the
recovery rate.

The table below shows the result of performing this calculation using Excel.

t-Test: two-sample assuming equal variances

Variable 1 Variable 2
Mean 57 57.833
Variance 2.8 2.567
Observations 6 6
Pooled variance 2.683
Hypothesized mean difference 0
df 10
t Stat -0.881
P(T<=t) one-tail 0.199
t Critical one-tail 1.812
P(T<=t) two-tail 0.399
t Critical two-tail 2.228

 = −0.88

 t =
57.00 − 57.83

1.64√1
6 + 1

6

s2
2x2

s1
2x1

.
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The distinction between ‘one-tail’ and ‘two-tail’ will be covered in Section 3.5.
For the present, it is sufficient to consider only the two-tail values. These show
that Since this probability is greater than 0.05, the result
is not significant at the 5% level.

P �t > 0.88� = 0.399.

In order to test H0: µ1 = µ2 when it cannot be assumed that the two samples
come from populations with equal standard deviations, the statistic t is calcu-
lated, where

(3.4)

with

(3.5)

with the value obtained being truncated to an integer.

degrees of freedom =
�s1

2

n1

+
s2

2

n1
�

2

� s1
4

n1
2(n1 − 1)

+
s2

4

n2
2(n2 − 1)�

t =
(x1 − x2)

√s1
2

n1

+
s2

2

n2

The reader should be aware that there are various versions given in the literature for
the number of degrees of freedom for t, reflecting the fact that the method is an
approximate one. The method above is that used by Minitab and it errs on the side
of caution in giving a significant result. Excel, on the other hand, uses equation (3.5)
but rounds the value to the nearest integer. For example, if equation (3.5) gave a
value of 4.7, Minitab would take 4 degrees of freedom and Excel would take 5.

Example 3.3.3

The data below give the concentration of thiol (mM) in the blood lysate of the
blood of two groups of volunteers, the first group being ‘normal’ and the sec-
ond suffering from rheumatoid arthritis:

Normal: 1.84, 1.92, 1.94, 1.92, 1.85, 1.91, 2.07
Rheumatoid: 2.81, 4.06, 3.62, 3.27, 3.27, 3.76

(Banford, J. C., Brown, D. H., McConnell, A. A., McNeil, C. J., Smith, W. E.,
Hazelton, R. A. and Sturrock, R. D. 1983. Analyst 107: 195)

If the population standard deviations are unlikely to be equal then it is no longer
appropriate to pool sample standard deviations in order to give an overall estimate
of standard deviation. An approximate method in these circumstances is given
below:

SCA_C03.qxd  3/29/05  3:52 PM  Page 44



Paired t-test 45

.

The null hypothesis adopted is that the mean concentration of thiol is the
same for the two groups.

The reader can check that:

n1 = 7 = 1.921 s1 = 0.076

n2 = 6 = 3.465 s2 = 0.440

Substitution in equation (3.4) gives t = −8.48 and substitution in equation (3.5)
gives 5.3, which is truncated to 5. The critical value is t5 = 4.03 (P = 0.01) so the
null hypothesis is rejected: there is sufficient evidence to say that the mean
concentration of thiol differs between the groups.

The result of performing this calculation using Minitab (where the non-
pooled test is the default option) is shown below.

Two sample t-test and confidence interval

Two sample T for Normal vs Rheumatoid

N Mean StDev SE Mean
Normal 7 1.9214 0.0756 0.029
Rheumato 6 3.465 0.440 0.18

95% CI for mu Normal – mu Rheumato: (-2.012, -1.08)
T-Test mu Normal = mu Rheumato (vs not =): T = -8.48
P = 0.0004 DF = 5

This confirms the values above and also gives the information that
This probability is extremely low: the result is in fact

significant at P = 0.001.
P �t > 8.48� = 0.0004.

x2

x1

3.4 Paired t -test

It frequently happens that two methods of analysis are compared by studying test
samples containing different amounts of analyte. For example, Table 3.1 gives the
results of determining paracetamol concentration (% m/m) in tablets by two dif-
ferent methods. Ten tablets from 10 different batches were analysed in order to see
whether the results obtained by the two methods differed.

As always there is the variation between the measurements due to random
measurement error. In addition, differences between the tablets and differences
between the methods may also contribute to the variation between measurements.
It is the latter which is of interest in this example: we wish to know whether the
methods produce significantly different results. The test for comparing two means
(Section 3.3) is not appropriate in this case because it does not separate the variation
due to method from that due to variation between tablets: the two effects are said
to be ‘confounded’. This difficulty is overcome by looking at the difference, d,
between each pair of results given by the two methods. If there is no difference
between the two methods then these differences are drawn from a population with

.
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To test whether n paired results are drawn from the same population, that
is H0: µd = 0, calculate the statistic t:

(3.6)

where and sd are the mean and standard deviation respectively of d, the
difference between paired values.

The number of degrees of freedom of t is n − 1.

d

t = d√n/sd

Example 3.4.1

Test whether there is a significant difference between the results obtained by
the two methods in Table 3.1.

The differences between the pairs of values (taking the second value from the
first value) are:

+1.48, +0.66, +0.24, +0.21, −0.10, −0.61, −0.10, +0.09, −0.07, −0.21

These values have mean = 0.159 and standard deviation sd = 0.570. Sub-
stituting in equation (3.6), with n = 10, gives t = 0.88. The critical value is
t9 = 2.26 (P = 0.05). Since the calculated value of is less than this, the null
hypothesis is not rejected: the methods do not give significantly different
results for the paracetamol concentration.

Again this calculation can be performed on a computer, giving the result
that Since this probability is greater than 0.05 we reach
the same conclusion: the two methods do not differ significantly at P = 0.05.

P �t ≥ 0.882� = 0.40.

t

d

Table 3.1 Example of paired data

Batch UV spectrometric assay Near-infrared reflectance spectroscopy

1 84.63 83.15
2 84.38 83.72
3 84.08 83.84
4 84.41 84.20
5 83.82 83.92
6 83.55 84.16
7 83.92 84.02
8 83.69 83.60
9 84.06 84.13

10 84.03 84.24

(Trafford, A. D., Jee, R. D., Moffat, A. C. and Graham, P. 1999. Analyst 124: 163)

mean µd = 0. In order to test the null hypothesis, we test whether differs signifi-
cantly from 0 using the statistic t.

d
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The paired test described above does not require that the precisions of the two
methods are equal but it does assume that the differences, d, are normally dis-
tributed. This will be the case if the measurement error for each method is normally
distributed and the precision and bias (if any) of each method are constant over the
range of values for which the measurements were made. The data can consist of
either single measurements, as in Example 3.4.1, or the means of replicate measure-
ments. However, it is necessary for the same number of measurements to be made
on each sample by the first method and likewise for the second method: that is
n measurements on each sample by method 1 and m measurements on each sample
by method 2, where m and n do not have to be equal.

There are various circumstances in which it may be necessary or desirable to
design an experiment so that each sample is analysed by each of two methods,
giving results that are naturally paired. Some examples are:

1 The quantity of any one test sample is sufficient for only one determination by
each method.

2 The test samples may be presented over an extended period so it is necessary to
remove the effects of variations in the environmental conditions such as temper-
ature, pressure, etc.

3 The methods are to be compared by using a wide variety of samples from dif-
ferent sources and possibly with very different concentrations (but see the next
paragraph).

As analytical methods usually have to be applicable over a wide range of concen-
trations, a new method is often compared with a standard method by analysis of
samples in which the analyte concentration may vary over several powers of 10.
In this case it is inappropriate to use the paired t-test since its validity rests on the
assumption that any errors, either random or systematic, are independent of con-
centration. Over wide ranges of concentration this assumption may no longer be
true. An alternative method in such cases is linear regression (see Section 5.9) but
this approach also presents difficulties.

3.5 One-sided and two-sided tests

The methods described so far in this chapter have been concerned with testing
for a difference between two means in either direction. For example, the method
described in Section 3.2 tests whether there is a significant difference between the
experimental result and the known value for the reference material, regardless of the
sign of the difference. In most situations of this kind the analyst has no idea, prior
to the experiment, as to whether any difference between the experimental mean
and the reference value will be positive or negative. Thus the test used must cover
either possibility. Such a test is called two-sided (or two-tailed). In a few cases,
however, a different kind of test may be appropriate. Consider, for example, an
experiment in which it is hoped to increase the rate of reaction by addition of a cata-
lyst. In this case, it is clear before the experiment begins that the only result of inter-
est is whether the new rate is greater than the old, and only an increase need be

.
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It is interesting to note that if a two-sided test had been made in the example above
(for which the critical value for t5 = 2.57) the null hypothesis would not have been
rejected! This apparently contradictory result is explained by the fact that the deci-
sion on whether to make a one- or two-sided test depends on the degree of prior
knowledge, in this case a suspicion or expectation of positive bias. Obviously it is
essential that the decision on whether the test is one- or two-sided should be made
before the experiment has been done, and not with hindsight, when the results
might prejudice the choice. In general, it will be found that two-sided tests are much
more commonly used than one-sided ones. The relatively rare circumstances in
which one-sided tests are necessary are easily identified.

Example 3.5.1

It is suspected that an acid–base titrimetric method has a significant indicator
error and thus tends to give results with a positive systematic error (i.e. positive
bias). To test this an exactly 0.1 M solution of acid is used to titrate 25.00 ml of
an exactly 0.1 M solution of alkali, with the following results (ml):

25.06 25.18 24.87 25.51 25.34 25.41

Test for positive bias in these results.

For these data we have:

mean = 25.228 ml, standard deviation = 0.238 ml

Adopting the null hypothesis that there is no bias, H0: µ = 25.00, and using
equation (3.1) gives:

t = (25.228 − 25.00) × /0.238 = 2.35

From Table A.2 the critical value is t5 = 2.02 (P = 0.05, one-sided test). Since the
observed value of t is greater than this, the null hypothesis is rejected and there
is evidence for positive bias.

Using a computer gives P(t ≥ 2.35) = 0.033. Since this is less than 0.05, the
result is significant at P = 0.05, as before.

√6

tested for significance. This kind of test is called one-sided (or one-tailed). For a
given value of n and a particular probability level, the critical value for a one-sided
test differs from that for a two-sided test. In a one-sided test for an increase, the crit-
ical value of t (rather than ) for P = 0.05 is that value which is exceeded with a
probability of 5%. Since the sampling distribution of the mean is assumed to be
symmetrical, this probability is twice the probability that is relevant in the two-sided
test. The appropriate value for the one-sided test is thus found in the P = 0.10
column of Table A.2. Similarly, for a one-sided test at the P = 0.01 level, the 0.02
column is used. For a one-sided test for a decrease, the critical value of t will be of
equal magnitude but with a negative sign. If the test is carried out on a computer, it
will be necessary to indicate whether a one- or a two-sided test is required.

t
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3.6 F - test for the comparison of standard deviations

The significance tests described so far are used for comparing means, and hence for
detecting systematic errors. In many cases it is also important to compare the standard
deviations, i.e. the random errors of two sets of data. As with tests on means, this com-
parison can take two forms. Either we may wish to test whether Method A is more pre-
cise than Method B (i.e. a one-sided test) or we may wish to test whether Methods A and
B differ in their precision (i.e. a two-sided test). For example, if we wished to test whether
a new analytical method is more precise than a standard method, we would use a one-
sided test; if we wished to test whether two standard deviations differ significantly
(e.g. before applying a t-test – see Section 3.3 above), a two-sided test is appropriate.

The F-test considers the ratio of the two sample variances, i.e. the ratio of the
squares of the standard deviations, .s1

2/s2
2

In order to test whether the difference between two sample variances is signifi-
cant, that is to test H0: , the statistic F is calculated:

(3.7)

where 1 and 2 are allocated in the equation so that F is always ≥1.

The numbers of degrees of freedom of the numerator and denominator are
n1 − 1 and n2 − 1 respectively.

The test assumes that the populations from which the samples are taken are
normal.

F = s1
2/s2

2

σ 1
2 = σ 2

2

If the null hypothesis is true then the variance ratio should be close to 1. Differences
from 1 can occur because of random variation, but if the difference is too great it
can no longer be attributed to this cause. If the calculated value of F exceeds a
certain critical value (obtained from tables) then the null hypothesis is rejected. This
critical value of F depends on the size of both samples, the significance level and the
type of test performed. The values for P = 0.05 are given in Appendix 2 in Table A.3
for one-sided tests and in Table A.4 for two-sided tests; the use of these tables is illus-
trated in the following examples.

Example 3.6.1

A proposed method for the determination of the chemical oxygen demand of
wastewater was compared with the standard (mercury salt) method. The fol-
lowing results were obtained for a sewage effluent sample:

Mean (mg l−1) Standard deviation (mg l−1)

Standard method 72 3.31
Proposed method 72 1.51

.
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For each method eight determinations were made.
(Ballinger, D., Lloyd, A. and Morrish, A. 1982. Analyst 107: 1047)

Is the precision of the proposed method significantly greater than that of the
standard method?

We have to decide whether the variance of the standard method is signifi-
cantly greater than that of the proposed method. F is given by the ratio of the
variances:

This is a case where a one-sided test must be used, the only point of interest
being whether the proposed method is more precise than the standard method.
In Table A.3 the number of degrees of freedom of the denominator is given in
the left-hand column and the number of degrees of freedom of the numerator
at the top. Both samples contain eight values so the number of degrees of free-
dom in each case is 7. The critical value is F7,7 = 3.787 (P = 0.05), where the
subscripts indicate the degrees of freedom of the numerator and denominator
respectively. Since the calculated value of F (4.8) exceeds this, the variance of
the standard method is significantly greater than that of the proposed method
at the 5% probability level, i.e. the proposed method is more precise.

F =
3.312

1.512 = 4.8

Example 3.6.2

In Example 3.3.1 it was assumed that the variances of the two methods for
determining chromium in rye grass did not differ significantly. This assump-
tion can now be tested. The standard deviations were 0.28 and 0.31 (each
obtained from five measurements on a specimen of a particular plant).
Calculating F so that it is greater than 1, we have:

In this case, however, we have no reason to expect in advance that the variance
of one method should be greater than that of the other, so a two-sided test is
appropriate. The critical values given in Table A.3 are the values that F exceeds
with a probability of 0.05, assuming that it must be greater than 1. In a two-
sided test the ratio of the first to the second variance could be less or greater
than 1, but if F is calculated so that it is greater than 1, the probability that
it exceeds the critical values given in Table A.3 will be doubled. Thus these
critical values are not appropriate for a two-sided test and Table A.4 is used
instead. From this table, taking the number of degrees of freedom of both
numerator and denominator as 4, the critical value is F4,4 = 9.605. The calcu-
lated value is less than this, so there is no significant difference between the two
variances at the 5% level.

F =
0.312

0.282 = 1.23
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In order to use Grubbs’ test for an outlier, that is to test H0 : all measurements
come from the same population, the statistic G is calculated:

(3.8)

where and s are calculated with the suspect value included.

The test assumes that the population is normal.

x

G = suspect value − x/s

The critical values for G for P = 0.05 are given in Table A.5. If the calculated value of
G exceeds the critical value, the suspect value is rejected. The values given are for a
two-sided test, which is appropriate when it is not known in advance at which
extreme an outlier may occur.

As with the t-test, other significance levels may be used for the F-test and the crit-
ical values can be found from the tables listed in the bibliography at the end of
Chapter 1. Care must be taken that the correct table is used depending on whether
the test is one- or two-sided: for an α % significance level the 2α % points of the F
distribution are used for a one-sided test and the α % points are used for a two-sided
test. If a computer is used it will be possible to obtain a P-value. Note that Excel car-
ries out only a one-sided F-test and that it is necessary to enter the sample with the
larger variance as the first sample. Minitab does not give an F-test for comparing the
variances of two samples.

3.7 Outliers

Every experimentalist is familiar with the situation in which one (or possibly more)
of a set of results appears to differ unreasonably from the others in the set. Such a
measurement is called an outlier. In some cases an outlier may be attributed to a
human error. For example, if the following results were given for a titration:

12.12, 12.15, 12.13, 13.14, 12.12 ml

then the fourth value is almost certainly due to a slip in writing down the result and
should read 12.14. However, even when such obviously erroneous values have been
removed or corrected, values which appear to be outliers may still occur. Should
they be kept, come what may, or should some means be found to test statistically
whether or not they should be rejected? Obviously the final values presented for
the mean and standard deviation will depend on whether or not the outliers are
rejected. Since discussion of the precision and accuracy of a method depends on
these final values, it should always be made clear whether outliers have been
rejected, and if so, why.

The ISO recommended test for outliers is Grubbs’ test. This test compares the
deviation of the suspect value from the sample mean with the standard deviation of
the sample. The suspect value is the value that is furthest away from the mean.

.
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In fact, the suspect value in this data set would have to be considerably lower before
it was rejected. It can be shown, using trial and error, that for the data set

0.403, 0.410, 0.401, b

(where b < 0.401), the value of b would have to be as low as 0.356 before it was
rejected.

Ideally, further measurements should be made when a suspect value occurs,
particularly if only a few values have been obtained initially. This may make it
clearer whether or not the suspect value should be rejected, and, if it is still retained,
will also reduce to some extent its effect on the mean and standard deviation.

Example 3.7.1

The following values were obtained for the nitrite concentration (mg l−1) in a
sample of river water:

0.403, 0.410, 0.401, 0.380

The last measurement is suspect: should it be rejected?
The four values have = 0.3985 and s = 0.01292, giving

From Table A.5, for sample size 4, the critical value of G is 1.481 (P = 0.05).
Since the calculated value of G does not exceed 1.481, the suspect measurement
should be retained.

G = 0.380 − 0.3985/0.01292 = 1.432

x

Example 3.7.2

If three further measurements were added to those given in the example above
so that the complete results became:

0.403, 0.410, 0.401, 0.380, 0.400, 0.413, 0.408

should 0.380 still be retained?

The seven values have = 0.4021 and s = 0.01088. The calculated value of G
is now

The critical value of G (P = 0.05) for a sample size 7 is 2.020, so the suspect
measurement is now rejected at the 5% significance level.

G = 0.380 − 0.402/0.01088 = 2.031

x

Dixon’s test (sometimes called the Q-test) is another test for outliers which is
popular because the calculation is simple. For small samples (size 3 to 7) the test
assesses a suspect measurement by comparing the difference between it and the
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measurement nearest to it in size with range of the measurements. (For larger sam-
ples the form of the test is modified slightly. A reference containing further details
is given at the end of this chapter.)

In order to use Dixon’s test for an outlier, that is to test H0 : all measurements
come from the same population, the statistic Q is calculated:

(3.9)

This test is valid for samples size 3 to 7 and assumes that the population is
normal.

Q = suspect value − nearest value/(largest value − smallest value)

The critical values of Q for P = 0.05 for a two-sided test are given in Table A.6. If the
calculated value of Q exceeds the critical value, the suspect value is rejected.

Example 3.7.3

Apply Dixon’s test to the data from the previous example.

The critical value of Q (P = 0.05) for a sample size 7 is 0.570. The suspect value
0.380 is rejected (as it was using Grubbs’ test).

Q = 0.380 − 0.400/(0.413 − 0.380) = 0.606

It is important to appreciate that for a significance level of 5% there is still
a chance of 5%, or 1 in 20, of incorrectly rejecting the suspect value. This may
have a considerable effect on the estimation of the precision of an experiment. For
example, for all seven values of the nitrite concentration given above, the standard
deviation is 0.0112 mg l−1 but when the suspect value is rejected the standard devi-
ation becomes 0.0056 mg l−1, i.e. the precision appears to have improved by a
factor of 2.

The examples above illustrate the importance of caution in rejecting outliers.
When measurements are repeated only a few times (which is common in analyt-
ical work), rejection of one value makes a great difference to the mean and stand-
ard deviation. In particular, the practice of making three measurements and
rejecting the one which differs most from the other two should be avoided. It
can be shown that a more reliable estimate of the mean is obtained, on average,
by using the middle one of the three values rather than the mean of the two unre-
jected values.

If a set of data contains two or more suspect results, other complications arise in
deciding whether rejection is justified. Figure 3.1 illustrates in the form of dot-plots
two examples of such difficulties. In Figure 3.1(a) there are two results (2.9, 3.1), both

.
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Figure 3.1 Dot-plots illustrating the problem of handling outliers: (a) when there are two
suspect results at the high end of the sample data; and (b) when there are two suspect
results, one at each extreme of the data.

of which are suspiciously high compared with the mean of the data, yet if Q were
calculated uncritically using equation (3.9) we would obtain:

Q = (3.1 − 2.9)/(3.1 − 2.0) = 0.18

a value which is not significant (P = 0.05). Clearly the possible outlier 3.1 has been
masked by the other possible outlier, 2.9, giving a low value of Q. A different situ-
ation is shown in Figure 3.1(b), where the two suspect values are at opposite ends
of the data set. This results in a large value for the range. As a result Q is small and
so not significant. Extensions of Grubbs’ test give tests for pairs of outliers. Further
details for dealing with multiple outliers can be found from the bibliography at the
end of this chapter.

The outlier tests described above assume that the sample comes from a normal
population. It is important to realize that a result that seems to be an outlier on the
assumption of a normal population distribution may well not be an outlier if the
sample actually comes from (for example) a log-normal distribution (Section 2.3).
Therefore outlier tests should not be used if there is a suspicion that the population
may not have a normal distribution. This difficulty, along with the extra compli-
cations arising in cases of multiple outliers, explains the increasing use of the non-
parametric and robust statistical methods described in Chapter 6. Such methods are
either insensitive to extreme values, or at least give them less weight in calculations,
so the problem of whether or not to reject outliers is avoided.

3.8 Analysis of variance

In Section 3.3 a method was described for comparing two means to test whether
they differ significantly. In analytical work there are often more than two means to
be compared. Some possible situations are: comparing the mean concentration of
protein in solution for samples stored under different conditions; comparing the
mean results obtained for the concentration of an analyte by several different
methods; and comparing the mean titration results obtained by several different
experimentalists using the same apparatus. In all these examples there are two pos-
sible sources of variation. The first, which is always present, is due to the random
error in measurement. This was discussed in detail in the previous chapter: it is this
error which causes a different result to be obtained each time a measurement is
repeated under the same conditions. The second possible source of variation is due
to what is known as a controlled or fixed-effect factor. For the examples above,

x1 xn

(a)

(b)

2.0 2.2 2.4 2.6 2.8 3.0
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Table 3.2 Fluorescence from solutions stored under different conditions

Conditions Replicate measurements Mean

A Freshly prepared 102, 100, 101 101
B Stored for 1 hour in the dark 101, 101, 104 102
C Stored for 1 hour in subdued light 97, 95, 99 97
D Stored for 1 hour in bright light 90, 92, 94 92

Overall mean 98

the controlled factors are respectively the conditions under which the solution
was stored, the method of analysis used, and the experimentalist carrying out the
titration. Analysis of variance (frequently abbreviated to ANOVA) is an extremely
powerful statistical technique which can be used to separate and estimate the
different causes of variation. For the particular examples above, it can be used to
separate any variation which is caused by changing the controlled factor from the
variation due to random error. It can thus test whether altering the controlled factor
leads to a significant difference between the mean values obtained.

ANOVA can also be used in situations where there is more than one source of
random variation. Consider, for example, the purity testing of a barrelful of sodium
chloride. Samples are taken from different parts of the barrel chosen at random and
replicate analyses performed on these samples. In addition to the random error
in the measurement of the purity, there may also be variation in the purity of the
samples from different parts of the barrel. Since the samples were chosen at random,
this variation will be random and is thus sometimes known as a random-effect
factor. Again, ANOVA can be used to separate and estimate the sources of variation.
Both types of statistical analysis described above, i.e. where there is one factor, either
controlled or random, in addition to the random error in measurement, are known
as one-way ANOVA. The arithmetical procedures are similar in the fixed- and
random-effect factor cases: examples of the former are given in this chapter and of
the latter in the next chapter, where sampling is considered in more detail. More
complex situations in which there are two or more factors, possibly interacting with
each other, are considered in Chapter 7.

3.9 Comparison of several means

Table 3.2 shows the results obtained in an investigation into the stability of a fluores-
cent reagent stored under different conditions. The values given are the fluorescence
signals (in arbitrary units) from dilute solutions of equal concentration. Three repli-
cate measurements were made on each sample. The table shows that the mean values
for the four samples are different. However, we know that because of random error,
even if the true value which we are trying to measure is unchanged, the sample mean
may vary from one sample to the next. ANOVA tests whether the difference between
the sample means is too great to be explained by the random error.

.
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Figure 3.2 shows a dot-plot comparing the results obtained in the different con-
ditions. This suggests that there is little difference between conditions A and B but
that conditions C and D differ both from A and B and from each other.

The problem can be generalized to consider h samples each with n members as
in Table 3.3 where xij is the jth measurement of the ith sample. The means of the
samples are , , . . . , and the mean of all the values grouped together is . The
null hypothesis adopted is that all the samples are drawn from a population with
mean µ and variance . On the basis of this hypothesis can be estimated in two
ways, one involving the variation within the samples and the other the variation
between the samples.

1 Within-sample variation

For each sample a variance can be calculated by using the formula:

[see equation (2.2)]

Using the values in Table 3.2 we have:

Similarly it can be shown that samples C and D both have variances of 4.

Variance of sample B =
(101 − 102)2 + (101 − 102)2 + (104 − 102)2

(3 − 1)
= 3

Variance of sample A =
(102 − 101)2 + (100 − 101)2 + (101 − 101)2

(3 − 1)
= 1

∑ (xi − x)2/(n − 1)

σ 0
2σ 0

2

xxhx2x1

A B D

Conditions

105

100

95

90

Si
gn

al

C

Figure 3.2 Dot-plot of results in Table 3.2.

Table 3.3 Generalization of Table 3.2

Mean

Sample 1 x11 x12 . . . x1j . . . x1n

Sample 2 x21 x22 . . . x2j . . . x2n

Sample i xi1 xi2 . . . xij . . . xin

Sample h xh1 xh2 . . . xhj . . . xhn

Overall mean = x

xh

..

...
...

...
...

.
xi

..

...
...

...
...

.
x2

x1
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Averaging these values gives:

Within-sample estimate of = (1 + 3 + 4 + 4)/4 = 3

This estimate has 8 degrees of freedom: each sample estimate has 2 degrees of
freedom and there are four samples. Note that this estimate does not depend on
the means of the samples: for example, if all the measurements for sample A were
increased by, say, 4, this estimate of would be unaltered.

The general formula for the within-sample estimate of is:

Within-sample estimate of (3.10)

The summation over j and division by (n − 1) gives the variance of each sample;
the summation over i and division by h averages these sample variances. The
expression in equation (3.10) is known as a mean square (MS) since it involves
a sum of squared terms (SS) divided by the number of degrees of freedom. Since
in this case the number of degrees of freedom is 8 and the mean square is 3, the
sum of the squared terms is 3 × 8 = 24.

2 Between-sample variation

If the samples are all drawn from a population which has variance , then their
means come from a population with variance /n (cf. the sampling distribution
of the mean, Section 2.5). Thus, if the null hypothesis is true, the variance of the
means of the samples gives an estimate of /n. From Table 3.2:

Sample mean variance

= 62/3

So the estimate of is . This estimate has 3 degrees of freedom since
it is calculated from four sample means. Note that this estimate of does not
depend on the variability within each sample, since it is calculated from the
sample means.

However if, for example, the mean of sample D was changed, then this estimate
of would also be changed.

In general we have:

Between-sample estimate of (3.11)

which is again a ‘mean square’ involving a sum of squared terms divided by
the number of degrees of freedom. In this case the number of degrees of
freedom is 3 and the mean square is 62, so the sum of the squared terms is
3 × 62 = 186.

Summarizing our calculations so far:

Within-sample mean square = 3 with 8 d.f.
Between-sample mean square = 62 with 3 d.f.

If the null hypothesis is correct, then these two estimates of should not differ
significantly. If it is incorrect, the between-sample estimate of will be greater thanσ 0

2

σ 0
2

σ 0
2 = n∑

i
(xi − x )2/(h − 1)

σ 0
2

σ 0
2

�62
3 � × 3 = 62σ 0

2

=
(101 − 98)2 + (102 − 98)2 + (97 − 98)2 + (92 − 98)2

(4 − 1)

σ 0
2

σ 0
2

σ 0
2

σ 0
2 = ∑

i
∑

j
(xij − xi)

2/h(n − 1)

σ 0
2

σ 0
2

σ 0
2

.
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the within-sample estimate because of between-sample variation. To test whether it
is significantly greater, a one-sided F-test is used (see Section 3.6):

F = 62/3 = 20.7

(Remember, each mean square is used so no further squaring is necessary.) From
Table A.3 the critical value of F is 4.066 (P = 0.05). Since the calculated value of F
is greater than this the null hypothesis is rejected: the sample means do differ
significantly.

A significant result in one-way ANOVA can arise for several different reasons: for
example, one mean may differ from all the others, all the means may differ from each
other, the means may fall into two distinct groups, etc. A simple way of deciding
the reason for a significant result is to arrange the means in increasing order and
compare the difference between adjacent values with a quantity called the least sig-
nificant difference. This is given by:

where s is the within-sample estimate of and h(n − 1) is the number of degrees of
freedom of this estimate. For the example above, the sample means arranged in
increasing order of size are:

= 92 = 97 = 101 = 102

and the least significant difference is (P = 0.05), giving 3.26. Com-
paring this value with the differences between the means suggests that conditions
D and C give results which differ significantly from each other and from the results
obtained in conditions A and B. However, the results obtained in conditions A and B do
not differ significantly from each other. This confirms what was suggested by the dot-
plot in Figure 3.2 and suggests that it is exposure to light which affects the fluorescence.

The least significant difference method described above is not entirely rigorous:
it can be shown that it leads to rather too many significant differences. However,
it is a simple follow-up test when ANOVA has indicated that there is a significant
difference between the means. Descriptions of other more rigorous tests are given in
the references at the end of this chapter.

3.10 The arithmetic of ANOVA calculations

In the preceding ANOVA calculation was estimated in two different ways. If the
null hypothesis were true, could also be estimated in a third way by treating the
data as one large sample. This would involve summing the squares of the deviations
from the overall mean:

and dividing by the number of degrees of freedom, 12 − 1 = 11.

 = 210

 ∑
i
∑

j
(xij − x)2 = 42 + 22 + 32 + 32 + 32 + 62 + 12 + 32 + 12 + 82 + 62 + 42

σ 0
2

σ 0
2

√3 × √2/3 × 2.306

xBxAxCxD

σ 0

s√�2
n� × th(n − 

1)
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This method of estimating is not used in the analysis because the estimate
depends on both the within- and between-sample variations. However, there is an
exact algebraic relationship between this total variation and the sources of variation
which contribute to it. This, especially in more complicated ANOVA calculations,
leads to a simplification of the arithmetic involved. The relationship between the
sources of variation is illustrated by Table 3.4, which summarizes the sums of
squares and degrees of freedom. It will be seen that the values for the total variation
given in the last row of the table are the sums of the values in the first two rows for
both the sum of squares and the degrees of freedom. This additive property holds
for all the ANOVA calculations described in this book.

Just as in the calculation of variance, there are formulae which simplify the cal-
culation of the individual sums of squares. These formulae are summarized below:

σ 0
2

Table 3.4 Summary of sums of squares and degrees of freedom

Source of variation Sum of squares Degrees of freedom

Between-sample h − 1 = 3

Within-sample h(n − 1) = 8

Total hn − 1 = 11∑
i
∑

j

(xij − x )
2 = 210

∑
i
∑

j

(xij − xi )
2 = 24

n∑
i

(xi − x )
2 = 186

One-way ANOVA tests for a significant difference between means when there
are more than two samples involved. The formulae used are:

Source of variation Sum of squares Degrees of freedom

Between-samples h − 1

Within-samples by subtraction by subtraction

Total N − 1

where N = nh = total number of measurements
Ti = sum of the measurements in the ith sample
T = sum of all the measurements, grand total.

The test statistic is

and the critical value is Fh −1,N−h.

F =
between-sample mean square
within-sample mean square

∑
i
∑

j

x2
ij − T 2/N

∑
i

T 2
i /n − T 2/N

.
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The calculations for one-way ANOVA have been given in detail in order to make the
principles behind the method clearer. In practice such calculations are normally
made on a computer. Both Minitab and Excel have an option which performs one-
way ANOVA and, as an example, the output given by Excel is shown below, using
the original values.

Example 3.10.1

Test whether the samples in Table 3.2 are drawn from populations with equal
means.

The calculation of the mean squares is set out below. All the values in Table 3.2
have had 100 subtracted from them, which simplifies the arithmetic con-
siderably. Note that this does not affect either the between- or within-sample
estimates of variance because the same quantity has been subtracted from
every value.

Ti

A 2 0 1 3 9
B 1 1 4 6 36
C −3 −5 −1 −9 81
D −10 −8 −6 −24 576

T = −24

n = 3, h = 4, N = 12, 

Source of variation Sum of squares Degrees of Mean square
freedom

Between-sample 702/3 − (−24)2/12 = 186 3 186/3 = 62
Within-sample by subtraction = 24 8 24/8 = 3

Total 258 − (−24)2/12 = 210 11

F = 62/3 = 20.7

The critical value F3,8 = 4.066 (P = 0.05). Since the calculated value is greater
than this the null hypothesis is rejected: the sample means differ significantly.

∑
i
∑

j
xij

2 = 258

∑
i

T2
i = 702

T2
i

These formulae can be illustrated by repeating the ANOVA calculations for the data
in Table 3.2. The calculation is given in full below.
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Anova: single factor

SUMMARY

Groups Count Sum Average Variance

A 3 303 101 1
B 3 306 102 3
C 3 291 97 4
D 3 276 92 4

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 186 3 62 20.66667 0.0004 4.06618
Within Groups 24 8 3

Total 210 11

Certain assumptions have been made in performing the ANOVA calculations in this
chapter. The first is that the variance of the random error is not affected by the treat-
ment used. This assumption is implicit in the pooling of the within-sample vari-
ances to calculate an overall estimate of the error variance. In doing this we are
assuming what is known as the homogeneity of variance. In the particular example
given above, where all the measurements are made in the same way, we would
expect homogeneity of variance. Methods of testing for this property are given in
the references at the end of this chapter.

A second assumption is that the uncontrolled variation is random. This would
not be the case if, for example, there were some uncontrolled factor, such as tem-
perature change, which produced a trend in the results over a period of time. The
effect of such uncontrolled factors can be overcome to a large extent by the tech-
niques of randomization and blocking which are discussed in Chapter 7.

It will be seen that an important part of ANOVA is the application of the F-test.
Use of this test (see Section 3.6) simply to compare the variances of two samples
depends on the samples being drawn from a normal population. Fortunately, how-
ever, the F-test as applied in ANOVA is not too sensitive to departures from
normality of distribution.

3.11 The chi-squared test

In the significance tests so far described in this chapter the data have taken the form
of observations which, apart from any rounding off, have been measured on a con-
tinuous scale. In contrast, this section is concerned with frequency, i.e. the number
of times a given event occurs. For example, Table 2.2 gives the frequencies of the
different values obtained for the nitrate ion concentration when 50 measurements
were made on a sample. As discussed in Chapter 2, such measurements are usually
assumed to be drawn from a population which is normally distributed. The chi-
squared test could be used to test whether the observed frequencies differ signifi-
cantly from those which would be expected on this null hypothesis.

.
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Since the calculation involved in using this statistic to test for normality is relatively
complicated, it will not be described here. (A reference to a worked example is given
at the end of the chapter.) The principle of the chi-squared test is more easily under-
stood by means of the following example.

Example 3.11.1

The numbers of glassware breakages reported by four laboratory workers over
a given period are shown below. Is there any evidence that the workers differ
in their reliability?

Numbers of breakages: 24, 17, 11, 9

The null hypothesis is that there is no difference in reliability. Assuming that
the workers use the laboratory for an equal length of time, we would expect,
from the null hypothesis, the same number of breakages by each worker. Since
the total number of breakages is 61, the expected number of breakages per
worker is 61/4 = 15.25. Obviously it is not possible in practice to have a non-
integral number of breakages: this number is a mathematical concept. The
nearest practicable ‘equal’ distribution is 15, 15, 15, 16, in some order. The
question to be answered is whether the difference between the observed and
expected frequencies is so large that the null hypothesis should be rejected.
That there should be some difference between the two sets of frequencies can be
most readily appreciated by considering a sequence of throws of a die: we
should, for example, be most surprised if 30 throws of a die yielded exactly
equal frequencies for 1, 2, 3, etc. The calculation of χ2 is shown below.

Observed frequency, O Expected frequency, E O − E (O − E)2/E

24 15.25 8.75 5.020
17 15.25 1.75 0.201
11 15.25 −4.25 1.184
9 15.25 −6.25 2.561

Totals 61 0 χ2 = 8.966

Note that the total of the O − E column is always zero, thus providing a useful
check on the calculation.

If χ2 exceeds a certain critical value the null hypothesis is rejected. The criti-
cal value depends, as in other significance tests, on the significance level of
the test and on the number of degrees of freedom. The number of degrees of

To test whether the observed frequencies, Oi, agree with those expected, Ei,
according some null hypothesis, the statistic χ2 is calculated:

(3.12)χ 2 = ∑
i

(Oi − Ei)
2

Ei

SCA_C03.qxd  3/29/05  3:52 PM  Page 62



Testing for normality of distribution 63

.

The calculation of χ2 suggests that a significant result is obtained because of the
high number of breakages reported by the first worker. To study this further, addi-
tional chi-squared tests can be performed. One of them tests whether the second,
third and fourth workers differ significantly from each other: in this case each
expected frequency is (17 + 11 + 9)/3. (Note that the t-test cannot be used here as
we are dealing with frequencies and not continuous variates). Another tests
whether the first worker differs significantly from the other three workers taken as
a group. In this case there are two classes: the breakages by the first worker with
an expected frequency of 15.25 and the total breakages by the other workers with
expected frequency of 15.25 × 3 = 45.75. In such cases when there are only two
classes and hence one degree of freedom, an adjustment known as Yates’s
correction should be applied. This involves replacing O − E by O − E− 0.5. For
example, if O − E = −4.5, O − E= 4.5 and O − E− 0.5 = 4. These further tests are
given as an exercise at the end of this chapter.

In general the chi-squared test should be used only if the total number of observa-
tions is 50 or more and the individual expected frequencies are not less than 5. This is
not a rigid rule: a reference is given at the end of this chapter which discusses this point
further. Other applications of the chi-squared test are also described in this reference.

3.12 Testing for normality of distribution

As has been emphasized in this chapter, many statistical tests assume that the data
used are drawn from a normal population. One method of testing this assumption,
using the chi-squared test, was mentioned in the previous section. Unfortunately,
this method can only be used if there are 50 or more data points. It is common in
experimental work to have only a small set of data. A simple visual way of seeing
whether a set of data is consistent with the assumption of normality is to plot a
cumulative frequency curve on special graph paper known as normal probability
paper. This method is most easily explained by means of an example.

Example 3.12.1

Use normal probability paper to investigate whether the data below could have
been drawn from a normal population:

109, 89, 99, 99, 107, 111, 86, 74, 115, 107, 134, 113, 110, 88, 104

freedom is, in an example of this type, one less than the number of classes
used, i.e. 4 − 1 = 3 in this case. The critical values of χ2 for P = 0.05 are given in
Table A.7. For 3 degrees of freedom the critical value is 7.81. Since the calculated
value is greater than this, the null hypothesis is rejected at the 5% significance
level: there is evidence that the workers do differ in their reliability.

.
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Table 3.5 shows the data arranged in order of increasing size. The second col-
umn gives the cumulative frequency for each measurement, i.e. the number of
measurements less than or equal to that measurement. The third column gives
the percentage cumulative frequency. This is calculated by using the formula:

% cumulative frequency = 100 × cumulative frequency/(n + 1)

where n is the total number of measurements. (A divisor of n + 1 rather than
n is used so that the % cumulative frequency of 50% falls at the middle of
the data set, in this case at the eighth measurement. Note that two of the
values, 99 and 107, occur twice.) If the data come from a normal population,
a graph of percentage cumulative frequency against measurement results in an
S-shaped curve, as shown in Figure 3.3.

Normal probability paper has a non-linear scale for the percentage cumula-
tive frequency axis, which will convert this S-shaped curve into a straight line.
A graph plotted on such paper is shown in Figure 3.4: the points lie approxi-
mately on a straight line, supporting the hypothesis that the data come from
a normal distribution.

Minitab will give a normal probability plot directly. The result is shown in
Figure 3.5. The program uses a slightly different method for calculating the
percentage cumulative frequency but the difference is not important.

Table 3.5 Data for normal probability paper example

Measurement Cumulative frequency % Cumulative frequency

74 1 6.25
86 2 12.50
88 3 18.75
89 4 25.00
99 6 37.50

104 7 43.75
107 9 56.25
109 10 62.50
110 11 68.75
111 12 75.00
113 13 81.25
115 14 87.50
134 15 93.75

One method of testing for normality is to measure how closely the points on a
normal probability plot conform to a straight line. Minitab gives a test for normal-
ity (the Ryan–Joiner test) based on this idea. The value of this test statistic is given
beside the graph in Figure 3.5 (RJ = 0.973), together with a P-value of >0.100, indi-
cating that the assumption of normality is justified.

The Kolmogorov–Smirnov method is another method, which may, among
other applications, be used to test for normality. The principle of the method
involves comparing the sample cumulative distribution function with the
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Figure 3.3 The cumulative frequency curve for a normal distribution.

Figure 3.4 Normal probability plot for the example in Section 3.12.

99
98

95
90

80
70
60
50
40
30
20

10

5
2
1

70 80 90 100 110 120 130

Measurement

%
 c

um
ul

at
iv

e 
fr

eq
ue

nc
y

Figure 3.5 Normal probability plot obtained using Minitab.
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cumulative distribution function of the hypothesized distribution. The hypo-
thetical and sample functions are drawn on the same graph. If the experimental
data depart substantially from the expected distribution, the two functions will
be widely separated over part of the diagram. If, however, the data are closely in
accord with the expected distribution, the two functions will never be very
far apart. The test statistic is given by the maximum vertical difference between
the two functions and is compared in the usual way with a set of tabulated
values.

When the Kolmogorov–Smirnov method is used to test whether a distribution
is normal, we first transform the original data, which might have any values for
their mean and standard deviation, into the standard normal variable, z (see
Section 2.2). This is done by using the equation:

(3.13)

where the terms have their usual meanings; the values of the mean and the standard
deviation are estimated by the methods of Chapter 2. The data are next transformed
by using equation (3.13) and then the Kolmogorov–Smirnov method is applied. This
test is illustrated in the following example.

z =
x − µ

σ

Example 3.12.2

Eight titrations were performed, with the results 25.13, 25.02, 25.11, 25.07,
25.03, 24.97, 25.14 and 25.09 ml. Could such results have come from a normal
population?

First we estimate the mean and the standard deviation [with the aid of
equations (2.1) and (2.2)] as 25.07 and 0.0593 ml respectively. The next
step is to transform the x-values into z-values by using the relationship
z = (x − 25.07)/0.059, obtained from equation (3.13). The eight results are
thus transformed into 1.01, −0.84, 0.67, 0, −0.67, −1.69, 1.18 and 0.34. These
z-values are arranged in order of increasing size and plotted as a stepped
cumulative distribution function with a step height of 1/n, where n is the
number of measurements. Thus, in this case the step height is 0.125 (i.e. 1/8).
(Note that this is not quite the same approach as that used in Example 3.12.1.)
Comparison with the hypothetical function for z (Table A.2) indicates
(Figure 3.6) that the maximum difference is 0.132 when z = 0.34. The critical
values for this test are given in Table A.14. The table shows that, for n = 8 and
P = 0.05, the critical value is 0.288. Since 0.132 < 0.288 we can accept the null
hypothesis that the data come from a normal population with mean 25.07
and standard deviation 0.059.

The value of this Kolmogorov–Smirnov test statistic, together with its
P-value, can be obtained directly from Minitab in conjunction with a normal
probability plot.
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3.13 Conclusions from significance tests

This section looks more closely at the conclusions that may be drawn from a signifi-
cance test. As was explained in Section 3.2, a significance test at, for example, the
P = 0.05 level involves a 5% risk that a null hypothesis will be rejected even though it
is true. This type of error is known as a Type I error. The risk of such an error can be
reduced by altering the significance level of the test to P = 0.01 or even P = 0.001.
This, however, is not the only possible type of error: it is also possible to retain a null
hypothesis even when it is false. This is called a Type II error. In order to calculate
the probability of this type of error it is necessary to postulate an alternative to the
null hypothesis, known as an alternative hypothesis, H1.

Consider the situation where a certain chemical product is meant to contain 3%
of phosphorus by weight. It is suspected that this proportion has increased. To test
this the composition is analysed by a standard method with a known standard devi-
ation of 0.036%. Suppose four measurements are made and a significance test is
performed at the P = 0.05 level. A one-sided test is required, as we are interested only
in an increase. The null hypothesis is:

H0: µ = 3.0%

The solid line in Figure 3.7 shows the sampling distribution of the mean if H0 is true.
This sampling distribution has mean 3.0 and standard deviation (i.e. standard error
of the mean) . If the sample mean lies above the indicated criti-
cal value, , the null hypothesis is rejected. Thus the darkest region, with area 0.05,
represents the probability of a Type I error.

Suppose we take the alternative hypothesis:

H1: µ = 3.05%

xc

σ ⁄√n = 0.036 ⁄√4%
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Figure 3.6 Kolmogorov’s method used to test for the normal distribution. Maximum
difference between the hypothetical and sample functions is shown by the arrow (r).
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The broken line in Figure 3.7 shows the sampling distribution of the mean if the
alternative hypothesis is true. Even if this is the case, the null hypothesis will be
retained if the sample mean lies below . The probability of this Type II error is rep-
resented by the lightly shaded area. The diagram shows the interdependence of the
two types of error. If, for example, the significance level is changed to P = 0.01 in
order to reduce a risk of a Type I error, will be increased and the risk of a Type II
error is also increased. Conversely, a decrease in the risk of a Type II error can only
be achieved at the expense of an increase in the probability of a Type I error. The
only way in which both errors can be reduced (for a given alternative hypothesis) is
by increasing the sample size. The effect of increasing n to 9, for example, is illus-
trated in Figure 3.8: the resultant decrease in the standard error of the mean pro-
duces a decrease in both types of error, for a given value of .

The probability that a false null hypothesis is rejected is known as the power of
a test. That is, the power of a test is (1 – the probability of a Type II error). In the
example above it is a function of the mean specified in the alternative hypothesis.
It also depends on the sample size, the significance level of the test, and whether the
test is one- or two-sided. In some circumstances where two or more tests are avail-
able to test the same hypothesis, it may be useful to compare the powers of the tests
in order to decide which is most appropriate.

Type I and Type II errors are also relevant when significance tests are applied
sequentially. An example of this situation is the application of the t-test to the
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Figure 3.7 Type I and Type II errors.
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difference between two means, after first using the F-test to decide whether or
not the sample variances can be pooled (see Sections 3.3 and 3.6). Both Type I and
Type II errors can arise from the initial F-test, and the occurrence of either type will
mean that the stated levels of significance for the subsequent t-test are incorrect,
because the incorrect form of the t-test may have been applied.

This example emphasizes the general conclusion that significance tests do not
give clear-cut answers: rather they aid the interpretation of experimental data by
giving the probabilities that certain conclusions are valid.
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Exercises

1 Use a normal probability plot to test whether the following set of data could
have been drawn from a normal population:

11.68,  11.12,  8.92,  8.82,  10.31,  11.88,  9.84,  11.69,  9.53,  10.30,
9.17,  10.04,  10.65,  10.91,  10.32,  8.71,  9.83,  9.90,  10.40

2 In order to evaluate a spectrophotometric method for the determination of
titanium, the method was applied to alloy samples containing different certified
amounts of titanium. The results (% Ti) are shown below.

.
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Sample Certified value Mean Standard deviation

1 0.496 0.482 0.0257
2 0.995 1.009 0.0248
3 1.493 1.505 0.0287
4 1.990 2.002 0.0212

For each alloy eight replicate determinations were made.

(Qiu Xing-chu and Zhu Ying-quen. 1983. Analyst 108: 641)

For each alloy, test whether the mean value differs significantly from the cer-
tified value.

3 For the data in Example 3.3.3, concerning the concentration of thiol in blood
lysate,

(a) Verify that 2.07 is not an outlier for the ‘normal’ group.
(b) Show that the variances of the two groups differ significantly.

4 The following data give the recovery of bromide from spiked samples of vege-
table matter, measured by using a gas–liquid chromatographic method. The
same amount of bromide was added to each specimen.

Tomato: 777 790 759 790 770 758 764 µg g−1

Cucumber: 782 773 778 765 789 797 782 µg g−1

(Roughan, J. A., Roughan, P. A. and Wilkins, J. P. G. 1983. Analyst 108: 742)

(a) Test whether the recoveries from the two vegetables have variances which
differ significantly.

(b) Test whether the mean recovery rates differ significantly.

5 The following results show the percentage of the total available interstitial water
recovered by centrifuging samples taken at different depths in sandstone.

Depth of sample (m) Water recovered (%)

7 33.3 33.3 35.7 38.1 31.0 33.3
8 43.6 45.2 47.7 45.4 43.8 46.5

16 73.2 68.7 73.6 70.9 72.5 74.5
23 72.5 70.4 65.2 66.7 77.6 69.8

(Wheatstone, K. G. and Getsthorpe, D. 1982. Analyst 107: 731)

Show that the percentage of water recovered differs significantly at different
depths. Use the least significant difference method described in Section 3.9 to
find the causes of this significant result.

6 The following table gives the concentration of norepinephrine (µmol per gram
creatinine) in the urine of healthy volunteers in their early twenties.

Male 0.48 0.36 0.20 0.55 0.45 0.46 0.47 0.23
Female 0.35 0.37 0.27 0.29

(Yamaguchi, M., Ishida, J. and Yoshimura, M. 1998. Analyst 123: 307)
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Is there any evidence that concentration of norepinephrine differs between the
sexes?

7 In reading a burette to 0.01 ml the final figure has to be estimated. The follow-
ing frequency table gives the final figures of 50 such readings. Carry out an
appropriate significance test to determine whether some digits are preferred to
others.

Digit 0 1 2 3 4 5 6 7 8 9
Frequency 1 6 4 5 3 11 2 8 3 7

8 The following table gives further results from the paper cited in Example 3.3.1
(Sahuquillo, A., Rubio, R. and Rauret, G. 1999. Analyst 124), in which the results
of the determination of chromium in organic materials were compared for two
different methods.

Pine needles: Method 1 mean = 2.15 s.d. = 0.26
Method 2 mean = 2.45 s.d. = 0.14

Beech leaves: Method 1 mean = 5.12 s.d. = 0.80
Method 2 mean = 7.27 s.d. = 0.44

Aquatic plant: Method 1 mean = 23.08 s.d. = 2.63
Method 2 mean = 32.01 s.d. = 4.66

In each case the mean is the average of five values.
For each material test whether the mean results obtained by the two methods

differ significantly.

9 The data given in the example in Section 3.11 for the number of breakages by
four different workers are reproduced below:

24, 17, 11, 9

Test whether:

(a) The number of breakages by the first worker differs significantly from those
of the other three workers.

(b) The second, third and fourth workers differ significantly from each other in
carefulness.

10 A new flow injection analysis enzymatic procedure for determining hydrogen
peroxide in water was compared with a conventional method involving redox
titration with potassium permanganate by applying both methods to samples
of peroxide for pharmaceutical use. The table below gives the amount of
hydrogen peroxide found, in mg ml−1. Each value is the mean of four replicate
measurements.

Sample no. Enzymatic method Permanganate method

1 31.1 32.6
2 29.6 31.0
3 31.0 30.3

(da Cruz Vieira, I. and Fatibello-Filho, O. 1998. Analyst 123: 1809)

.
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Test whether the results obtained by the two different methods differ
significantly.

11 Six analysts each made six determinations of the paracetamol content of the
same batch of tablets. The results are shown below:

Analyst Paracetamol content (% m/m)

A 84.32 84.51 84.63 84.61 84.64 84.51
B 84.24 84.25 84.41 84.13 84.00 84.30
C 84.29 84.40 84.68 84.28 84.40 84.36
D 84.14 84.22 84.02 84.48 84.27 84.33
E 84.50 83.88 84.49 83.91 84.11 84.06
F 84.70 84.17 84.11 84.36 84.61 83.81

(Trafford, A. D., Jee, R. D., Moffat, A. C. and Graham, P. 1999. Analyst 124: 163)

Test whether there is any significant difference between the means obtained by
the six analysts.

12 The following figures refer to the concentration of albumin, in gl−1, in the blood
sera of 16 healthy adults:

37, 39, 37, 42, 39, 45, 42, 39, 44, 40, 39, 45, 47, 47, 43, 41

(Foote, J. W. and Delves, H. T. 1983. Analyst 108: 492)

The first eight figures are for men and the second eight for women. Test whether
the mean concentrations for men and women differ significantly.

13 A new flame atomic-absorption spectroscopic method of determining antim-
ony in the atmosphere was compared with the recommended calorimetric
method. For samples from an urban atmosphere the following results were
obtained:

Sample no. Antimony found (mg m−3)

New method Standard method

1 22.2 25.0
2 19.2 19.5
3 15.7 16.6
4 20.4 21.3
5 19.6 20.7
6 15.7 16.8

(Castillo, J. R., Lanaja, J., Marinez, M. C. and Aznárez, J. 1982. Analyst 107: 1488)

Do the results obtained by the two methods differ significantly?

14 For the situation described in Section 3.13 (H0: µ = 3.0%, H1: µ = 3.05%,
σ = 0.036%) calculate the minimum size of sample required to make the prob-
ability of a Type I error and the probability of a Type II both equal to 0.01
at most.
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15 The concentrations (g 100 ml−1) of immunoglobulin G in the blood sera of
10 donors are measured by radial immunodiffusion (RID) with the following
results:

Donor 1 2 3 4 5 6 7 8 9 10
RID result 1.3 1.5 0.7 0.9 1.0 1.1 0.8 1.8 0.4 1.3

Use the Kolmogorov method to test the hypothesis that serum immunoglobu-
lin G levels are normally distributed.

.
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The quality of analytical
measurements

4.1 Introduction

As we saw in Chapter 1, analytical chemistry is an applied measurement science in
which quantitative studies predominate, and therefore one in which estimates of the
inevitable errors are essential. In almost all applications of analysis the results obtained
are supplied to a customer or user, and it is necessary that these users are satisfied as far
as possible with the quality – the fitness for purpose – of the measurements. This has
many important implications for analytical practice. Firstly, any assessment of the
measurement errors must take into account the whole analytical process – including
the sampling steps, which often contribute to the overall error very significantly.
Secondly, the performance of the analyses undertaken in each laboratory must be
checked internally on a regular basis, usually by applying them to standard or reference
materials. Thirdly, in many application areas the results from different laboratories
must be compared with each other, so that the users can be satisfied that the perform-
ance of the laboratories meets statutory, regulatory and other requirements. Finally,
the analytical results must be supplied with a realistic estimate of their uncertainty,
i.e. the range within which the true value of the quantity being measured lies. These are
the major topics discussed in this chapter. The statistical methods used in such areas
are often very simple in principle, most of them being based on techniques described
in Chapters 2 and 3. But their more frequent and improved application has been one
of the major developments in analytical sciences in recent years, with a correspond-
ingly large improvement in the quality and acceptability of many analytical results.
Moreover some of the methods discussed have broader applications. For example, the
principles used to monitor the performance of a single analysis in a single laboratory
over a period of time can also be applied to the monitoring of an industrial process.

4.2 Sampling

In most analyses we rely on chemical samples to give us information about a
whole object. So unless the sampling stages of an analysis are considered care-
fully, the statistical methods discussed in this book may be invalidated, as the

4
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samples studied may not be properly representative of the whole object under
study. For example, it is not possible to analyse all the water in a stream for a
toxic pollutant, and it is not possible to analyse all the milk in a tanker lorry to
see if it contains a prohibited steroid hormone. In other instances a small sample
has to be used because the analytical method is destructive, and we wish to pre-
serve the remainder of the material. So in each case the sample studied must be
taken in a way that ensures as far as possible that it is truly representative of the
whole object.

To illustrate some aspects of sampling let us consider the situation in which we
have a large batch of tablets and wish to obtain an estimate for the mean weight
of a tablet. Rather than weigh all the tablets, we take a few of them (say 10) and
weigh each one. In this example the batch of tablets forms the population and the
10 weighed tablets form a sample from this population (see Section 2.2). If the
sample is to be used to deduce the properties of the population, it must be what is
known statistically as a random sample, i.e. a sample taken in such a way that
all the members of the population have an equal chance of inclusion. Only then
will equations such as (2.9), which gives the confidence limits of the mean, be
valid. It must be appreciated that the term ‘random’ has, in the statistical sense, a
different meaning from ‘haphazard’. Although in practice an analyst might spread
the tablets on his desk and attempt to pick a sample of 10 in a haphazard fashion,
such a method could conceal an unconscious bias. The best way to obtain a ran-
dom sample is by the use of a random number table. Each member of the popula-
tion is allocated a number in such a way that all the numbers have an equal
number of digits e.g. 001, 002, 003, etc. Random numbers are then read off from
a random number table (see Table A.8), starting at an arbitrary point to give, for
example, 964, 173, etc., and the corresponding members of the population form
the sample. An alternative (and much simpler) method which is sometimes used
is to select the population members at regular intervals, for example to take every
hundredth tablet off a production line. This method is not entirely satisfactory
since there might be a coinciding periodicity in the weight of the tablets: the
importance of the randomness of the sample is evident. Again, if the last few
tablets were taken and there had been a gradual decrease in weight during the pro-
duction of the batch, then this sample would give an entirely erroneous value for
the mean weight of the whole batch.

In the example above the population is made up of obvious discrete members
that are nominally the same, viz. the tablets. Sampling from materials for which this
is not true, such as rocks, powders, gases and liquids, is called bulk sampling. If a
bulk material were perfectly homogeneous then only a small portion or test incre-
ment would be needed to determine the properties of the bulk. In practice bulk
materials are non-homogeneous for a variety of reasons. Materials such as ores and
sediments consist of macroscopic particles with different compositions and these
may not be uniformly distributed in the bulk. Fluids may be non-homogeneous on
a molecular scale owing to concentration gradients. Such inhomogeneity can be
detected only by taking a sample of test increments from different parts of the bulk.
If possible this should be done randomly by considering the bulk as a collection of
cells of equal size and selecting a sample of cells by using random numbers as
described above.

From the random sample, the mean, , and variance, s2, can be calculated.
There are two contributions to s2: the sampling variance, , due to differences
between the members of the sample, e.g. the tablets having different weights, and

σ 1
2

x
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the measurement variance, , e.g. random errors in weighing each tablet. The
next section describes how these two contributions can be separated and estimated
by using ANOVA. For bulk materials the sampling variance is dependent on the
size of the test increment relative to the scale of the inhomogeneities. As the test
increment size increases, the inhomogeneities tend to be averaged out and so the
sampling variance decreases.

4.3 Separation and estimation of variances using ANOVA

Section 3.8 described the use of one-way ANOVA to test for differences between
means when there was a possible variation due to a fixed-effect factor. In this sec-
tion we consider the situation where there is a random-effect factor, viz. sampling
variation. One-way ANOVA is then used to separate and estimate the different
sources of variation, rather than to test whether several sample means differ sig-
nificantly. Table 4.1 shows the results of the purity testing of a barrelful of
sodium chloride. Five sample increments, A–E, were taken from different parts of
the barrel chosen at random, and four replicate analyses were performed on each
sample. As explained above, there are two possible sources of variation: that due
to the random error in the measurement of purity, given by the measurement
variance, , and that due to real variations in the sodium chloride purity at dif-
ferent points in the barrel, given by the sampling variance, . Since the within-
sample mean square does not depend on the sample mean (see Section 3.9) it can
be used to give an estimate of . The between-sample mean square cannot be used
to estimate directly, because the variation between sample means is caused
both by the random error in measurement and by possible variation in the purity.
It can be shown that the between-sample mean square gives an estimate of

(where n is the number of replicate measurements). However, before an
estimate of is made, a test should be carried out to see whether it differs sig-
nificantly from 0. This is done by comparing the within- and between-sample
mean squares: if they do not differ significantly then = 0 and both mean
squares estimate .

The one-way ANOVA output from Excel for this example is shown below. The
results show that the between-sample mean square is greater than the within-sample
mean square, and the result of the F-test shows that this difference is highly significant,

σ 0
2

σ 1
2

σ 1
2

σ0
2 + nσ 1

2

σ 1
2

σ 0
2

σ 1
2

σ 0
2

σ 0
2

Table 4.1 Purity testing of sodium chloride

Sample Purity (%) Mean

A 98.8, 98.7, 98.9, 98.8 98.8
B 99.3, 98.7, 98.8, 99.2 99.0
C 98.3, 98.5, 98.8, 98.8 98.6
D 98.0, 97.7, 97.4, 97.3 97.6
E 99.3, 99.4, 99.9, 99.4 99.5
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i.e. that does differ significantly from 0. The within-sample mean square gives
0.0653 as an estimate of , so we can estimate using:σ 1

2σ 0
2

σ 1
2

= (between-sample mean square − within-sample mean square)/n

= (1.96 − 0.0653)/4

= 0.47

σ 1
2

Sample A Sample B Sample C Sample D Sample E

98.8 99.3 98.3 98 99.3
98.7 98.7 98.5 97.7 99.4
98.9 98.8 98.8 97.4 99.9
98.8 99.2 98.8 97.3 99.4

One-way Anova

SUMMARY

Groups Count Sum Average Variance

Sample A 4 395.2 98.8 0.006667
Sample B 4 396 99 0.086667
Sample C 4 394.4 98.6 0.06
Sample D 4 390.4 97.6 0.1
Sample E 4 398 99.5 0.073333

Source of variation SS df MS F P-value F crit

Between-sample 7.84 4 1.96 30 5.34E-07 3.056
Within-sample 0.98 15 0.0653

Total 8.82 19

4.4 Sampling strategy

If one analysis is made on each of the h test increments (example above, Section 4.3)
then the confidence limits of the mean are given by equation (2.9):

(4.1)µ = x ± th−1s/√h

where is the mean of the h measurements and s2 is the variance of the measure-
ments; s2 is an estimate of the total variance, σ2, which is the sum of the measure-
ment and sampling variances, i.e. (see Section 2.11), and σ2/h (which is
estimated by s2/h) is the variance of the mean, . If the value for each test increment
is the mean of n replicate measurements, then the variance of the mean is

x
σ 2

0 + σ 2
1

x
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. Obviously, for maximum precision, we require the
variance of the mean to be as small as possible. The term due to the measurement
variance can be reduced either by using a more precise method of analysis or by
increasing n, the number of replicate measurements. However, there is no point in
striving to make the measurement variance much less than say a tenth of the sam-
pling variance, as any further reduction will not greatly improve the total variance
(since it is the sum of the two variances). Rather it is preferable to take a larger num-
ber of test increments, since the confidence interval decreases with increasing h. If
a preliminary sample has been used to estimate s, then the sample size required to
achieve a given size of confidence interval can be calculated approximately (see
Chapter 2, Exercise 4).

A possible sampling strategy with bulk material is to take h test increments and
blend them before making n replicate measurements. The variance of the mean of
these replicate measurements is . This total variance should be compared
with that when each sample increment is analysed n times and the increment means
are averaged, the variance then being (see above). Obviously the latter
variance is the smaller, resulting in greater precision of the mean, but more meas-
urements (nh against h) are required. Knowledge of the values of and from
previous experience, and the costs of sampling and analysis, can be used to calcu-
late the cost of relative sampling strategies. In general the most economical scheme
to give the required degree of precision will be used.

For bulk materials the sampling variance depends on the size of the test incre-
ment relative to the scale of the inhomogeneities and decreases with increasing sam-
ple increment size. In some experiments it may be necessary to set an upper limit
on the sampling variance so that changes in the mean can be detected. Preliminary
measurements can be made to decide the minimum test increment size required to
give an acceptable level of sampling variance.

4.5 Quality control methods – Introduction

If a laboratory is to produce analytical results of a quality that is acceptable to its
clients, and allow it to perform well in proficiency tests or collaborative trials (see
below), it is obviously essential that the results obtained in that laboratory should
show excellent consistency from day to day. Checking for such consistency is com-
plicated by the occurrence of random errors, so several statistical techniques have
been developed to show whether or not time-dependent trends are occurring in the
results, alongside these inevitable random errors. These are referred to as quality
control methods.

Suppose that a laboratory uses a chromatographic method for determining the level
of a pesticide in fruits. The results may be used to determine whether a large batch of
fruit is acceptable or not, and their quality is thus of great importance. The perform-
ance of the method will be checked at regular intervals by applying it, with a small
number of replicate analyses, to a standard reference material (SRM), the pesticide level
in which is certified by a regulatory authority. Alternatively an internal quality control
(IQC) standard of known composition and high stability can be used. The SRM or IQC
standard will probably be inserted at random into the sequence of materials analysed

σ 1
2σ 0

2

σ0
2/nh + σ1

2/h

σ 2
0/n + σ 2

1/h

(σ 2
0 /n + σ 2

1 )/h = σ 2
0 /nh + σ 2

1 /h
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by the laboratory, so that the IQC materials are not separately identified to the labora-
tory staff and are studied using exactly the same procedures as those used for the
routine samples. The known concentration of the pesticide in the SRM/IQC materials
is the target value for the analysis, µ0. The laboratory needs to be able to stop and
examine the analytical method if it seems to be giving erroneous results. On the other
hand resources, time and materials will be wasted if the sequence of analyses is halted
unnecessarily, so the quality control methods should allow its continued use as long
as it is working satisfactorily. If the values for the IQR samples do not show significant
time-dependent trends, and if the random errors in the measurements are not too
large, the analytical process is under control.

Quality control methods are also very widely used to monitor industrial processes.
Again it is important to stop a process if its output falls outside certain limits, but it
is equally important not to stop the process if it is working well. For example, the
weights of pharmaceutical tablets coming off a production line can be monitored by
taking small samples (see above) of tablets from time to time. The tablet weights are
bound to fluctuate around the target value µ0 because of random errors, but if these
random errors are not too large, and are not accompanied by time-dependent trends,
the process is under control.

4.6 Shewhart charts for mean values

In Chapter 2 we showed how the mean, , of a sample of measurements could be used
to provide an estimate of the population mean, µ, and how the sample standard devi-
ation, s, provided an estimate of the population standard deviation, σ. For a small
sample size, n, the confidence limits of the mean are normally given by equation (2.9),
with the t value chosen according to the number of degrees of freedom (n − 1) and the
confidence level required. The same principles can be applied to quality control work,
but with one important difference. Over a long period, the population standard devi-
ation, σ, of the pesticide level in the fruit (or, in the second example, of the tablet
weights) will become known from experience. In quality control work, σ is given the
title process capability. Equation (2.9) can be replaced by equation (2.8) with the
estimate s replaced by the known σ. In practice z = 1.96 is often rounded to 2 for 95%
confidence limits and z = 2.97 is rounded to 3 for 99.7% confidence limits.

x

For 95% confidence limits: (4.2)

For 99.7% confidence limits: (4.3)µ = x ±
3σ
√n

µ = x ±
2σ
√n

These equations are used in the construction of the most common type of control
chart, a Shewhart chart (Figure 4.1). The vertical axis of a Shewhart chart displays
the process mean, , of the measured values, e.g. of the pesticide concentration
in the fruit, and the horizontal axis is a time axis, so that the variation of these

x
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values with time can be plotted. The target value, µ0, is marked by a horizontal
line. The chart also includes two further pairs of horizontal lines. The lines at

are called the warning lines, and those at are called the
action lines. The purpose of these lines is indicated by their names. Suppose a
measured value falls outside the action lines. The probability of such an occur-
rence when the process is in control is known to be only 0.3%, i.e. 0.003, so in
practice the process is usually stopped and examined if this occurs. There is a
probability of ca. 5% (0.05) of a single point falling outside either warning line
(but within the action lines) while the process remains in control. This alone
would not cause the process to be stopped, but if two successive points fall outside
the same warning line, the probability of such an occurrence (P = 0.0252 × 2 =
0.00125 in total for both warning lines) is again so low that the process is judged
to be out of control. These two criteria – one point outside the action lines, or two
successive points outside the same warning line – are the ones most commonly
applied in the interpretation of Shewhart charts. Others are often used in addi-
tion: for example the probability of eight successive points lying on one specific
side of the target value line is clearly low, i.e. 0.58 = 0.0039, and such an occur-
rence again suggests that the process is out of control. Provision can also be made
for stopping a process in cases where the plotted values show a trend (e.g. six
increasing or decreasing points in succession, even if the points are within the
warning lines), or where they seem to oscillate (e.g. 14 successive points, alternating
up and down). Users of control charts must establish clearly all the criteria to be
used in declaring their process out of control.

x

x

µ0 ± 3σ/√nµ0 ± 2σ/√n

x

Upper action line: µ 0 + 3σ/√n

Upper warning line: µ 0 + 2σ/√n

Lower warning line: µ 0 – 2σ/√n

Lower action line: µ 0 – 3σ/√n

Target value: µ 0

Time

x

Figure 4.1 Shewhart chart for mean values.
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4.7 Shewhart charts for ranges

If a Shewhart chart for mean values suggests that a process is out of control, there
are two possible explanations. The most obvious is that the process mean has
changed: the detection of such changes is the main reason for using control charts
in which values are plotted. An alternative explanation is that the process mean
has remained unchanged but that the variation in the process has increased, i.e. that
the action and warning lines are too close together, giving rise to indications that
changes in have occurred when in fact they have not. Errors of the opposite kind
are also possible. If the variability of the process has diminished (i.e. improved),
then the action and warning lines will be too far apart, perhaps allowing real
changes in to go undetected. Therefore we must monitor the variability of the
process as well as its mean value. This monitoring also has its own intrinsic value:
the variability of a process or an analysis is one measure of its quality, and in the
laboratory situation is directly linked to the repeatability (within-laboratory stand-
ard deviation) of the method (see Chapter 1).

The variability of a process can be displayed by plotting another Shewhart chart
to display the range, R (= highest value − lowest value), of each of the samples taken.
A typical control chart for the range is shown in Figure 4.2. The general format of the
chart is the same as is used in plotting mean values, with a line representing the
target value, and also pairs of action and warning lines. The most striking difference
between the two charts is that these pairs of lines are not symmetrical with respect
to the target value for the range, . The value of can be calculated using the valueRR

x

x

x

Range

Time

Upper action line: Ra2

Upper warning line: Rw2

Target value: R

Lower warning line: Rw1

Lower action line: Ra1

Figure 4.2 Shewhart chart for range.
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of σ, and the positions of the action and warning lines can be derived from , using
multiplying factors obtained from statistical tables. These factors take values depend-
ing on the sample size, n. The relevant equations are:

R

= σd1 (4.4)

Lower warning line = (4.5)

Upper warning line = (4.6)

Lower action line = (4.7)

Upper action line = (4.8)Ra2

Ra1

Rw2

Rw1

R

Example 4.7.1

Determine the characteristics of the mean and range control charts for a pro-
cess in which the target value is 57, the process capability is 5, and the sample
size is 4.

For the control chart on which mean values will be plotted, the calculation
is simple. The warning lines will be at , i.e. at 57 ± 5; and the
action lines will be at , i.e. at 57 ± 7.5. This chart is shown in
Figure 4.3(a).

For the control chart on which ranges are plotted, we must first calculate 
using equation (4.4). This gives = , where the d1 value of
2.059 is taken from statistical tables for n = 4. (See for example the table in the
collection by Neave, the details of which are given in the Bibliography for
Chapter 1.) The value of is then used to determine the lower and upper
warning and action lines using equations (4.5)–(4.8). The values of w1, w2, a1

and a2 for n = 4 are 0.29, 1.94, 0.10 and 2.58 respectively, giving on multipli-
cation by 10.29 positions for the four lines of 2.98, 19.96, 1.03 and 26.55
respectively. These lines are shown in Figure 4.3(b).

R

5 × 2.059 = 10.29R
R

57 ± 3 × 5/√4
57 ± 2 × 5/√4

It is not always the practice to plot the lower action and warning lines on a control
chart for the range, as a reduction in the range is not normally a cause for concern.
However, as already noted, the variability of a process is one measure of its quality,
and a reduction in represents an improvement in quality, the causes of which may
be well worth investigating. So plotting both sets of warning and action lines is
recommended.

R
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4.8 Establishing the process capability

In the previous section we showed that, if the process capability, σ, is known, it is pos-
sible to construct control charts for both the sample mean and the sample range. It is
thus possible to distinguish between a situation where a process has gone out of control
by a shift in the process mean from a situation where the mean is unchanged but an
undesirable increase in the variability of the process has occurred. The establishment
of a proper value for σ is therefore very important, and such a value should be based
on a substantial number of measurements. But in making such measurements the same
problem – distinguishing a change in the process mean from a change in the process

(a)

(b)

Upper action line: µ 0 + 3σ/√n  = 64.5

Lower action line: µ 0 – 3σ/√n  = 49.5

Upper warning line: µ 0 + 2σ/√n  = 62

Lower warning line: µ 0 – 2σ/√n  = 52

Target value: µ 0 = 57

Time

Range

Upper action line: Ra2 = 26.55

Upper warning line: Rw2 = 19.96

Lower warning line: Rw1 = 2.98

Lower action line: Ra1 = 1.03

Target value: R = 10.29

Time

x

Figure 4.3 (a) Shewhart chart for mean values (example). (b) Shewhart chart for range
(example).
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variability – must be faced. If σ is calculated directly from a long sequence of measure-
ments, its value may be overestimated by any changes in the mean that occur during
that sequence, and proper control charts could not then be plotted.

The solution to this problem is to take a large number of small samples, measure
the range, R, for each, and thus determine . This procedure ensures that only the
inherent variability of the process is measured, with any drift in the mean values
eliminated. The -value can then be used with equations (4.5)–(4.8) to determine
the action and warning lines for the range control chart. The warning and action
lines for the control chart for the mean can be determined by calculating σ using
equation (4.4), and then applying equations (4.2) and (4.3). In practice this two-
stage calculation is unnecessary, as most statistical tables provide values of W and
A, which give the positions of the warning and action lines directly from:

R

R

Warning lines at (4.9)

Action lines at (4.10)x ± AR

x ± WR

These methods are illustrated by the following example.

Example 4.8.1

An internal quality control standard with an analyte concentration of
50 mg kg−1 is analysed in a laboratory for 25 consecutive days, the sample
size being four on each day. The results are given in Table 4.2, which is in
the form of an Excel spreadsheet. Determine the value of and hence plot
control charts for the mean and range of the laboratory analyses.

When the results are examined there is clearly some evidence that, over the
25-day period of the analyses, the sample means are drifting up and down. All
the sample means from days 3–15 inclusive are greater than the target value of
50, whereas four of the next six means are below the target value, and the last
four are all above it. These are the circumstances in which it is important to
estimate σ using the method described above. Using the R-values in the last
column of data, is found to be 4.31. Application of equation (4.4) estimates
σ as 4.31/2.059 = 2.09. Table 4.2 also shows that the standard deviation of the
100 measurements, treated as a single sample, is 2.43: because of the drifts in
the mean this would be a significant overestimate of σ.

The control chart for the mean is then plotted with the aid of equations (4.9)
and (4.10) with W = 0.4760, A = 0.7505, which show that the warning and action
lines are at 50 ± 2.05 and 50 ± 3.23 respectively. Figure 4.4 shows the Excel
control chart. This chart shows that the process mean is not yet under control
since several of the points fall outside the upper action line. Similarly, equations
(4.5)–(4.8) show that in the control chart for the range the warning lines are
at 1.24 and 8.32 and the action lines are at 0.42 and 11.09. Excel does not auto-
matically produce control charts for ranges, though it does generate charts for
standard deviations, which are sometimes used instead of range charts. However,
with one exception, the values of the range in the last column of Table 4.2 all lie
within the warning lines, indicating that the process variability is under control.

R

R
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Figure 4.4 Shewhart chart for means (Table 4.2 example data).

Table 4.2 Excel spreadsheet (example)

Sample Number Sample Values Chart Mean Range

1 2 3 4

1 48.8 50.8 51.3 47.9 49.70 3.4
2 48.6 50.6 49.3 50.3 49.70 2.0
3 48.2 51.0 49.3 52.1 50.15 3.9
4 54.8 54.6 50.7 53.9 53.50 4.1
5 49.6 54.2 48.3 50.5 50.65 5.9
6 54.8 54.8 52.3 52.5 53.60 2.5
7 49.0 49.4 52.3 51.3 50.50 3.3
8 52.0 49.4 49.7 53.9 51.25 4.5
9 51.0 52.8 49.7 50.5 51.00 3.1
10 51.2 53.4 52.3 50.3 51.80 3.1
11 52.0 54.2 49.9 57.1 53.30 7.2
12 54.6 53.8 51.5 47.9 51.95 6.7
13 52.0 51.7 53.7 56.8 53.55 5.1
14 50.6 50.9 53.9 56.0 52.85 5.4
15 54.2 54.9 52.7 52.2 53.50 2.7
16 48.0 50.3 47.5 53.4 49.80 5.9
17 47.8 51.9 54.3 49.4 50.85 6.5
18 49.4 46.5 47.7 50.8 48.60 4.3
19 48.0 52.5 47.9 53.0 50.35 5.1
20 48.8 47.7 50.5 52.2 49.80 4.5
21 46.6 48.9 50.1 47.4 48.25 3.5
22 54.6 51.1 51.5 54.6 52.95 3.5
23 52.2 52.5 52.9 51.8 52.35 1.1
24 50.8 51.6 49.1 52.3 50.95 3.2
25 53.0 46.6 53.9 48.1 50.40 7.3

s.d. = 2.43 Mean = 4.31

Minitab can be used to produce Shewhart charts for the mean and the range.
The program calculates a value for directly from the data. Figure 4.5 shows
Minitab charts for the data in Table 4.2. Minitab (like some texts) calculates the
warning and action lines for the range by approximating the (asymmetrical)
distribution of by a normal distribution. This is why the positions of these
lines differ from those calculated above using equations (4.9) and (4.10).

R

R
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Figure 4.5 Shewhart charts for mean and range produced using Minitab.

4.9 Average run length: cusum charts

An important property of a control chart is the speed with which it detects that a
change in the process mean has occurred. The average number of measurements nec-
essary to detect any particular change in the process mean is called the average run
length (ARL). Since the positions of the action and warning lines on a Shewhart chart
for the process mean depend on the value of , the ARL for that chart will depend
on the size of the change in the mean compared with . A larger change will be
detected more rapidly than a smaller one, and the ARL will be reduced by using a larger
sample size, n. It may be shown that if a change equal to occurs, then the ARL is
about 50 if only the action line criterion is used, i.e. about 50 samples will be measured
before a value falls outside the action lines. If the process is also stopped if two consec-
utive measurements fall outside the same warning line, then the ARL falls to ca. 25.
These values are quite large: for example it would be serious if a laboratory continued
a pesticide analysis for 25 days before noticing that the procedure had developed a
systematic error. This represents a significant disadvantage of Shewhart charts. An
example of the problem is shown in Table 4.3, a series of measurements for which the
target value is 80, and is 2.5. When the sample means are plotted on a Shewhart
chart (Figure 4.6) it is clear that from about the seventh observation onwards a change
in the process mean may well have occurred, but all the points remain on or inside the
warning lines. (Only the lower warning and action lines are shown in the figure.)

The ARL can be reduced significantly by using a different type of control chart, a
cusum (cumulative sum) chart. This approach is again illustrated by the data in
Table 4.3. The calculation of the cusum is shown in the last two columns of the table,
which show that the sum of the deviations of the sample means from the target value
is carried forward cumulatively, careful attention being paid to the signs of the devia-
tions. If a manufacturing or analytical process is under control, positive and negative

σ/√n

1σ/√n

σ/√n
σ/√n
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Table 4.3 Example data for cusum calculation

Observation Sample Sample mean – Cusum
number mean target value

1 82 2 2
2 79 −1 1
3 80 0 1
4 78 −2 −1
5 82 2 1
6 79 −1 0
7 80 0 0
8 79 −1 −1
9 78 −2 −3

10 80 0 −3
11 76 −4 −7
12 77 −3 −10
13 76 −4 −14
14 76 −4 −18
15 75 −5 −23

84
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Sample number
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Figure 4.6 Shewhart chart for Table 4.3 data.

deviations from the target value are equally likely and the cusum should oscillate about
zero. If the process mean changes, the cusum will move away from zero. In the exam-
ple given, the process mean seems to fall after the seventh observation, so the cusum
becomes more and more negative. The resulting control chart is shown in Figure 4.7.

Proper interpretation of cusum charts, to show that a genuine change in the process
mean has occurred, requires a V-mask. The mask is engraved on a transparent plastic
sheet, and is placed over the control chart with its axis of symmetry horizontal and its
apex a distance d to the right of the last observation (Figure 4.8). If all the points on
the chart lie within the arms of the V, then the process is in control (Figure 4.8a). The
mask is also characterized by tan θ, the tangent of the semi-angle, θ, between the arms
of the V. Values of d and tan θ are chosen so that significant changes in the process
mean are detected quickly, but false alarms are few. The unit of d is the distance between
successive observations. The value of tan θ used clearly depends on the relative scales of
the two axes on the chart: a commonly used convention is to make the distance
between successive observations on the x-axis equal to on the y-axis. A V-mask2σ/√n
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with d = 5 units and tan θ = 0.35 then gives an ARL of 10 if the process mean changes
by and only 4 if the change is . The ARL for a zero change in process mean,
i.e. before a false alarm occurs, is ca. 350. The corresponding figures for a Shewhart chart
are ca. 25 (for a change in the mean of ) and 320, so it is clear that the cusum chart
is superior in both respects. The ARL provided by the cusum chart can be reduced to
about 8 (for a change of ) by using tan θ = 0.30, but inevitably the chance of a false
alarm is then also increased, occurring once in ca. 120 observations.

In summary, cusum charts have the advantage that they react more quickly than
Shewhart charts to a change in the process mean (as Figure 4.7 clearly shows), without

1σ/√n

1σ/√n

2σ/√n1σ/√n

(a)

C
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um

Observation number

0

0

d

(b)

C
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Observation number

θ
θ

d

θ
θ

Figure 4.8 (a) Use of a V-mask with the process in control. (b) Use of a V-mask with the
process out of control.

Figure 4.7 Cusum chart for Table 4.3 data.
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increasing the chances of a false alarm. The point of the slope change in a cusum chart
indicates the point where the process mean has changed, and the value of the slope
indicates the size of the change. Naturally, if a cusum chart suggests that a change in the
process mean has occurred, we must also test for possible changes in σ. This can be done
using a Shewhart chart, but cusum charts for ranges can also be plotted. More details on
these uses of control charts are given in the references at the end of the chapter.

4.10 Zone control charts (J-charts)

The zone control chart (also known as the J-chart) is a control chart for the mean
that combines features of the Shewhart chart and the cusum chart. It is simple to
use, but effective. First it is necessary to establish a value for σ, as was done in
Example 4.7.1. Then the chart is set up with horizontal lines at the target value, µ, 

and at , and . These horizontal lines divide the chart into

bands, or ‘zones’, of equal width, as shown in Figure 4.9. This figure shows a zone
control chart for the data in Table 4.2 obtained using Minitab. At the right-hand side 

of the chart the horizontal lines are labelled with the values of µ, , and 

where µ = 50, σ = 2.09 and n = 4.

The sample means are plotted as circles in the appropriate zone and have been
joined with straight lines. Thus at first sight the chart is similar to the Shewhart
chart in Figure 4.4.

However, the sample means are also assigned scores, dependent on the zone
in which they fall. These scores are indicated on the left-hand side of the chart. For 

example, a mean between and is assigned a score of 4.

The sample mean for the first sample scores 0, and this value has been written in
its circle on the chart. As each sample mean is obtained it is assigned a score and the

µ − 3 σ
√n

µ − 2 σ
√n

µ ± 3 σ
√n

µ ± 2 σ
√n

µ ± σ
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Figure 4.9 Zone control chart for the data in Table 4.2 produced using Minitab.
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scores are added cumulatively. The total score is then written in the appropriate circle
on the chart. The next two samples (2 and 3) each contribute 0 to the total. Sample
number 4 contributes 8. Sample number 5 contributes 0, leaving the total at 8. Sample
number 6 contributes 8, making a total of 16. This procedure is continued until an
observation falls on the opposite side of the centre line from the previous one, when
the total is reset to 0. Thus, for example, the total is reset for sample number 16.

The total performs the same function as the cusum. When the process is under
control the total stays close to zero. However, a change in the process mean will
result in a run of values on one side of the target value and a corresponding increase
in the total. The system is deemed to be out of control if the total score equals or
exceeds 8. The zone control chart in Figure 4.6 confirms the suspicions voiced in
Example 4.8.1 that the process mean is not under control. The zone-chart suggests
that the process mean has drifted upwards at sample 4. At sample 16 it has returned
to the target value but then goes up again at sample 23.

It is also possible to set up a zone chart for single measurements, rather than for
the means of replicates. Even if replicate measurements are not made, it is still
possible to obtain an estimate of σ from the average range, . This is achieved by
treating each successive pair of measurements as a sample, size 2. Taking successive
pairs of measurements means that the effect of any drift in the process mean is min-
imized. Considering the values in column 1 of Table 4.2, the first and second pair of
measurements (48.8, 48.6) have a range of 0.2, the second and third measurements
(48.6, 48.2) have a range of 0.4, the third and fourth measurements (48.2, 54.8) have
a range of 6.6, and so on. The sum of these ranges is 65 so = 65/24 = 2.708. (Note
that although there are 25 values, there are only 24 differences.) Then from equation

(4.4), where the d1 value is taken from statistical tables for

n = 2. The zones for single measurements are then formed by drawing lines at µ,
µ ± σ, µ ± 2σ and µ ± 3σ.

There are a number of ISO publications that deal with control charts. References
are given in the bibliography to this chapter.

4.11 Proficiency testing schemes

The quality of analytical measurements is enhanced by two types of testing scheme,
in each of which a number of laboratories might participate simultaneously. In the
first of these, proficiency testing (PT) schemes, aliquots from homogeneous
materials are circulated to a number of laboratories for analysis at regular intervals
(every few weeks or months), and the resulting data are reported to a central organizer.
Each laboratory analyses its portion using its own usual method, and the material cir-
culated is designed to resemble as closely as possible the samples normally submitted
for analysis in the relevant field of application. The results of all the analyses are cir-
culated to all the participants, who thus gain information on how their measurements
compare with those of others, how their own measurements improve or deteriorate
with time, and how their own measurements compare with an external quality stand-
ard. In short, the aim of such schemes is the evaluation of the competence of analyt-
ical laboratories. PT schemes have now been developed for use in a wide range of

σ =
R

1.1284
= 2.40

R

R
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application fields including several areas of clinical chemistry, water analysis, various
types of food and drink, forensic analysis, and so on. Experience shows that in such
schemes widely divergent results will arise, even between experienced, well-equipped
and well-staffed laboratories. In one of the commonest of clinical analyses, the deter-
mination of blood glucose at the mM level, most of the results obtained for a single
blood sample approximated to a normal distribution with values between 9.5 and
12.5 mM, in itself a not inconsiderable range. But the complete range of results was
from 6.0 to 14.5 mM, i.e. some laboratories obtained values almost 2.5 times those of
others. The worrying implications of this discrepancy in clinical diagnosis are obvious.
In more difficult areas of analysis the results can be so divergent that there is no real
consensus between different laboratories. The importance of PT schemes in high-
lighting such alarming differences, and in helping to minimize them by encouraging
laboratories to compare their performance, is very clear, and they have unquestion-
ably helped to improve the quality of analytical results in many fields. Here we are
concerned only with the statistical evaluation of the design and results of such
schemes, and not with the administrative details of their organization. Of particular
importance are the methods of assessing participants’ performance and the need to
ensure that the bulk sample from which aliquots are circulated is homogeneous.

The recommended method for verifying homogeneity of the sample involves tak-
ing n ≥ 10 portions of the test material at random, separately homogenizing them if
necessary, taking two test samples from each portion, and analysing the 2n portions in
a random order by a method whose standard deviation under repeatability conditions
is (for example) not more than 30% of the target standard deviation (i.e. the expected
reproducibility, see below) of the proficiency test. If the homogeneity is satisfactory,
one-way analysis of variance should then show that the between-sample mean square
is not significantly greater than the within-sample mean square (see Section 4.3).

The results obtained by the laboratories participating in a PT scheme are most
commonly expressed as z-scores, where z is given by (see Section 2.2):

(4.11)z =
x − xa

σ

In this equation the x value is the result obtained by a single laboratory for a given
analysis; xa is the assigned value for the level of the analyte, and σ is the target value
for the standard deviation of the test results. The assigned value xa can be obtained
by using a certified reference material (CRM), if one is available and suitable for
distribution to the participants. In some cases these methods are not feasible, and
the relevant ISO standard (which also provides many numerical examples – see
Bibliography) recommends three other possible approaches. In order of decreasing
rigour, these are (i) a reference value obtained from one laboratory, by comparing
random samples of the test material against a CRM; (ii) a consensus value obtained
by analysis of random samples of the test material by expert laboratories; and (iii) a
consensus value obtained from all the participants in a given round of the scheme.
This last situation is of interest since, when many laboratories participate in a given
PT scheme, there are bound to be a number of suspect results or outliers in an indi-
vidual test. (It should be noted that, although many PT schemes provide samples
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and reporting facilities for more than one analyte, experience shows that a labora-
tory that scores well in one specific analysis does not necessarily score well in
others.) This problem is overcome by the use of either the median (see Chapter 6),
which is especially recommended for small data sets (n < 10), a robust mean
(see Chapter 6), or the mean of the interquartile range (see Chapter 6). All these mea-
sures of location avoid or address the effects of dubious results. It is also recom-
mended that the uncertainty of the assigned value is reported to participants in the
PT scheme. This is obtained by methods that depend on the approach used to esti-
mate xa. Estimates of uncertainty are covered in more detail below (Section 4.13).

The target value for the standard deviation, σ, should be circulated in advance to
the PT participants along with a summary of the method by which it has been estab-
lished. It will vary with analyte concentration, and one approach to estimating it is
to use a functional relationship between concentration and standard deviation. The
best-known relationship is the Horwitz trumpet, dating from 1982, so called because
of its shape. Using many results from collaborative trials, Horwitz showed that the
relative standard deviation of a method varied with the concentration, c (e.g. mg g−1),
according to the approximate and empirical equation:

RSD = ±2(1 − 0.5 log c) (4.12)

This equation leads to the trumpet-shaped curve shown in Figure 4.10, which can be
used to derive target values of σ for any analysis. Such target values can also be esti-
mated from prior knowledge of the standard deviations usually achieved in the analy-
sis in question. Another approach uses fitness for purpose criteria: if the results of the
analysis, used routinely, require a certain precision for the data to be interpreted prop-
erly and usefully or to fulfil a legislative requirement, that precision provides the
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Figure 4.10 The Horwitz trumpet.
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largest (worst) acceptable value of σ. It is poor practice to estimate σ from the results
of previous rounds of the PT scheme itself, as this would conceal any improvement or
deterioration in the quality of the results with time.

The results of a single round of a PT scheme are frequently summarized as shown
in Figure 4.11. If the results follow a normal distribution with mean xa and standard
deviation σ, the z-scores will be a sample from the standard normal distribution,
i.e. a normal distribution with mean zero and variance 1. Thus a laboratory with a
z value of <2 is generally regarded as having performed satisfactorily, a z value
between 2 and 3 is questionable (two successive values in this range from one
laboratory would be regarded as unsatisfactory), and z values >3 are unacceptable.
Of course even the laboratories with satisfactory scores will strive to improve their
values in the subsequent rounds of the PT. In practice it is not uncommon to find
‘heavy-tailed’ distributions, i.e. more results than expected with z> 2.

Some value has been attached to methods of combining z-scores. For example the
results of one laboratory in a single PT scheme over a single year might be combined
(though this would mask any improvement or deterioration in performance over
the year). If the same analytical method is applied to different concentrations of the
same analyte in each round of the same PT scheme, again a composite score might
have limited value. Two functions used for this purpose are the re-scaled sum of
z-scores (RSZ), and the sum of squared z-scores (SSZ), given by and

respectively. Each of these functions has disadvantages, and the use of
combined z-scores is not to be recommended. In particular, combining scores from
the results of different analyses is dangerous, as seriously high and seriously low
z-values might then cancel out to give a falsely optimistic result.

4.12 Collaborative trials

As we have seen, proficiency testing schemes allow the competence of laboratories
to be monitored, compared and perhaps improved. By contrast a collaborative
trial (CT) aims to evaluate the precision of an analytical method, and sometimes
its ability to provide results free from bias. It is normally a one-off experiment
involving expert or competent laboratories, all of which by definition use the

SSZ = Σizi
2

RSZ = Σizi/√n

z

Laboratory

Figure 4.11 Summary of results of a single PT round.
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same technique. Collaborative trials are perhaps better described as method per-
formance studies.

A crucial preliminary experiment is the ‘ruggedness’ test. As we saw in Chapter 1,
even very simple analytical experiments involve several individual steps and perhaps
the use of a number of reagents. Thus many experimental factors (e.g. temperature,
solvent composition, pH, humidity, reagent purity, concentration, etc.) will affect
the results, and it is essential that such factors are identified and studied before any
collaborative trial is undertaken. In some cases a method is found to be so sensitive
to small changes in one factor that it is in practice very difficult to control (e.g. very
high reagent purity) and the method is rejected as impracticable before a CT takes
place. In other instances the trial will continue, but the collaborators will be warned
of the factors to be most carefully controlled. Although a more complete discussion
of experimental design is deferred to Chapter 7, it is important to indicate here that
much information can be obtained from a relatively small number of experiments.
Suppose it is believed that seven experimental factors (A–G) might affect the results
of an analysis. These factors must be tested at (at least) two values, called levels, to
see whether they are really significant. Thus, if temperature is thought to affect the
result, we must perform preliminary experiments at two temperatures (levels) and
compare the outcomes. Similarly, if reagent purity may be important, experiments
with high-purity and lower-purity reagent batches must be done. It might thus be
thought that 27 preliminary experiments, covering all the possible combinations of
seven factors at two levels, will be necessary. In practice, however, just eight experi-
ments can provide important information. The two levels of the factors are called
+ and −, and Table 4.4 shows how these levels are set in the eight experiments, the
results of which are called y1, y2, . . . , y8. The effect of altering each of the factors from
its high level to its low level is easily calculated. Thus the effect of changing B from
+ to − is (y1 + y2 + y5 + y6)/4 − (y3 + y4 + y7 + y8)/4.

When the seven differences for factors A–G have all been calculated in this way,
it is easy to identify any factors that have a worryingly large effect on the results. It
may be shown that any difference that is more than twice the standard deviation of
replicate measurements is significant and should be further studied. This simple set
of experiments, technically known as an incomplete factorial design, has the
disadvantage that interactions between the factors cannot be detected. This point is
further discussed in Chapter 7.

Table 4.4 Ruggedness test for seven factors

Experiment Factors Result

A B C D E F G

1 + + + + + + + y1

2 + + − + − − − y2

3 + − + − + − − y3

4 + − − − − + + y4

5 − + + − − + − y5

6 − + − − + − + y6

7 − − + + − − + y7

8 − − − + + + − y8
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In recent years international bodies have moved towards an agreement on how
CTs should be performed. At least eight laboratories (k ≥ 8) should be involved.
Since the precision of a method usually depends on the analyte concentration, it
should be applied to at least five different levels of analyte in the same sample
matrix, with duplicate measurements (n = 2) at each level. A crucial requirement of
a CT is that it should distinguish between the repeatability standard deviation, sr,
and the reproducibility standard deviation, sR. At each analyte level these are related
by the equation:

(4.13)sR
2 = sr

2 + sL
2

where is the variance due to inter-laboratory differences, which reflect different
degrees of bias in different laboratories. Note that in this particular context, repro-
ducibility refers to errors arising in different laboratories and equipment, but using
the same analytical method: this is a more restricted definition of reproducibility
than that used in other instances. As we saw in Section 4.3, one-way analysis of vari-
ance can be used (with separate calculations at each concentration level used in the
CT) to separate the sources of variance in equation (4.13). However, the proper use
of the equation involves two assumptions: (1) that at each concentration level the
means obtained in different laboratories are normally distributed; and (2) that at
each concentration the repeatability variance among laboratories is equal. Both
these assumptions are tested using standard methods before the ANOVA calcula-
tions begin. In practice the second assumption, that of homogeneity of variance, is
tested first using Cochran’s method. Strictly speaking this test is designed to detect
outlying variances rather than testing for homogeneity of variance as a whole, but
other more rigorous methods for the latter purpose are also more complex.
Cochran’s test calculates C by comparing the largest range (i.e. difference between
the two results from a single laboratory) with the sum of all such ranges. If n > 2,
variances rather than ranges are compared, but here we assume that each partici-
pating laboratory makes just two measurements at each level:

s2
L

(4.14)C =
w2

max

∑
j

w2
j

where j takes values from 1 to k, the number of participating laboratories. The value
of C obtained is compared with the critical values in Table A.15, and the null
hypothesis, i.e. that the largest variance is not an outlier, is rejected if the critical
value at the appropriate value of k is exceeded. When the null hypothesis is rejected,
the results from the laboratory in question are discarded.

The first assumption is then tested using Grubbs’ test (Section 3.7) which is
applied first as a test for single outliers, and then (since each laboratory makes
duplicate measurements) in a modified form as a test for paired outliers. In both
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cases all the results from laboratories producing outlying results are again
dropped from the trial unless this would result in the loss of too much data.
When these outlier tests are complete, the ANOVA calculation can proceed as in
Section 4.3.

In many circumstances it is not possible to carry out a full CT as described above,
for example when the test materials are not available with a suitable range of analyte
concentrations. In such cases a simpler system can be used. This is the Youden
matched pairs or two-sample method, in which each participating laboratory is
sent two materials of similar composition, X and Y, and asked to make one determina-
tion on each. The results are plotted as shown in Figure 4.12, each point on the plot
representing a pair of results from one laboratory. The mean values for the two mater-
ials, and , are also determined, and vertical and horizontal lines are drawn
through the point ( , ), thus dividing the chart into four quadrants. This plot
allows us to assess the occurrence of random errors and bias in the trial. If only ran-
dom errors occur the X and Y determinations may give results which are both too
high, both too low, X high and Y low, or X low and Y high. These four outcomes
would be equally likely, and the number of points in each of the quadrants would be
roughly equal. But if a systematic error occurs in a laboratory, it is likely that its
results for both X and Y will be high, or both will be low. So if systematic errors dom-
inate, most of the points will be in the top-right and bottom-left quadrants. This is
indeed the result that is obtained in most cases. In the impossible event that random
errors were absent, all the results would lie on a line at 45° to the axes of the plot, so
when in practice such errors do occur, the perpendicular distance of a point from
that line is a measure of the random error of the laboratory. Moreover the distance
from the intersection of that perpendicular with the 45° line to the point ( , )
measures the systematic error of the laboratory. This fairly simple approach to a col-
laborative trial is thus capable of yielding a good deal of information in a simple
form. The Youden approach has the further advantages that participating laborator-
ies are not tempted to censor one or more replicate determinations, and that more
materials can be studied without large numbers of experiments.

Youden plots provide a good deal of information in an immediately accessible
form, but we still need methods for calculating the variances and . The follow-
ing example shows how this can also be done in a simple way.

s2
rs2

R

YX

YX
YX

Sa
m

p
le

 Y

Sample X

X, Y

Figure 4.12 A Youden two-sample plot.
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Example 4.12.1

The lead levels (in ng g−1) in two similar samples (X and Y ) of solid milk for-
mulations for infants were determined in nine laboratories (1–9) by graphite-
furnace atomic-absorption spectrometry. The results were:

Sample Laboratories

1 2 3 4 5 6 7 8 9

X 35.1 23.0 23.8 25.6 23.7 21.0 23.0 26.5 21.4
Y 33.0 23.2 22.3 24.1 23.6 23.1 21.0 25.6 25.0

Evaluate the overall inter-laboratory variation, and its random and systematic
components.

In CTs of this type there is a difference between the samples as well as the
differences between laboratories. In the normal way, such a situation would be
dealt with by two-way ANOVA (see Section 7.3), and in some cases this is done.
However, in this instance there are only two samples, deliberately chosen to be
similar in their analyte content, so there is little interest in evaluating the dif-
ference between them. The calculation can therefore be set out in a way that is
numerically and conceptually simpler than a complete two-way ANOVA. In
performing the calculation we know that the result obtained by each laboratory
for sample X may include a systematic error. The same systematic error will pre-
sumably be included in that laboratory’s result for the similar sample Y. The dif-
ference D (= X − Y) will thus have this error removed, so the spread of the D
values will provide an estimate of the random or measurement errors. Similarly,
X and Y can be added to give T, the spread of which gives an estimate of the
overall variation in the results. The measurement variance is then estimated by:

(4.15)

and the overall variance, , due to all sources of error, is estimated by:

(4.16)

Notice that each of these equations includes a 2 in the denominator. This is
because D and T each give estimates of errors in two sets of results, subtracted
and added in D and T respectively. The results of this trial can be expressed in
a table as follows:

1 2 3 4 5 6 7 8 9

X 35.1 23.0 23.8 25.6 23.7 21.0 23.0 26.5 21.4
Y 33.0 23.2 22.3 24.1 23.6 23.1 21.0 25.6 25.0
D 2.1 −0.2 1.5 1.5 0.1 −2.1 2.0 0.9 −3.6
T 68.1 46.2 46.1 49.7 47.3 44.1 44.0 52.1 46.4

s2
R =

∑
i

(Ti − T )2

2(n − 1)

s2
R

s2
r =

∑
i

(Di − D)2

2(n − 1)
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4.13 Uncertainty

In Chapter 1 we learned that analytical procedures will be affected both by random
errors and by bias. In fairly recent years analytical chemists have increasingly recog-
nized the importance of providing for each analysis a single number which describes
their combined effect. The uncertainty of a result is a parameter that describes a
range within which the value of the quantity being measured is expected to lie, taking
into account all sources of error. The concept is well established in physical measure-
ments. Its value in analytical chemistry is also undeniable and its use is now very
widespread, though questions and controversies remain over the ease of its interpreta-
tion by legal and statutory bodies and lay people, and about the best methods of cal-
culating it. Two symbols are used to express uncertainty. Standard uncertainty (u)
expresses the concept as a standard deviation. Expanded uncertainty (U ) defines a
range that encompasses a large fraction of the values within which the quantity being
measured will lie and is obtained by multiplying u by a coverage factor, k, chosen
according to the degree of confidence required for the range, i.e. U = u × k. Since u is
analogous to a standard deviation, if k is 2 (this is generally taken as the default value
if no other information is given), then U gives approximately one-half of the 95%
confidence interval.

In principle, two basic approaches to estimating uncertainty are available. The
bottom-up approach identifies each separate stage of an analysis, including sam-
pling steps wherever possible, assigns appropriate random and systematic errors
to each, and then combines these components using the rules summarized in
Section 2.11 to give an overall u value. However, for a number of reasons this pro-
cess may not be as simple as it seems. The first problem is that even simple ana-
lytical processes may involve many individual experimental steps and possible

The third and fourth rows of the table can be used to show that = 0.244 and
= 49.33. Equations (4.15) and (4.16) then show that the overall variance and

the measurement variances are (5.296)2 and (1.383)2 respectively. These can be
compared as usual using the F-test, giving F = 14.67. The critical value, F8,8, is
3.44 (P = 0.05), so the inter-laboratory variation cannot simply be accounted
for by random errors. The component due to bias, , is given here by

(4.17)

Note again the appearance of the 2 in equation (4.17), because two sample
materials are studied. Here it is a simple matter to calculate that the estimate
of is (3.615)2. The mean of all the measurements is 49.33/2 = 24.665, so the
relative standard deviation is (100 × 5.296)/24.665 = 21.47%. This seems to be
a high value, but the Horwitz trumpet relationship would predict an even
higher value of ca. 28% at this concentration level. It should be noted that pos-
sible outliers are not considered in the Youden procedure, so the possibility of
rejecting the results from laboratory 1 does not arise.

s2
L

sR
2 = 2sL

2 + sr
2

s2
L

T
D
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sources of error. It is easy to overlook some of these sources and thus arrive at an
over-optimistic uncertainty value. If all the sources of error are all fully identified,
then the whole calculation process is liable to be long-winded. Examples of error
sources that should be considered but are easily overlooked include operator bias;
instrument bias, including sample carry-over; assumptions concerning reagent
purity; use of volumetric apparatus at a temperature different from that at which
it was calibrated; changes in the composition of the sample during the analysis,
either because of contamination or because of inherent instability; use of calcula-
tors or computers with inadequate capabilities or with the wrong statistical
model applied; and so on. All these factors may arise in addition to the random
errors that inevitably occur in repeated measurements. Whereas the latter may be
estimated directly by repeated measurements, some of the former may not be
amenable to experiment, and may have to be estimated using experience, or
equipment manufacturers’ information such as calibration certificates or instru-
ment specifications.

Another problem is that, as shown in Chapter 2, systematic errors do not imme-
diately lend themselves to statistical treatment in the same way as random errors.
How then can they be combined with random errors to give an overall u value? (It is
still good practice to minimize systematic errors by the use of standards and reference
materials, but we should still include the errors involved in that correction process in
the overall uncertainty estimate.) The usual method of tackling systematic errors is
to treat them as coming from a rectangular distribution. Suppose, for example, that
a manufacturer quotes the purity of a reagent as 99.9 ± 0.1%. This does not mean that
the purity of the reagent in its container varies randomly with a standard deviation
of 0.1%: it means that the purity of the reagent in a single bottle is between 99.8%
and 100.0%. That is, any single bottle provides a systematic error, and there is no rea-
son to suppose that the actual purity is closer to 99.9% than to any other value in the
range 99.8–100.0%. In other words, the purity has a uniform distribution over
this range. In such cases, the contribution to the standard uncertainty is obtained by
dividing the error by , giving a value of Uncertainty contributions
of this kind derived from uniform distributions (or from triangular distributions,
where the corresponding division factor is ) are referred to as type B uncertainties.
Random errors that can be combined using the usual methods summarized in
Chapter 2 are called type A contributions.

The following simplified example of a bottom-up uncertainty calculation shows
some of these principles in operation. Further details, including a numerical calcu-
lation, are given in the Eurachem/CITAC guide (see Bibliography). Suppose we wish
to determine the concentration of a solution of sodium hydroxide by titration with
a standard acid such as potassium hydrogen phthalate (KHP). The molar concen-
tration of NaOH given by this experiment will depend on the volume of the NaOH
solution used in the titration, and the mass, purity and molecular weight of the
KHP. The uncertainty in the molecular weight of the acid can be computed from
the atomic weights table of the International Union of Pure and Applied
Chemistry. It would be treated as a type B uncertainty, but it is so small that it is
negligible for most practical purposes. The mass of the KHP used would almost cer-
tainly be determined by difference, i.e. by weighing a container with the KHP in it,
then weighing the container after the KHP has been removed for dissolution. Each
of these weighings would have an uncertainty derived as a type B estimate from the
calibration certificate of the balance used. If the certificate indicated a balance error

√6

0.1/√3 = 0.0577.√3
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of ±0.2 mg, the uncertainty in each weighing would be The
overall uncertainty in the weighing stage is then determined using equation (2.11),
as [(0.1155)2 + (0.1155)2]1/2 = 0.1633 mg. The contribution to the overall uncer-
tainty from the uncertainty in the purity of the KHP is another type B estimate,
again obtained by dividing the fractional impurity level by . The uncertainty
contribution from the volume of NaOH used will have several sources, including a
temperature effect (i.e. is the glassware used at the temperature at which it was cal-
ibrated?), the calibration uncertainty of the burette (often assumed to derive from
a triangular distribution), and possibly an end-point error due to an indicator.
Finally, replicate titrations will show the extent of random errors during the analy-
sis. Although most attention will in practice be given to the major contributors to
the uncertainty, it is clear that even in a simple analysis of this kind a full uncer-
tainty estimate requires much care.

A further problem, the extent of which seems not to have been fully investigated,
is that the rules for combining errors given in Chapter 2 assume that the sources of
the errors are independent of each other. In reality it seems quite possible that this is
not always true. For example, if a series of experiments is conducted over a period
in which the laboratory temperature fluctuates, such fluctuations might have sev-
eral effects, such as altering the capacity of volumetric apparatus, causing sample
losses through volatility, affecting the sensitivity of optical or electrochemical
detectors, and so on. Since all these errors would arise from a single source, they
would be correlated, and strictly speaking could not be combined using the simple
formulae. In such cases the actual uncertainty might be less than the u value calcu-
lated on the assumption of independent errors.

Overall the bottom-up approach to uncertainty estimates may be too time-
consuming for many purposes. It is possible that in some laboratories it is not
necessary to make such calculations very often, as an uncertainty estimate made
in detail for one analysis may serve as a model for other analyses over a period of
time. But in other instances, most obviously where legal or regulatory issues arise
(see below), this will not be sufficient and an uncertainty estimate will have to be
provided for each disputed sample. Despite this, the bottom-up approach is the
one currently recommended by many authorities.

A completely different approach is the top-down method, which seeks to
use the results of proficiency testing schemes in a number of laboratories (see
Section 4.11) to give estimates of the overall uncertainties of the measurements
without necessarily trying to identify every individual source of error. The method
is clearly only applicable in areas where data from properly run proficiency
schemes are available, though such schemes are rapidly expanding in number and
may thus provide a real alternative to bottom-up methods in many fields. It can
be argued that the uncertainty values calculated in this way are more realistic than
bottom-up values. There is also a significant saving of effort, since the PT scheme
results provide uncertainty estimates directly. On the other hand, PT schemes use
a variety of analytical methods, so it might reasonably be claimed that the uncer-
tainty of results from a laboratory that has long experience of a single method
might be better (smaller) than PT results from many laboratories would suggest.
Again, PT schemes utilize single sample materials prepared with great care and
tested for their homogeneity. Some sampling errors that would occur in a genuine
analysis might thus be overlooked.

√3

0.2/√3 mg = 0.1155 mg.
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These problems have led some bodies to propose simpler methods, explicitly
designed to minimize the workload in laboratories that use a range of analytical pro-
cedures. In one such approach the basic principles are:

1 Systematic errors are not included in the uncertainty estimates, but are assessed
using reference materials as usual and thus corrected or eliminated.

2 At least 10 replicate measurements are made on stable and well-characterized
authentic samples or reference materials. (This again implies that sampling uncer-
tainties are not included in the estimates.)

3 Uncertainties are calculated from the standard deviations of measurements made
in internal reproducibility conditions, i.e. with different analysts, using different
concentrations (including any that are relevant to legal requirements), and in all
relevant matrices.

These conditions are supposed to mimic those that would arise in a laboratory in
everyday operation. Some provision is made for circumstances where the repro-
ducibility conditions cannot be achieved (for example where samples are intrinsic-
ally unstable). This method seems to be very simple, but it may be adequate: indeed
it may be the only practicable method in some instances.

Uncertainty estimates are important not only to anyone who has provided a
sample for analysis and who requires a range of values in which the true analyte
concentration should lie. They also have value in demonstrating that a laboratory
has the capacity to perform analyses of legal or statutory significance. Once an
uncertainty value for a particular analysis in a given laboratory is known, it is
simple to interpret the results in relation to such statutory or other specification
limits. Four possible situations are shown in Figure 4.13, where it is assumed that
a coverage factor of 2 has been used to determine U at the 95% level (the 95%
interval is shown by the vertical double arrows), and where both upper and lower
limits for the concentration of the analyte have been specified. These limits are
indicated by the horizontal lines.

In case A the uncertainty interval lies completely between the upper and lower
specified limits, so compliance with the specification has been achieved. In case B
the 95% interval extends just beyond the upper limit, so although compliance is
more likely than not, it cannot be fully verified at the 95% level. In case C
compliance is very unlikely, though not impossible, and in case D there is a clear
failure to comply.

Although none of the approaches to estimating uncertainties is ideal, and
although the term itself still provokes controversy (some analytical chemists

A CB D

Figure 4.13 Use of uncertainty to test compliance with specification limits.
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think it is too negative or pessimistic in its implications for the lay public),
uncertainty calculations seem certain to increase further in importance in the
future.

4.14 Acceptance sampling

Previous sections of this chapter have shown how the quality of the analytical
results obtained in a laboratory can be monitored by internal quality control proce-
dures and by participation in proficiency testing schemes. We have also shown how
the concept of uncertainty is designed to help the interpretation of analytical results
by the customers for analytical measurements, including regulatory authorities. In
this section we consider a further important problem involving both analysts and
their customers, called acceptance sampling. The simple statistical principles
involved have been discussed in previous chapters. Suppose that the manufacturer
of a chemical is required to ensure that it does not contain more than a certain level
of a particular impurity. This is called the acceptable quality level (AQL) of the
product and is given the symbol µ0. The manufacturer’s intention to ensure that this
impurity level is not exceeded is monitored by testing batches of the product. Each
test involves n test portions, whose mean impurity level is found to be . The varia-
tion between portions, σ, is as we have seen normally known from previous experi-
ence. The practical problem that arises is that, even when a batch of manufactured
material has an impurity level of µ0, and is thus satisfactory, values of greater than
µ0 will be found in 50% of the analyses. Therefore the manufacturer establishes a
critical value for , given the symbol . For a measured value of the batch is
rejected. This critical value is higher than µ0, thus ensuring that the manufacturer
runs only a small risk of rejecting a satisfactory batch.

At the same time the customer wishes to minimize the risk of accepting a batch
with a mean impurity level greater than µ0. This can be achieved by setting an
agreed tolerance quality level (TQL), µ1, which has a small probability of accep-
tance. The aim of acceptance sampling is that the critical value should minimize
the risk to the customer as well as to the manufacturer. At the same time we wish to
ensure that n is no larger than necessary. This can be achieved using the properties
of the sampling distribution of the mean, given that σ is known.

Suppose the manufacturer accepts a 5% risk of rejecting a batch of the chemical
that is in fact satisfactory, i.e. a batch for which , even though µ = µ0. Then we
can write

x > x0

x0

x > x0x0x

x

x

(4.18)(x0 − µ0)/(σ/√n) = 1.64

The value 1.64 can be found in Table A.2 (see also Section 2.2). Suppose also that the
customer is prepared to accept a 10% risk of accepting a batch with the impurity at
the TQL. Then we can similarly write:
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Example 4.14.1

Determine n and for the case where the AQL and TQL are 1.00 g kg−1 and
1.05 g kg−1 impurity respectively, the manufacturer’s and customer’s risks are
5% and 10% respectively, and σ is 0.05 g kg−1.

The solution to this problem involves the use of equations (4.18) and (4.19)
with µ0 and µ1 taking values 1.00 and 1.05 respectively. By transformation of
these equations we can write:

n = [(1.64 + 1.28)0.05/(1.05 − 1.00)]2

= [(1.64 × 1.05) + (1.28 × 1.00)/(1.64 + 1.28)

These equations yield n = 2.922 = 8.53, which is rounded up to a sample size
of 9, and = 3.002/2.92 = 1.028. Thus a critical value of 1.028% impurity
and sample size of 9 will provide both manufacturer and customer with the
necessary assurances.

x0

x0

x0

Since in practice the values of µ0 and µ1 will have been agreed in advance,
equations (4.17) and (4.18) provide simultaneous equations that can be solved
for n and .x0

(4.19)(x0 − µ1)/(σ/√n) = −1.28
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Exercises

1 Two sampling schemes are proposed for a situation in which it is known, from
past experience, that the sampling variance is 10 and the measurement variance
4 (arbitrary units).

Scheme 1: Take five sample increments, blend them and perform a duplicate
analysis.

Scheme 2: Take three sample increments and perform a duplicate analysis on each.

Show that the variance of the mean is the same for both schemes.

What ratio of the cost of sampling to the cost of analysis must be exceeded for
the second scheme to be the more economical?

2 The data in the table below give the concentrations of albumin measured in the
blood serum of one adult. On each of four consecutive days a blood sample was taken
and three replicate determinations of the serum albumin concentration were made.

Day Albumin concentrations
(normalized, arbitrary units)

1 63 61 62
2 57 56 56
3 50 46 46
4 57 54 59

Show that the mean concentrations for different days differ significantly.
Estimate the variance of the day-to-day variation (i.e. ‘sampling variation’).

3 In order to estimate the measurement and sampling variances when the halofugi-
none concentration in chicken liver is determined, four sample increments were
taken from different parts of the liver and three replicate measurements were made
on each. The following results were obtained (mg kg−1):

Sample Replicate measurements

A 0.25 0.22 0.23
B 0.22 0.20 0.19
C 0.19 0.21 0.20
D 0.24 0.22 0.22

Verify that the sampling variance is significantly greater than the measurement
variance and estimate both variances.

Two possible sampling schemes are proposed:

Scheme 1: Take six sample increments, blend them and make four replicate
measurements.

Scheme 2: Take three sample increments and make two replicate measurements
on each.

Calculate the total variance of the mean for each scheme.
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4 In order to estimate the capability of a process, measurements were made on six
samples of size 4 as shown in the table below (in practice at least 25 such samples
would be needed). Estimate the process capability, σ. If the target value is 50, cal-
culate the positions of the action and warning lines for the Shewhart charts for
the sample mean and the range.

Sample Values

1 48.8 50.8 51.3 47.9
2 48.6 50.6 49.3 49.7
3 48.2 51.0 49.3 50.3
4 54.8 54.6 50.7 53.9
5 49.6 54.2 48.3 50.5
6 54.8 54.8 52.3 52.5

5 In a collaborative trial, two closely similar samples of oil shale (A and B) were sent to
15 laboratories, each of which performed a single inductively coupled plasma deter-
mination of the cadmium level in each sample. The following results were obtained:

Laboratory Cd levels (ppm)

A B

1 8.8 10.0
2 3.8 4.7
3 10.1 12.1
4 8.0 11.0
5 5.0 4.7
6 5.2 6.4
7 6.7 8.7
8 9.3 9.6
9 6.9 7.5

10 3.2 2.8
11 9.7 10.4
12 7.2 8.3
13 6.5 6.8
14 9.7 7.2
15 5.0 6.0

Plot the two-sample chart for these data, and comment on the principal source
of error in the collaborative trial. Estimate the overall variance, the measurement
variance, and the systematic error component of the variance of the results.

6 The target value for a particular analysis is 120. If preliminary trials show that
samples of size 5 give an value of 7, set up Shewhart charts for the mean and
range for samples of the same size.

7 An internal quality control sample of blood, used for checking the accuracy of
blood alcohol determinations, contains 80.0 mg 100 ml−1 of ethanol. Successive
daily measurements of the alcohol level in the sample were made using four
replicates. The precision (process capability) of the method was known to be
0.6 mg 100 ml−1. The following results were obtained:

R
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Day Concentration
(mg 100 ml−1)

1 79.8
2 80.2
3 79.4
4 80.3
5 80.4
6 80.1
7 80.4
8 80.2
9 80.0

10 79.9
11 79.7
12 79.6
13 79.5
14 79.3
15 79.2
16 79.3
17 79.0
18 79.1
19 79.3
20 79.1

Plot the Shewhart chart for the mean, and the cusum chart, for these results, and
comment on the outcomes.
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5 Calibration methods:
regression and correlation

5.1 Introduction: instrumental analysis

Classical or ‘wet chemistry’ analysis techniques such as titrimetry and gravimetry
remain in use in many laboratories and are still widely taught in Analytical
Chemistry courses. They provide excellent introductions to the manipulative and
other skills required in analytical work, they are ideal for high-precision analyses,
especially when small numbers of samples are involved, and they are sometimes
necessary for the analysis of standard materials. However, there is no doubt that
most analyses are now performed by instrumental methods. Techniques using
absorption and emission spectrometry at various wavelengths, many different elec-
trochemical methods, mass spectrometry, gas and liquid chromatography, and ther-
mal and radiochemical methods, probably account for at least 90% of all current
analytical work. There are several reasons for this.

Firstly, instrumental methods can perform analyses that are difficult or impossible by
classical methods. Whereas the latter can only rarely detect materials at sub-microgram
levels, many instrumental methods are astonishingly sensitive. For example, in recent
years fluorescence methods have routinely been used to detect single organic molecules
in very small volumes of solution. It is normally only possible to determine one analyte
at a time by ‘wet chemical’ methods, but plasma spectrometry can determine 10 or
more elements simultaneously (and at very low concentrations). Similarly, methods
combining high performance liquid chromatography with a spectroscopic detection
procedure can identify and determine many components of complex organic mixtures
within a few minutes. Furthermore, the concentration range of a particular classical
analysis method is usually limited by practical and theoretical considerations. Thus
EDTA titrations can be successfully performed with reactant concentrations as low as
about 10−4 M, but an upper limit (ca. 0.3 M) is set by the solubility of EDTA in water.
The useful concentration range is generally only 2–3 orders of magnitude (i.e. powers
of 10) for classical methods. In contrast, some instrumental methods are able to deter-
mine analyte concentrations over a range of six or more orders of magnitude: this char-
acteristic has important implications for the statistical treatment of the results, as we
shall see in the next section.

Secondly, for a large throughput of samples instrumental analysis is generally
quicker and often cheaper than the labour-intensive manual methods. In clinical
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analysis, for example, there is frequently a requirement for the same analyses to be
done on scores or even hundreds of whole blood or blood serum/plasma samples
every day. Despite the high initial cost of the equipment, such work is generally per-
formed using completely automatic systems. Automation has become such an
important feature of analytical chemistry that the ease with which a particular tech-
nique can be automated often determines whether or not it is used at all. A typical
automatic method may be able to process samples at the rate of 100 per hour or
more. The equipment will take a measured volume of sample, dilute it appropriately,
conduct one or more reactions with it, and determine and record the concentration
of the analyte or of a derivative produced in the reactions. Other areas where the use
of automated equipment is now crucial include environmental monitoring and the
rapidly growing field of industrial process analysis. Special problems of error esti-
mation will evidently arise in all these applications of automatic analysis: systematic
errors, for example, must be identified and corrected as rapidly as possible.

Lastly, modern analytical instruments are almost always interfaced with personal
computers to provide sophisticated system control and the storage, treatment (for
example the performance of Fourier transforms or calculations of derivative spectra)
and reporting of data. Such systems can also evaluate the results statistically, and
compare the analytical results with data libraries in order to match spectral and
other information. All these facilities are now available from low-cost computers
operating at high speeds. Also important is the use of ‘intelligent’ instruments,
which incorporate automatic set-up and fault diagnosis and can perform optimiza-
tion processes (see Chapter 7).

The statistical procedures used with instrumental analysis methods must provide as
always information on the precision and accuracy of the measurements. They must
also reflect the technical advantages of such methods, especially their ability to cover
a great range of concentrations (including very low concentrations), and to handle
many samples rapidly. (In this chapter we shall not cover methods that facilitate
the simultaneous determination of more than one analyte. This topic is outlined in
Chapter 8.) In practice the results are calculated and the errors evaluated in a particu-
lar way that differs from that used when a single measurement is repeated several
times.

5.2 Calibration graphs in instrumental analysis

The usual procedure is as follows. The analyst takes a series of materials (normally
at least three or four, and possibly several more) in which the concentration of the
analyte is known. These calibration standards are measured in the analytical instru-
ment under the same conditions as those subsequently used for the test (i.e. the
‘unknown’) materials. Once the calibration graph has been established the analyte
concentration in any test material can be obtained, as shown in Figure 5.1, by inter-
polation. This general procedure raises several important statistical questions:

1 Is the calibration graph linear? If it is a curve, what is the form of the curve?

2 Bearing in mind that each of the points on the calibration graph is subject to
errors, what is the best straight line (or curve) through these points?
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3 Assuming that the calibration plot is actually linear, what are the errors and con-
fidence limits for the slope and the intercept of the line?

4 When the calibration plot is used for the analysis of a test material, what are the
errors and confidence limits for the determined concentration?

5 What is the limit of detection of the method? That is, what is the least concentra-
tion of the analyte that can be detected with a predetermined level of confidence?

Before tackling these questions in detail, we must consider a number of aspects of
plotting calibration graphs. Firstly, it is usually essential that the calibration stand-
ards cover the whole range of concentrations required in the subsequent analyses.
With the important exception of the ‘method of standard additions’, which is
treated separately in a later section, concentrations of test materials are normally
determined by interpolation and not by extrapolation. Secondly, it is crucially
important to include the value for a ‘blank’ in the calibration curve. The blank con-
tains no deliberately added analyte, but does contain the same solvent, reagents,
etc., as the other test materials, and is subjected to exactly the same sequence of ana-
lytical procedures. The instrument signal given by the blank will sometimes not be
zero. This signal is subject to errors like all the other points on the calibration plot,
so it is wrong in principle to subtract the blank value from the other standard val-
ues before plotting the calibration graph. This is because, as shown in Chapter 2,
when two quantities are subtracted, the error in the final result cannot also be
obtained by simple subtraction. Subtracting the blank value from each of the other
instrument signals before plotting the graph thus gives incorrect information on the
errors in the calibration process. Finally, it should be noted that the calibration
curve is always plotted with the instrument signals on the vertical (y) axis and the
standard concentrations on the horizontal (x) axis. This is because many of the pro-
cedures to be described in the following sections assume that all the errors are in the
y-values and that the standard concentrations (x-values) are error-free. In many rou-
tine instrumental analyses this assumption may well be justified. The standards can
be made up with an error of ca. 0.1% or better (see Chapter 1), whereas the instru-
mental measurements themselves might have a coefficient of variation of 2–3% or

.

Figure 5.1 Calibration procedure in instrumental analysis: � calibration points; � test sample.
Si
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Product–moment correlation coefficient,

(5.2)r =
∑

i
{(xi − x)(yi − y)}

��∑
i

(xi − x)2��∑
i

(yi − y)2��
1/2

worse. So the x-axis error is indeed negligible compared with that of the y-axis. In
recent years, however, the advent of high-precision automatic methods with coeffi-
cients of variation of 0.5% or better has put the assumption under question, and has
led some users to make up their standard solutions by weight rather than by the less
accurate combination of weight and volume. This approach is intended to ensure
that the x-axis errors remain small compared with those of the y-axis.

Other assumptions usually made are that (a) if several measurements are made on
a standard material, the resulting y-values have a normal or Gaussian error distribu-
tion; and (b) the magnitude of the errors in the y-values is independent of the ana-
lyte concentration. The first of these two assumptions is usually sound, but the
second requires further discussion. If true, it implies that all the points on the graph
should have equal weight in our calculations, i.e. that it is equally important for the
line to pass close to points with high y-values and to those with low y-values. Such
calibration graphs are said to be unweighted, and are treated in Sections 5.4–5.8.
However, in practice the y-value errors often increase as the analyte concentration
increases. This means that the calibration points should have unequal weight in our
calculation, as it is more important for the line to pass close to the points where the
errors are least. These weighted calculations are now becoming rather more common
despite their additional complexity, and are treated in Section 5.10.

In subsequent sections we shall assume that straight-line calibration graphs take
the algebraic form:

y = a + bx (5.1)

where b is the slope of the line and a its intercept on the y-axis. The individual
points on the line will be referred to as (x1, y1 – normally the ‘blank’ reading), (x2, y2),
(x3, y3) . . . (xi, yi) . . . (xn, yn), i.e. there are n points altogether. The mean of the x-values
is, as usual, called , and the mean of the y-values is : the position ( , ) is then
known as the ‘centroid’ of all the points.

5.3 The product–moment correlation coefficient

In this section we discuss the first problem listed in the previous section – is the cali-
bration plot linear? A common method of estimating how well the experimental
points fit a straight line is to calculate the product–moment correlation coef-
ficient, r. This statistic is often referred to simply as the ‘correlation coefficient’
because in quantitative sciences it is by far the most commonly used type of corre-
lation coefficient. We shall, however, meet other types of correlation coefficient in
Chapter 6. The value of r is given by:

yxyx
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The numerator of equation (5.2) divided by n, that is , is called

the covariance of the two variables x and y: it measures their joint variation. If x and
y are not related their covariance will be close to zero. The correlation coefficient
r equals the covariance of x and y divided by the product of their standard deviations,
so if x and y are not related r will also be close to zero. Covariances are also discussed
in Chapter 8.

It can be shown that r can take values in the range −1 ≤ r ≤ +1. As indicated in
Figure 5.2 an r-value of −1 describes perfect negative correlation, i.e. all the experi-
mental points lie on a straight line of negative slope. Similarly, when r = +1 we have
perfect positive correlation, all the points lying exactly on a straight line of positive
slope. When there is no correlation between x and y the value of r is close to zero.
In analytical practice, calibration graphs frequently give numerical r-values greater
than 0.99, and r-values less than about 0.90 are relatively uncommon. A typical
example of a calculation of r illustrates a number of important points.

∑
i

{(xi − x)(yi − y)}/n

.

Figure 5.2 The product–moment correlation coefficient, r.

r = +1

r = –1

r = 0

y

x

Example 5.3.1

Standard aqueous solutions of fluorescein are examined in a fluorescence spec-
trometer, and yield the following fluorescence intensities (in arbitrary units):

Fluorescence intensities: 2.1 5.0 9.0 12.6 17.3 21.0 24.7
Concentration, pg ml−1 0 2 4 6 8 10 12

Determine the correlation coefficient, r.

In practice, such calculations will almost certainly be performed on a calculator
or computer, alongside other calculations covered below, but it is important
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Two observations follow from this example. Figure 5.3 shows that, although sev-
eral of the points deviate noticeably from the ‘best’ straight line (calculated using
the principles of the following section) the r-value is very close to 1. Experience
shows that even quite poor-looking calibration plots give very high r-values. In such
cases the numerator and denominator in equation (5.2) are nearly equal. It is thus
very important to perform the calculation with an adequate number of significant
figures. In the example given, neglect of the figures after the decimal point would
have given an obviously incorrect r-value of exactly 1, and the use of only one place
of decimals would have given the incorrect r-value of 0.9991. This point is especially
important when a calculator or computer is used to determine r: it is necessary to
ensure that such devices provide sufficient figures.

Although correlation coefficients are simple to calculate, they are all too easily
misinterpreted. It must always be borne in mind that the use of equation (5.2) will
generate an r-value even if the data are patently non-linear in character. Figure 5.4
shows two examples in which a calculation of r would be misleading. In Figure 5.4(a),
the points of the calibration plot clearly lie on a curve; this curve is sufficiently gen-
tle, however, to yield quite a high correlation coefficient when equation (5.2) is
applied. The lesson of this example is that the calibration curve must always be plot-
ted (on graph paper or a computer monitor): otherwise a straight-line relationship
might wrongly be deduced from the calculation of r. Figure 5.4(b) is a reminder that
a zero correlation coefficient does not mean that y and x are entirely unrelated; it
only means that they are not linearly related.

As we have seen, r-values obtained in instrumental analysis are normally very
high, so a calculated value, together with the calibration plot itself, is often suffi-
cient to assure the analyst that a useful linear relationship has been obtained. In

and instructive to examine a manually calculated result. The data are presented
in a table, as follows:

xi yi xi − (xi − )2 yi − (yi − )2 (xi − )(yi − )

0 2.1 −6 36 −11.0 121.00 66.0
2 5.0 −4 16 −8.1 65.61 32.4
4 9.0 −2 4 −4.1 16.81 8.2
6 12.6 0 0 −0.5 0.25 0
8 17.3 2 4 4.2 17.64 8.4

10 21.0 4 16 7.9 62.41 31.6
12 24.7 6 36 11.6 134.56 69.6

Sums: 42 91.7 0 112 0 418.28 216.2

The figures below the line at the foot of the columns are in each case the sums
of the figures in the table: note that and are both zero. Using
these totals in conjunction with equation (5.2), we have:

r =
216.2

√112 × 418.28
=

216.2
216.44

= 0.9989

∑(yi − y)∑(xi − x)

yxyyxx
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Figure 5.3 Calibration plot for the data in Example 5.3.1.

Figure 5.4 Misinterpretation of the correlation coefficient, r.

5

4

3

2

1

0

5

4

3

2

1

0
0 2 4

y

x

r = 0.986

r = 0

(a)

(b)

y

1 3 5

SCA_C05.qxd  3/29/05  3:59 PM  Page 113



.

114 5: Calibration methods: regression and correlation

.

some circumstances, however, much lower r-values are obtained: one such situation
is discussed further in Section 5.9. In these cases it will be necessary to use a proper
statistical test to see whether the correlation coefficient is indeed significant, bear-
ing in mind the number of points used in the calculation. The simplest method of
doing this is to calculate a t-value (see Chapter 3 for a fuller discussion of the t-test),
using the following equation:

To test for a significant correlation, i.e. H0 = zero correlation, calculate

(5.3)t = r √n − 2

√1 − r2

It can be shown that the least squares straight line is given by:

Slope of least squares line: (5.4)

Intercept of least squares line: (5.5)a = y − bx

b =
∑

i
{(xi − x)(yi − y)}

∑
i

(xi − x)2

The calculated value of t is compared with the tabulated value at the desired signifi-
cance level, using a two-sided t-test and (n − 2) degrees of freedom. The null hypothesis
in this case is that there is no correlation between x and y. If the calculated value of t
is greater than the tabulated value, the null hypothesis is rejected and we conclude in
such a case that a significant correlation does exist. As expected, the closer is to 1,
i.e. as the straight-line relationship becomes stronger, the larger the values of t that are
obtained.

5.4 The line of regression of y on x

In this section we assume that there is a linear relationship between the analytical
signal (y) and the concentration (x), and show how to calculate the ‘best’ straight line
through the calibration graph points, each of which is subject to experimental error.
Since we are assuming for the present that all the errors are in y (cf. Section 5.2), we are
seeking the line that minimizes the deviations in the y-direction between the experi-
mental points and the calculated line. Since some of these deviations (technically
known as the y-residuals – see below) will be positive and some negative, it is sensible
to seek to minimize the sum of the squares of the residuals, since these squares will
all be positive. This explains the frequent use of the term method of least squares for
the procedure. The straight line required is calculated on this principle: as a result it is
found that the line must pass through the centroid of the points ( , ).yx

r
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Notice that equation (5.4) contains some of the terms used in equation (5.2), previ-
ously used to calculate r: this facilitates calculator or computer operations. The line
determined from equations (5.4) and (5.5) is known as the line of regression of y
on x, i.e. the line indicating how y varies when x is set to chosen values. It is very
important to notice that the line of regression of x on y is not the same line (except
in the highly improbable case where all the points lie exactly on a straight line,
when r = 1 exactly). The line of regression of x on y (which also passes through the
centroid of the points) assumes that all the errors occur in the x-direction. If we
maintain rigidly the convention that the analytical signal is always plotted on the
y-axis and the concentration on the x-axis, it is always the line of regression of y on
x that we must use in calibration experiments.

.

Example 5.4.1

Calculate the slope and intercept of the regression line for the data given in
the previous example (see Section 5.3).

In Section 5.3 we calculated that, for this calibration curve:

Using equations (5.4) and (5.5) we calculate that

b = 216.2/112 = 1.93

a = 13.1 − (1.93 × 6) = 13.1 − 11.58 = 1.52

The equation for the regression line is thus y = 1.93x + 1.52.

∑
i

(xi − x)(yi − y) = 216.2;  ∑
i

(xi − x)2 = 112;  x = 6;  y = 13.1

The results of the slope and intercept calculations are depicted in Figure 5.3. Again
it is important to emphasize that equations (5.4) and (5.5) must not be misused –
they will only give useful results when prior study (calculation of r and a visual
inspection of the points) has indicated that a straight-line relationship is realistic for
the experiment in question.

Non-parametric methods (i.e. methods that make no assumptions about the
nature of the error distribution) can also be used to calculate regression lines, and
this topic is treated in Chapter 6.

5.5 Errors in the slope and intercept of the regression line

The line of regression calculated in the previous section will in practice be used to
estimate the concentrations of test materials by interpolation, and perhaps also to
estimate the limit of detection of the analytical procedure. The random errors in the
values for the slope and intercept are thus of importance, and the equations used to
calculate them are now considered. We must first calculate the statistic sy/x, which
estimates the random errors in the y-direction.
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It will be seen that this equation utilizes the y-residuals, yi − , where the -values are
the points on the calculated regression line corresponding to the individual x-values,
i.e. the ‘fitted’ y-values (Figure 5.5). The -value for a given value of x is of course
readily calculated from the regression equation. Equation (5.6) is clearly similar in
form to the equation for the standard deviation of a set of repeated measurements
[equation (2.2)]. The former differs in that deviations, (yi − ), are replaced by residuals,
yi − , and the denominator contains the term (n − 2) rather than (n − 1). In linear
regression calculations the number of degrees of freedom (see Section 2.7) is (n − 2).
This reflects the obvious consideration that only one straight line can be drawn
through two points.

Armed with a value for sy/x we can now calculate sb and sa, the standard deviations
for the slope (b) and the intercept (a). These are given by:

ŷi

y

ŷi

ŷiŷi

y

^

^

^

x1, y1

x3, y3

x3, y3

^

x5, y5
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x4, y4

x4, y4

^x6, y6

x6, y6
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x2, y2

x1, y1

x

Figure 5.5 The y-residuals of a regression line.

(5.6)sy/x = √∑
i

(yi − ŷ i)
2

n − 2

Standard deviation of slope: (5.7)

Standard deviation of intercept: (5.8)sa = sy/x√ ∑
i

xi
2

n∑
i

(xi − x)2

sb =
sy/x

√∑
i

(xi − x)2
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Note again that the term appears in both these equations. The values of

sb and sa can be used in the usual way (see Chapter 2) to estimate confidence limits
for the slope and intercept. Thus the confidence limits for the slope of the line are
given by b ± t(n − 2)sb, where the t-value is taken at the desired confidence level and
(n − 2) degrees of freedom. Similarly the confidence limits for the intercept are given
by a ± t(n − 2)sa.

∑
i

(xi − x)2

.

Example 5.5.1

Calculate the standard deviations and confidence limits of the slope and inter-
cept of the regression line calculated in Section 5.4.

This calculation may not be accessible on a simple calculator, but suitable
computer software is available. Here we perform the calculation manually,
using a tabular layout.

xi xi
2 yi

0 0 2.1 1.52 0.58 0.3364
2 4 5.0 5.38 0.38 0.1444
4 16 9.0 9.24 0.24 0.0576
6 36 12.6 13.10 0.50 0.2500
8 64 17.3 16.96 0.34 0.1156

10 100 21.0 20.82 0.18 0.0324
12 144 24.7 24.68 0.02 0.0004

From the table and using equation (5.6) we obtain

From Section 5.3 we know that , and equation (5.7) can be used 
to show that

The t-value for (n − 2) = 5 degrees of freedom and the 95% confidence level is
2.57 (Table A.2). The 95% confidence limits for b are thus:

b = 1.93 ± (2.57 × 0.0409) = 1.93 ± 0.11

Equation (5.8) requires knowledge of , calculated as 364 from the table.
We can thus write:

so the 95% confidence limits are:

a = 1.52 ± (2.57 × 0.2950) = 1.52 ± 0.76

sa = 0.4329√ 364
7 × 112

= 0.2950

∑
i

xi
2

sb = 0.4329/√112 = 0.4329/10.58 = 0.0409

∑
i

(xi − x)2 = 112

sy/x = √0.9368/5 = √0.18736 = 0.4329

∑
i

(yi − ŷi)
2 = 0.9368∑

i
xi

2 = 364

(yi − ŷi)
2yi − ŷiŷi
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In this example, the number of significant figures necessary was not large, but it is
always a useful precaution to use the maximum available number of significant fig-
ures during such a calculation, rounding only at the end.

There is no necessity in practice for the manual calculation of all these results, which
would clearly be too tedious for routine use. The application of a spreadsheet program
to some regression data is demonstrated in Section 5.9. Every advantage should also be
taken of the extra facilities provided by programs such as Minitab, for example plots of
residuals against x or values, normal probability plots for the residuals, etc. (see also
Section 5.15).

Error calculations are also minimized by the use of single point calibration,
a simple method often used for speed and convenience. The analytical instru-
ment in use is set to give a zero reading with a blank sample (see Section 5.2),
and in the same conditions is used to provide k measurements on a single
reference material with analyte concentration x. The International Standards
Organization (ISO) recommends that k is at least two, and that x is greater
than any concentration to be determined using the calibration line. The latter
is obtained by joining the single point for the average of the k measurements,
(x, ), with the point (0, 0), so its slope b = . In this case the only measure of
sy/x is the standard deviation of the k measurements, and the method clearly does
not guarantee that the calibration plot is indeed linear over the range 0 to x. It
should only be used as a quick check on the stability of a properly established
calibration line.

5.6 Calculation of a concentration and its random error

Once the slope and intercept of the regression line have been determined, it is
very simple to calculate the concentration (x-value) corresponding to any meas-
ured instrument signal (y-value). But it will also be necessary to find the error
associated with this concentration estimate. Calculation of the x-value from the
given y-value using equation (5.1) involves the use of both the slope (b) and the
intercept (a) and, as we saw in the previous section, both these values are subject
to error. Moreover, the instrument signal derived from any test material is also
subject to random errors. As a result, the determination of the overall error in the
corresponding concentration is extremely complex, and most workers use the fol-
lowing approximate formula:

y/xy

ŷ

(5.9)sx0
=

sy/x

b √1 +
1
n

+
(y0 − y)2

b2∑
i

(xi − x)2

In this equation, y0 is the experimental value of y from which the concentration
value x0 is to be determined, is the estimated standard deviation of x0, and the
other symbols have their usual meanings. In some cases an analyst may make

sx0
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several readings to obtain the value of y0: if there are m such readings, then the equa-
tion for becomes:sx0

.

(5.10)sx0
=

sy/x

b √
1
m

+
1
n

+
(y0 − y)2

b2∑
i

(xi − x)2

As expected, equation (5.10) reduces to equation (5.9) if m = 1. As always, confi-
dence limits can be calculated as x0 ± t(n − 2) , with (n − 2) degrees of freedom. Again,
a simple computer program will perform all these calculations, but most calculators
will not be adequate.

sx0

Example 5.6.1

Using the data from the Section 5.3 example, determine x0 and values and
x0 confidence limits for solutions with fluorescence intensities of 2.9, 13.5 and
23.0 units.

The x0 values are easily calculated by using the regression equation determined
in Section 5.4, y = 1.93x + 1.52. Substituting the y0-values 2.9, 13.5 and 23.0,
we obtain x0-values of 0.72, 6.21 and 11.13 pg ml−1 respectively.

To obtain the -values corresponding to these x0-values we use equation (5.9),
recalling from the preceding sections that n = 7, b = 1.93, sy/x = 0.4329, = 13.1, 

and . The y0 values 2.9, 13.5 and 23.0 then yield -values of 

0.26, 0.24 and 0.26 respectively. The corresponding 95% confidence limits
(t5 = 2.57) are 0.72 ± 0.68, 6.21 ± 0.62, and 11.13 ± 0.68 pg ml−1 respectively.

sx0
∑
i

(xi − x )2 = 112

y
sx0

sx0

This example illustrates an important point. It shows that the confidence limits are
rather smaller (i.e. better) for the result y0 = 13.5 than for the other two y0-values.
Inspection of equation (5.9) confirms that as y0 approaches , the third term inside
the bracket approaches zero, and thus approaches a minimum value. The general
form of the confidence limits for a calculated concentration is shown in Figure 5.6.
Thus in practice a calibration experiment of this type will give the most precise
results when the measured instrument signal corresponds to a point close to the
centroid of the regression line.

If we wish to improve (i.e. narrow) the confidence limits in this calibration experi-
ment, equations (5.9) and (5.10) show that at least two approaches should be con-
sidered. We could increase n, the number of calibration points on the regression line,
and/or we could make more than one measurement of y0, using the mean value of m
such measurements in the calculation of x0. The results of such procedures can be
assessed by considering the three terms inside the brackets in the two equations. In
the example above, the dominant term in all three calculations is the first one –
unity. It follows that in this case (and many others) an improvement in precision

sx0

y
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might be made by measuring y0 several times and using equation (5.10) rather than
equation (5.9). If, for example, the y0-value of 13.5 had been calculated as the mean
of four determinations, then the -value and the confidence limits would have been
0.14 and 6.21 ± 0.36 respectively, both results indicating substantially improved pre-
cision. Of course, making too many replicate measurements (assuming that sufficient
sample is available) generates much more work for only a small additional benefit:
the reader should verify that eight measurements of y0 would produce an -value of
0.12 and confidence limits of 6.21 ± 0.30.

The effect of n, the number of calibration points, on the confidence limits of the
concentration determination is more complex. This is because we also have to take
into account accompanying changes in the value of t. Use of a large number of cal-
ibration samples involves the task of preparing many accurate standards for only
marginally increased precision (cf. the effects of increasing m, described in the pre-
vious paragraph). On the other hand, small values of n are not permissible. In such
cases 1/n will be larger and the number of degrees of freedom, (n − 2), will become
very small, necessitating the use of very large t-values in the calculation of the con-
fidence limits. In many experiments, as in the example given, six or so calibration
points will be adequate, the analyst gaining extra precision if necessary by repeated
measurements of y0. If considerations of cost, time, or availability of standards or
samples limit the total number of experiments that can be performed, i.e. if m + n is
fixed, then it is worth recalling that the last term in equation (5.10) is often very
small, so it is crucial to minimize (1/m + 1/n). This is achieved by making m = n.

An entirely distinct approach to estimating uses control chart principles (see
Chapter 4). We have seen that these charts can be used to monitor the quality of
laboratory methods used repeatedly over a period of time, and this chapter has
shown that a single calibration line can in principle be used for many individual
analyses. It thus seems natural to combine these two ideas, and to use control charts
to monitor the performance of a calibration experiment, while at the same time
obtaining estimates of . The procedure recommended by ISO involves the use of
q (= 2 or 3) standards or reference materials, which need not be (and perhaps ought
not to be) from among those used to set up the calibration graph. These standards

sx0

sx0

sx0

sx0

(x, y )– –

Si
gn

al
Concentration

Figure 5.6 General form of the confidence limits for a concentration determined by using an
unweighted regression line.
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Limit of detection = yB + 3sB (5.12)

are measured at regular time intervals and the calibration graph is used to estimate
their analyte content in the normal way. The differences, d, between these estimated
concentrations and the known concentrations of the standards are plotted on a
Shewhart-type control chart, the upper and lower control limits of which are given
by 0 ± (tsy/x/b). Here sy/x and b have their usual meanings as characteristics of the
calibration line, while t has (n − 2) degrees of freedom, or (nk − 2) degrees of freedom
if each of the original calibration standards was measured k times to set up the
graph. For a confidence level α (commonly α = 0.05), the two-tailed value of t at the 
(1 − α/2q) level is used. If any point derived from the monitoring standard materials
falls outside the control limits, the analytical process is probably out of control, and
may need further examination before it can be used again. Moreover, if the values
of d for the lowest concentration monitoring standard, measured J times over a
period, are called dl1, dl2, . . . , dlJ, and the corresponding values for the highest mon-
itoring standard are called dq1, dq2, . . . , dqJ, then is given by:

(5.11)

Strictly speaking this equation estimates for the concentrations of the highest and
lowest monitoring reference materials, so the estimate is a little pessimistic for con-
centrations between those extremes (see Figure 5.6). As usual the value can be
converted to a confidence interval by multiplying by t, which has 2J degrees of free-
dom in this case.

5.7 Limits of detection

As we have seen, one of the principal benefits of using instrumental methods of
analysis is that they are capable of detecting and determining trace and ultra-trace
quantities of analytes. These benefits have led to the appreciation of the importance
of very low concentrations of many materials, for example in biological and envi-
ronmental samples, and thus to the development of many further techniques in
which lower limits of detection are a major criterion of successful application. It is
therefore evident that statistical methods for assessing and comparing limits of
detection are of importance. In general terms, the limit of detection of an analyte
may be described as that concentration which gives an instrument signal (y) signifi-
cantly different from the ‘blank’ or ‘background’ signal. This description gives the
analyst a good deal of freedom to decide the exact definition of the limit of detec-
tion, based on a suitable interpretation of the phrase ‘significantly different’. There
is still no full agreement between researchers, publishers, and professional and statu-
tory bodies on this point. But there is an increasing trend to define the limit of
detection as the analyte concentration giving a signal equal to the blank signal, yB,
plus three standard deviations of the blank, sB:

sx0

sx0

sx0
= �∑

J

j=1
(dlj

2 + dqj
2)

2J
�

1/2

sx0
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The significance of this last definition is illustrated in more detail in Figure 5.7. An ana-
lyst studying trace concentrations is confronted with two problems: it is important to
avoid claiming the presence of the analyte when it is actually absent, but it is equally
important to avoid reporting that the analyte is absent when it is in fact present.
(The situation is analogous to the occurrence of Type I and Type II errors in significance
tests – see Section 3.13.) The possibility of each of these errors must be minimized by a
sensible definition of a limit of detection. In the figure, curve A represents the normal
distribution of measured values of the blank signal. It would be possible to identify a
point, y = P, towards the upper edge of this distribution, and claim that a signal greater
than this was unlikely to be due to the blank, whereas a signal less than P would be
assumed to indicate a blank sample. However, for a sample giving an average signal P,
50% of the observed signals will be less than this, since the signal will have a normal
distribution (of the same shape as that for the blank – see below) extending below P
(curve B). The probability of concluding that this sample does not differ from the blank
when in fact it does is therefore 50%. Point P, which has been called the limit of decision,
is thus unsatisfactory as a limit of detection, since it solves the first of the problems
mentioned above, but not the second. A more suitable point is at y = Q, such that Q is
twice as far as P from yB. It may be shown that if yB − Q is 3.28 times the standard
deviation of the blank, sB, then the probability of each of the two kinds of error occur-
ring (indicated by the shaded areas in Figure 5.7) is only 5%. If, as suggested by equa-
tion (5.12), the distance yB − Q is only 3sB, the probability of each error is about 7%:
many analysts would consider that this is a reasonable definition of a limit of detection.

It must be re-emphasized that this definition of a limit of detection is quite arbi-
trary, and it is entirely open to an analyst to provide an alternative definition for a
particular purpose. For example, there may be occasions when an analyst is anxious
to avoid at all costs the possibility of reporting the absence of the analyte when it is
in fact present, but is relatively unworried about the opposite error. It is clear that
whenever a limit of detection is cited in a paper or report, the definition used to
obtain it must also be provided. Some attempts have been made to define a further
limit, the ‘limit of quantitation’ (or ‘limit of determination’), which is regarded as the
lower limit for precise quantitative measurements, as opposed to qualitative detection.
A value of yB + 10sB has been suggested for this limit, but it is not very widely used.

We must now discuss how the terms yB and sB are obtained in practice when a regres-
sion line is used for calibration as described in the preceding sections. A fundamental
assumption of the unweighted least-squares method is that each point on the plot
(including the point representing the blank or background) has a normally distributed

yB

sB
3sB

Limit of
decision

Limit of
detection

A B C

P
Q

y

Figure 5.7 Definitions of the limit of decision and the limit of detection.
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variation (in the y-direction only) with a standard deviation estimated by sy/x [equation
(5.6)]. This is the justification for drawing the normal distribution curves with the same
width in Figure 5.7. It is therefore appropriate to use sy/x in place of sB in the estimation
of the limit of detection. It is, of course, possible to perform the blank experiment sev-
eral times and obtain an independent value for sB, and if our underlying assumptions
are correct these two methods of estimating sB should not differ significantly. But mul-
tiple determinations of the blank are time-consuming and the use of sy/x is quite suit-
able in practice. The value of a, the calculated intercept, can be used as an estimate of
yB, the blank signal itself; it should be a more accurate estimate of yB than the single
measured blank value, y1.

.

Example 5.7.1

Estimate the limit of detection for the fluorescein determination studied in the
previous sections.

We use equation (5.12) with the values of yB(= a) and sB(= sy/x) previously calcu-
lated. The value of y at the limit of detection is found to be 1.52 + 3 × 0.4329,
i.e. 2.82. Use of the regression equation then yields a detection limit of
0.67 pg ml−1. Figure 5.8 summarizes all the calculations performed on the fluo-
rescein determination data.
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a = 1.52 ± 0.30

b = 1.93 ± 0.04
r = 0.9989
sy/x = sB = 0.433

L.o.d. = 0.67 pg ml–1

sx0 ≈ 0.25

Figure 5.8 Summary of the calculations using the data in Example 5.3.1.
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It is important to avoid confusing the limit of detection of a technique with its
sensitivity. This very common source of confusion probably arises because there is
no single generally accepted English word synonymous with ‘having a low limit of
detection’. The word ‘sensitive’ is generally used for this purpose, giving rise to
much ambiguity. The sensitivity of a technique is correctly defined as the slope of
the calibration graph and, provided the plot is linear, can be measured at any
point on it. In contrast, the limit of detection of a method is calculated with the
aid of the section of the plot close to the origin, and utilizes both the slope and
the sy/x value.

5.8 The method of standard additions

Suppose that we wish to determine the concentration of silver in samples of photo-
graphic waste by atomic-absorption spectrometry. Using the methods of the previ-
ous sections, an analyst could calibrate the spectrometer with some aqueous
solutions of a pure silver salt and use the resulting calibration graph in the determin-
ation of the silver in the test samples. This method is only valid, however, if a pure
aqueous solution of silver, and a photographic waste sample containing the same
concentration of silver, give the same absorbance values. In other words, in using
pure solutions to establish the calibration graph it is assumed that there are no
‘matrix effects’, i.e. no reduction or enhancement of the silver absorbance signal by
other components. In many areas of analysis such an assumption is frequently
invalid. Matrix effects occur even with methods such as plasma spectrometry, which
have a reputation for being relatively free from interferences.

The first possible solution to this problem might be to take a sample of photo-
graphic waste that is similar to the test sample, but free from silver, and add known
amounts of a silver salt to it to make up the standard solutions. The calibration
graph will then be set up using an apparently suitable matrix. In many cases, how-
ever, this matrix matching approach is impracticable. It will not eliminate matrix
effects that differ in magnitude from one sample to another, and it may not be pos-
sible even to obtain a sample of the matrix that contains no analyte – for example,
a silver-free sample of photographic waste is unlikely to occur! The solution to this
problem is that all the analytical measurements, including the establishment of the
calibration graph, must in some way be performed using the sample itself. This is
achieved in practice by using the method of standard additions. The method is
widely practised in atomic absorption and emission spectrometry and has also
found application in electrochemical analysis and many other areas. Equal volumes
of the sample solution are taken, all but one are separately ‘spiked’ with known and
different amounts of the analyte, and all are then diluted to the same volume. The
instrument signals are then determined for all these solutions and the results plot-
ted as shown in Figure 5.9. As usual, the signal is plotted on the y-axis; in this case
the x-axis is graduated in terms of the amounts of analyte added (either as an abso-
lute weight or as a concentration). The (unweighted) regression line is calculated in
the normal way, but space is provided for it to be extrapolated to the point on the
x-axis at which y = 0. This negative intercept on the x-axis corresponds to the
amount of the analyte in the test sample. Inspection of the figure shows that this
value is given by a/b, the ratio of the intercept and the slope of the regression line.
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Since both a and b are subject to error (Section 5.5) the calculated concentration is
clearly subject to error as well. In this case, however, the amount is not predicted
from a single measured value of y, so the formula for the standard deviation, , of
the extrapolated x-value (xE) is not the same as that in equation (5.9).

sxE

.

Si
gn

al

Sample signal

Amount of analyte
in test sample

Amount added

Figure 5.9 The method of standard additions.

Example 5.8.1

The silver concentration in a sample of photographic waste was determined by
atomic-absorption spectrometry with the method of standard additions. The
following results were obtained.

Added Ag: µg added per ml 
of original sample solution 0 5 10 15 20 25 30

Absorbance 0.32 0.41 0.52 0.60 0.70 0.77 0.89

Determine the concentration of silver in the sample, and obtain 95% confidence
limits for this concentration.

Equations (5.4) and (5.5) yield a = 0.3218 and b = 0.0186. The ratio of these
figures gives the silver concentration in the test sample as 17.3 µg ml−1. The con-
fidence limits for this result can be determined with the aid of equation (5.13).
Here sy/x is 0.01094, = 0.6014, and . The value of is thus

0.749 and the confidence limits are 17.3 ± 2.57 × 0.749, i.e. 17.3 ± 1.9 µg ml−1.

sxE
∑
i

(xi − x )2 = 700y

(5.13)sxE
=

sy/x

b √
1
n

+
y2

b2∑
i

(xi − x)2

Increasing the value of n again improves the precision of the estimated concen-
tration: in general at least six points should be used in a standard-additions exper-
iment. Moreover, the precision is improved by maximizing , so the
calibration solutions should, if possible, cover a considerable range. Confidence limits
for xE can as before be determined as .xE ± t(n−2)sxE

∑
i

(xi − x )2

SCA_C05.qxd  3/29/05  3:59 PM  Page 125



.

126 5: Calibration methods: regression and correlation

.

Although it is an elegant approach to the common problem of matrix interfer-
ence effects, the method of standard additions has a number of disadvantages. The
principal one is that each test sample requires its own calibration graph, in contrast
to conventional calibration experiments, where one graph can provide concentra-
tion values for many test samples. The standard-additions method may also use
larger quantities of sample than other methods. In statistical terms it is an extrapo-
lation method, and in principle less precise than interpolation techniques. In prac-
tice, the loss of precision is not very serious.

5.9 Use of regression lines for comparing analytical methods

If an analytical chemist develops a new method for the determination of a particu-
lar analyte, the method must be validated by (amongst other techniques) applying
it to a series of materials already studied using another reputable or standard pro-
cedure. The main aim of such a comparison will be the identification of systematic
errors – does the new method give results that are significantly higher or lower than
the established procedure? In cases where an analysis is repeated several times over
a very limited concentration range, such a comparison can be made using the sta-
tistical tests described in Sections 3.3 and 3.4. Such procedures will not be appro-
priate in instrumental analyses, which are often used over large concentration
ranges.

When two methods are to be compared at different analyte concentrations the
procedure illustrated in Figure 5.10 is normally adopted. One axis of a regression
graph is used for the results obtained by the new method, and the other axis for
the results obtained by applying the reference or comparison method to the same
samples. (The question of which axis should be allocated to each method is dis-
cussed further below.) Each point on the graph thus represents a single sample
analysed by two separate methods. (Sometimes each method is applied just once
to each test sample, while in other cases replicate measurements are used in the
comparisons.) The methods of the preceding sections are then applied to calcu-
late the slope (b), the intercept (a) and the product–moment correlation coeffi-
cient (r) of the regression line. It is clear that if each sample yields an identical
result with both analytical methods the regression line will have a zero intercept,
and a slope and a correlation coefficient of 1 (Figure 5.10a). In practice, of course,
this never occurs: even if systematic errors are entirely absent, random errors
ensure that the two analytical procedures will not give results in exact agreement
for all the samples.

Deviations from the ‘ideal’ situation (a = 0, b = r = 1) can occur in a number of dif-
ferent ways. Firstly, it is possible that the regression line will have a slope of 1, but a
non-zero intercept. That is, one method of analysis may yield a result higher or lower
than the other by a fixed amount. Such an error might occur if the background signal
for one of the methods was wrongly calculated (Figure 5.10b). A second possibility is
that the slope of the regression line is >1 or <1, indicating that a systematic error may
be occurring in the slope of one of the individual calibration plots (Figure 5.10c).
These two errors may occur simultaneously (Figure 5.10d). Further possible types of
systematic error are revealed if the plot is curved (Figure 5.10e). Speciation problems
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may give surprising results (Figure 5.10f). This type of plot might arise if an analyte
occurred in two chemically distinct forms, the proportions of which varied from sam-
ple to sample. One of the methods under study (here plotted on the y-axis) might
detect only one form of the analyte, while the second method detected both forms.

In practice, the analyst most commonly wishes to test for an intercept differing
significantly from zero, and a slope differing significantly from 1. Such tests are per-
formed by determining the confidence limits for a and b, generally at the 95% sig-
nificance level. The calculation is very similar to that described in Section 5.5, and
is most simply performed by using a program such as Excel. This spreadsheet is
applied to the following example.

.

(a) (b)

(c) (d)

(e) (f)

Method B

M
et

ho
d 

A

Figure 5.10 Use of a regression line to compare two analytical methods: (a) shows perfect
agreement between the two methods for all the samples; (b)–(f) illustrate the results of
various types of systematic error (see text).

Example 5.9.1

The level of phytic acid in 20 urine samples was determined by a new catalytic
fluorimetric (CF) method, and the results were compared with those obtained
using an established extraction photometric (EP) technique. The following data
were obtained (all the results, in mg l−1, are means of triplicate measurements).

(March, J. G., Simonet, B. M. and Grases, F. 1999. Analyst 124: 897–900)
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Two further points may be mentioned in connection with this example. Firstly, the lit-
erature of analytical chemistry shows that authors frequently place great stress on the
value of the correlation coefficient in such comparative studies. In the above example,
however, it played no direct role in establishing whether or not systematic errors had

Sample number CF result EP result

1 1.87 1.98
2 2.20 2.31
3 3.15 3.29
4 3.42 3.56
5 1.10 1.23
6 1.41 1.57
7 1.84 2.05
8 0.68 0.66
9 0.27 0.31

10 2.80 2.92
11 0.14 0.13
12 3.20 3.15
13 2.70 2.72
14 2.43 2.31
15 1.78 1.92
16 1.53 1.56
17 0.84 0.94
18 2.21 2.27
19 3.10 3.17
20 2.34 2.36

This set of data shows why it is inappropriate to use the paired t-test, which
evaluates the differences between the pairs of results, in such cases (Section 3.4).
The range of phytic acid concentrations (ca. 0.14–3.50 mg l−1) in the urine
samples is so large that a fixed discrepancy between the two methods will be of
varying significance at different concentrations. Thus a difference between the
two techniques of 0.05 mg l−1 would not be of great concern at a level of
ca. 3.50 mg l−1, but would be more disturbing at the lower end of the concen-
tration range.

Table 5.1 shows the summary output of the Excel spreadsheet used to cal-
culate the regression line for the above data. The CF data have been plotted on
the y-axis, and the EP results on the x-axis (see below). The output shows that
the r-value (called ‘Multiple R’ by this program because of its potential appli-
cation to multiple regression methods) is 0.9967. The intercept is −0.0456,
with upper and lower confidence limits of −0.1352 and +0.0440: this range
includes the ideal value of zero. The slope of the graph, called ‘X variable 1’
because b is the coefficient of the x-term in equation (5.1), is 0.9879, with a
95% confidence interval of 0.9480–1.0279: again this range includes the
model value, in this case 1.0. (The remaining output data are not needed in
this example, and are discussed further in Section 5.11.) Figure 5.11 shows the
regression line with the characteristics summarized above.
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Figure 5.11 Comparison of two analytical methods: data from Example 5.9.1.

Table 5.1 Excel output for Example 5.9.1

Regression statistics

Multiple R 0.9966
R square 0.9933
Adjusted R square 0.9929
Standard error 0.0829
Observations 20

ANOVA
df SS MS F Significance F

Regression 1 18.341 18.341 2670.439 5.02965E-21
Residual 18 0.124 0.007
Total 19 18.465

Coefficients Standard t stat P-value
error

Intercept -0.0497 0.0429 -1.158 0.262
X variable 1 0.9924 0.0192 51.676 5.03E-21

Lower 95% Upper 95%

Intercept -0.1399 0.0404
X variable 1 0.9521 1.0328
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occurred. Even if the regression line had been slightly curved, the correlation coeffi-
cient might still have been close to 1 (see Section 5.3 above). This means that the cal-
culation of r is less important in the present context than the establishment of
confidence limits for the slope and the intercept. In some cases it may be found that
the r-value is not very close to 1, even though the slope and the intercept are not sig-
nificantly different from 1 and 0 respectively. Such a result would suggest very poor
precision for either one or both of the methods under study. The precisions of the two
methods can be determined and compared using the methods of Chapters 2 and 3. In
practice it is desirable that this should be done before the regression line comparing the
methods is plotted – the reason for this is explained below. The second point to note
is that it is desirable to compare the methods over the full range of concentrations,
as in the example given where the urine samples examined contained phytic acid
concentrations that covered the range of interest fairly uniformly.

Although very widely adopted in comparative studies of instrumental methods,
the approach described here is open to some theoretical objections. First, as has been
emphasized throughout this chapter, the line of regression of y on x is calculated on
the assumption that the errors in the x-values are negligible – all errors are assumed
to occur in the y-direction. While generally valid in a calibration plot for a single
analyte, this assumption is evidently not justified when the regression line is used
for comparison purposes: it can be taken as certain that random errors will occur in
both analytical methods, i.e. in both the x and y directions. This suggests that the
equations used to calculate the regression line itself are not valid. However, the
regression method is still widely used, as the graphs which result provide valuable
information on the nature of any differences between the methods (Figure 5.10).
Simulations show, moreover, that the approach does give surprisingly reliable
results, provided that the more precise method is plotted on the x-axis (this is why
we investigate the precisions of the two methods – see above), and that a reasonable
number of points (ca. 10 at least) uniformly covering the concentration range of
interest is used. Since the confidence limit calculations are based on (n − 2) degrees
of freedom, it is particularly important to avoid small values of n.

When the assumption of error-free x-values is not valid, either in method compari-
sons or, in a conventional calibration analysis, because the standards are unreliable
(this problem sometimes arises with solid reference materials), an alternative com-
parison method is available. This technique is known as the functional relation-
ship by maximum likelihood (FREML) method, and seeks to minimize and
estimate both x- and y-direction errors. (The conventional least squares approach can
be regarded as a special and simple case of FREML.) FREML involves an iterative
numerical calculation, but a macro for Minitab now offers this facility (see
Bibliography), and provides standard errors for the slope and intercept of the calcu-
lated line. The method is reversible (i.e. in a method comparison it does not matter
which method is plotted on the x-axis and which on the y-axis), and can also be used
in weighted regression calculations (see Section 5.10).

A second objection to using the line of regression of y on x, as calculated in
Sections 5.4 and 5.5, in the comparison of two analytical methods is that it also
assumes that the error in the y-values is constant. Such data are said to be
homoscedastic. As previously noted, this means that all the points have equal
weight when the slope and intercept of the line are calculated. This assumption
is obviously likely to be invalid in practice. In many analyses, the data are
heteroscedastic, i.e. the standard deviation of the y-values increases with the
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(5.14)Weights:  wi =
s −2

i

∑
i

s −2
i /n

concentration of the analyte, rather than having the same value at all concentra-
tions (see below). This objection to the use of unweighted regression lines also
applies to calibration plots for a single analytical procedure. In principle weighted
regression lines should be used instead, as shown in the next section.

5.10 Weighted regression lines

In this section the application of weighted regression methods is outlined. It is
assumed that the weighted regression line is to be used for the determination of a
single analyte rather than for the comparison of two separate methods. In any cali-
bration analysis the overall random error of the result will arise from a combination
of the error contributions from the several stages of the analysis (see Section 2.11). In
some cases this overall error will be dominated by one or more steps in the analysis
where the random error is not concentration dependent. In such cases we shall
expect the y-direction errors in the calibration curve to be approximately equal for all
the points (homoscedasticity), and an unweighted regression calculation is legitim-
ate. In other cases the errors will be approximately proportional to analyte concen-
tration (i.e. the relative error will be roughly constant), and in still others (perhaps the
commonest situation in practice) the y-direction error will increase as x increases, but
less rapidly than the concentration. Both these types of heteroscedastic data should
be treated by weighted regression methods. Usually an analyst can only learn from
experience whether weighted or unweighted methods are appropriate. Predictions
are difficult: examples abound where two apparently similar methods show very dif-
ferent error behaviour. Weighted regression calculations are rather more complex
than unweighted ones, and they require more information (or the use of more
assumptions). Nonetheless they should be used whenever heteroscedasticity is sus-
pected, and they are now more widely applied than formerly, partly as a result of
pressure from regulatory authorities in the pharmaceutical industry and elsewhere.

Figure 5.12 shows the simple situation that arises when the error in a regression
calculation is approximately proportional to the concentration of the analyte, i.e. the
‘error bars’ used to express the random errors at different points on the calibration get
larger as the concentration increases. The regression line must be calculated to give
additional weight to those points where the error bars are smallest: it is more import-
ant for the calculated line to pass close to such points than to pass close to the points
representing higher concentrations with the largest errors. This result is achieved by giv-
ing each point a weighting inversely proportional to the corresponding variance, .
(This logical procedure applies to all weighted regression calculations, not just those
where the y-direction error is proportional to x.) Thus, if the individual points are
denoted by (x1, y1), (x2, y2), etc. as usual, and the corresponding standard deviations are
s1, s2, etc., then the individual weights, w1, w2, etc., are given by:

s2
i
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It will be seen that the weights have been scaled so that their sum is equal to the
number of points on the graph: this simplifies the subsequent calculations. The
slope and the intercept of the regression line are then given by:

Figure 5.12 The weighting of errors in a regression calculation.
Si
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(5.15)Weighted slope:  bw =
∑

i

wi xi yi − n xw yw

∑
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wix
2
i − nx2

w

(5.16)Weighted intercept:  aw = yw − bxw

and

In equation (5.16) and represent the coordinates of the weighted centroid,
through which the weighted regression line must pass. These coordinates are given
as expected by and yw = ∑

i
wi yi /n.xw = ∑

i
wi xi /n

xwyw

Example 5.10.1

Calculate the unweighted and weighted regression lines for the following
calibration data. For each line calculate also the concentrations of test samples
with absorbances of 0.100 and 0.600.

Concentration, µg ml−1 0 2 4 6 8 10

Standard deviation 0.001 0.004 0.010 0.013 0.017 0.022
Absorbance 0.009 0.158 0.301 0.472 0.577 0.739
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Comparison of the results of the unweighted and weighted regression calcula-
tions is very instructive. The effects of the weighting process are clear. The weighted
centroid is much closer to the origin of the graph than the unweighted cen-
troid and the weighting given to the points nearer the origin (particularly to
the first point (0, 0.009) which has the smallest error) ensures that the weighted
regression line has an intercept very close to this point. The slope and intercept of
the weighted line are remarkably similar to those of the unweighted line, however,
with the result that the two methods give very similar values for the concentrations
of samples having absorbances of 0.100 and 0.600. It must not be supposed that
these similar values arise simply because in this example the experimental points fit
a straight line very well. In practice the weighted and unweighted regression lines
derived from a set of experimental data have similar slopes and intercepts even if the
scatter of the points about the line is substantial.

As a result it might seem that weighted regression calculations have little to
recommend them. They require more information (in the form of estimates of the
standard deviation at various points on the graph), and are far more complex to
execute, but they seem to provide data that are remarkably similar to those obtained
from the much simpler unweighted regression method. Such considerations may
indeed account for some of the neglect of weighted regression calculations in
practice. But an analytical chemist using instrumental methods does not employ

(x, y)
(xw, yw)

.

Application of equations (5.4) and (5.5) shows that the slope and intercept of
the unweighted regression line are respectively 0.0725 and 0.0133. The concen-
trations corresponding to absorbances of 0.100 and 0.600 are then found to be
1.20 and 8.09 µg ml−1 respectively.

The weighted regression line is a little harder to calculate: in the absence of a
suitable computer program it is usual to set up a table as follows.

xi yi si wi wi xi wiyi wixiyi

0 0.009 0.001 106 5.535 0 0.0498 0 0
2 0.158 0.004 62500 0.346 0.692 0.0547 0.1093 1.384
4 0.301 0.010 10000 0.055 0.220 0.0166 0.0662 0.880
6 0.472 0.013 5917 0.033 0.198 0.0156 0.0935 1.188
8 0.577 0.017 3460 0.019 0.152 0.0110 0.0877 1.216

10 0.739 0.022 2066 0.011 0.110 0.0081 0.0813 1.100

Sums 1083943 5.999 1.372 0.1558 0.4380 5.768

These figures give and By
equation (5.15), bw is calculated from

so aw is given by 0.0260 − (0.0738 × 0.229) = 0.0091.
These values for aw and bw can be used to show that absorbance values

of 0.100 and 0.600 correspond to concentrations of 1.23 and 8.01 µg ml−1

respectively.

bw =
0.438 − (6 × 0.229 × 0.026)

5.768 − [6 × (0.229)2]
= 0.0738

xw = 1.372/6 = 0.229.yw = 0.1558/6 = 0.0260,

wi x
2
i1/s2

i
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regression calculations simply to determine the slope and intercept of the calibration
plot and the concentrations of test samples. There is also a need to obtain estimates of
the errors or confidence limits of those concentrations, and it is in this context that
the weighted regression method provides much more realistic results. In Section 5.6
we used equation (5.9) to estimate the standard deviation and hence the confi-
dence limits of a concentration calculated using a single y-value and an unweighted
regression line. Application of this equation to the data in the example above shows
that the unweighted confidence limits for the solutions having absorbances of 0.100
and 0.600 are 1.20 ± 0.65 and 8.09 ± 0.63 µg ml−1 respectively. As in the example in
Section 5.6, these confidence intervals are very similar. In the present example, how-
ever, such a result is entirely unrealistic. The experimental data show that the errors
of the observed y-values increase as y itself increases, the situation expected for a
method having a roughly constant relative standard deviation. We would expect that
this increase in si with increasing y would also be reflected in the confidence limits
of the determined concentrations: the confidence limits for the solution with an
absorbance of 0.600 should be much greater (i.e. worse) than those for the solution
with an absorbance of 0.100.

In weighted recession calculations, the standard deviation of a predicted concen-
tration is given by:

(sx0
)

(5.17)sx0w
=

s(y/x)w

b �1
w0

+
1
n

+
(y0 − yw)2

b2�∑
i

wixi
2 − nxw

2��
1/2

In this equation, s(y/x)w is given by:

(5.18)s(y/x)w = �∑i
wi(yi − yî)

2

n − 2 �
1/2

and w0 is a weighting appropriate to the value of y0. Equations (5.17) and (5.18) are
clearly similar in form to equations (5.9) and (5.6). Equation (5.17) confirms that
points close to the origin, where the weights are highest, and points near the cen-
troid, where is small, will have the narrowest confidence limits (Figure 5.13).
The major difference between equations (5.9) and (5.17) is the term 1/w0 in the latter.
Since w0 falls sharply as y increases, this term ensures that the confidence limits
increase with increasing y0, as we expect.

Application of equation (5.17) to the data in the example above shows that
the test samples with absorbance of 0.100 and 0.600 have confidence limits for the
calculated concentrations of 1.23 ± 0.12 and 8.01 ± 0.72 µg ml−1 respectively. The
widths of these confidence intervals are proportional to the observed absorbances of
the two solutions. In addition the confidence interval for the less concentrated

(y0 − yw)
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Figure 5.13 General form of the confidence limits for a concentration determined using
a weighted regression line.
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(5.19)Intersection point:  xI =
∆a
∆b

of the two samples is smaller than in the unweighted regression calculation, while
for the more concentrated sample the opposite is true. All these results accord much
more closely with the reality of a calibration experiment than do the results of the
unweighted regression calculation.

In addition, weighted regression methods may be essential when a straight line
graph is obtained by algebraic transformations of an intrinsically curved plot (see
Section 5.13). Computer programs for weighted regression calculations are now
available, mainly through the more advanced statistical software products, and this
should encourage the more widespread use of this method.

5.11 Intersection of two straight lines

A number of problems in analytical science are solved by plotting two straight
line graphs from the experimental data and determining the point of their inter-
section. Common examples include potentiometric and conductimetric titrations,
the determination of the composition of metal–chelate complexes, and studies of
ligand–protein and similar bio-specific binding interactions. If the equations of the
two (unweighted) straight lines, y1 = a1 + b1x1 and y2 = a2 + b2x2 (with n1 and n2 points
respectively), are known, then the x-value of their intersection, xI, is easily shown to
be given by:
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where ∆a = a1 − a2 and ∆b = b2 − b1. Confidence limits for this xI value are given by
the two roots of the following quadratic equation:

(5.22)

(5.23)

(5.24)s∆a∆b = s2
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∑
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(5.21)s2
(y/x)p =

(n1 − 2)s2
(y/x)1 + (n2 − 2)s2

(y/x)2

n1 + n2 − 4

(5.20)x1
2(∆b2 − t2s2

∆b) − 2xI(∆a∆b − t2s∆a∆b) + (∆a2 − t2s2
∆a) = 0

The value of t used in this equation is chosen at the appropriate P-level and at
(n1 + n2 − 4) degrees of freedom. The standard deviations in equation (5.20) are cal-
culated on the assumption that the sy/x values for the two lines, s(y/x)1 and s(y/x)2, are
sufficiently similar to be pooled using an equation analogous to equation (3.3):

After this pooling process we can write:

These equations seem formidable, but if a spreadsheet such as Excel is used to
obtain the equations of the two lines, the point of intersection can be determined
at once. The sy/x values can then be pooled, etc. calculated, and the confidence
limits found using the program’s equation-solving capabilities.

5.12 ANOVA and regression calculations

When the least-squares criterion is used to determine the best straight line through
a single set of data points there is one unique solution, so the calculations involved
are relatively straightforward. However, when a curved calibration plot is calculated
using the same criterion this is no longer the case: a least-squares curve might be
described by polynomial functions (y = a + bx + cx2 + . . .) containing different
numbers of terms, a logarithmic or exponential function, or in other ways. So we
need a method which helps us to choose the best way of plotting a curve from

s2
∆a ,
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amongst the many that are available. Analysis of variance (ANOVA) provides such a
method in all cases where we maintain the assumption that the errors occur only in
the y-direction. In such situations there are two sources of y-direction variation in a
calibration plot. The first is the variation due to regression, i.e. due to the relationship
between the instrument signal, y, and the analyte concentration, x. The second is
the random experimental error in the y-values, which is called the variation about
regression. As we have seen in Chapter 3, ANOVA is a powerful method for separat-
ing two sources of variation in such situations. In regression problems, the average
of the y-values of the calibration points, , is important in defining these sources of
variation. Individual values of yi differ from for the two reasons given above.
ANOVA is applied to separating the two sources of variation by using the relation-
ship that the total sum of squares (SS) about is equal to the SS due to regression
plus the SS about regression:

y

y
y

.

Additive sums of squares:

(5.25)∑
i

(yi − y)2 = ∑
i

(ŷi − y)2 + ∑
i

(yi − ŷi)
2

The total sum of squares, i.e. the left-hand side of equation (5.25), is clearly fixed
once the experimental yi values have been determined. A line fitting these experi-
mental points closely will be obtained when the variation due to regression (the first
term on the right-hand side of equation (5.25)) is as large as possible. The variation
about regression (also called the residual SS as each component of the right-hand
term in the equation is a single residual) should be as small as possible. The method
is quite general and can be applied to straight-line regression problems as well as to
curvilinear regression. Table 5.1 showed the Excel output for a linear plot used to
compare two analytical methods, including an ANOVA table set out in the usual
way. The total number of degrees of freedom (19) is, as usual, one less than the
number of measurements (20), as the residuals always add up to zero. For a straight
line graph we have to determine only one coefficient (b) for a term that also con-
tains x, so the number of degrees of freedom due to regression is 1. Thus there
are (n − 2) = 18 degrees of freedom for the residual variation. The mean square (MS)
values are determined as in previous ANOVA examples, and the F-test is applied
to the two mean squares as usual. The F-value obtained is very large, as there is an
obvious relationship between x and y, so the regression MS is much larger than the
residual MS.

The Excel output also includes ‘multiple R’, which as previously noted is in this
case equal to the correlation coefficient, r, the standard error (= sy/x), and the further
terms ‘R square’ and ‘adjusted R square’, usually abbreviated R′2. The two latter statis-
tics are given by Excel as decimals, but are often given as percentages instead. They
are defined as follows:

R2 = SS due to regression/total SS = 1 − (residual SS/total SS) (5.26)

R′2 = 1 − (residual MS/total MS) (5.27)

In the case of a straight line graph, R2 is equal to r2, the square of the correlation
coefficient, i.e. the square of ‘multiple R’. The applications of R2 and R′2 to problems
of curve fitting will be discussed below.
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5.13 Curvilinear regression methods – Introduction

In many instrumental analysis methods the instrument response is proportional to
the analyte concentration over substantial concentration ranges. The simplified cal-
culations that result encourage analysts to take significant experimental precautions
to achieve such linearity. Examples of such precautions include the control of the
emission line width of a hollow-cathode lamp in atomic absorption spectrometry,
and the size and positioning of the sample cell to minimize inner filter artefacts
in molecular fluorescence spectrometry. However, many analytical methods (e.g.
immunoassays and similar competitive binding assays) produce calibration plots
that are intrinsically curved. Particularly common is the situation where the cali-
bration plot is linear (or approximately so) at low analyte concentrations, but
becomes curved at higher analyte levels. When curved calibration plots are obtained
we still need answers to the questions listed in Section 5.2, but those questions will
pose rather more formidable statistical problems than occur in linear calibration
experiments.

The first question to be examined is – how do we detect curvature in a calibration
plot? That is, how do we distinguish between a plot that is best fitted by a straight
line, and one that is best fitted by a gentle curve? Since the degree of curvature may
be small, and/or occur over only part of the plot, this is not a straightforward ques-
tion. Moreover, despite its widespread use for testing the goodness-of-fit of linear
graphs, the product–moment correlation coefficient (r) is of little value in testing for
curvature: we have seen (Section 5.3) that lines with obvious curvature may still give
very high r values. An analyst would naturally hope that any test for curvature could
be applied fairly easily in routine work without extensive calculations. Several such
tests are available, based on the use of the y-residuals on the calibration plot.

We have seen (Section 5.5) that a y-residual, represents the difference
between an experimental value of y and the value calculated from the regression
equation at the same value of x. If a linear calibration plot is appropriate, and if the
random errors in the y-values are normally distributed, the residuals themselves
should be normally distributed about the value of zero. If this turns out not to be
true in practice, then we must suspect that the fitted regression line is not of the cor-
rect type. In the worked example given in Section 5.5 the y-residuals were shown to
be +0.58, −0.38, −0.24, −0.50, +0.34, +0.18, and +0.02. These values sum to zero
(allowing for possible rounding errors, this must always be true), and are approxi-
mately symmetrically distributed about 0. Although it is impossible to be certain,
especially with small numbers of data points, that these residuals are normally dis-
tributed, there is certainly no contrary evidence in this case, i.e. no evidence to sup-
port a non-linear calibration plot. As previously noted Minitab and other statistics
packages provide extensive information, including graphical displays, on the sizes
and distribution of residuals.

A second test suggests itself on inspection of the signs of the residuals given
above. As we move along the calibration plot, i.e. as x increases, positive and nega-
tive residuals will be expected to occur in random order if the data are well fitted by
a straight line. If, in contrast, we attempt to fit a straight line to a series of points that
actually lie on a smooth curve, then the signs of the residuals will no longer have a
random order, but will occur in sequences of positive and negative values. Examining

ŷ
yi − ŷi ,
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again the residuals given above, we find that the order of signs is + − − − − + + +. To
test whether these sequences of + and − residuals indicate the need for a non-linear
regression line, we need to know the probability that such an order could occur by
chance. Such calculations are described in the next chapter. Unfortunately the small
number of data points makes it quite likely that these and other sequences could
indeed occur by chance, so any conclusions drawn must be treated with caution. The
choice between straight-line and curvilinear regression methods is therefore probably
best made by using the curve-fitting techniques outlined in the next section.

In the situation where a calibration plot is linear over part of its range and curved
elsewhere, it is of great importance to be able to establish the range over which
linearity can be assumed. Approaches to this problem are outlined in the following
example.

.

Example 5.13.1

Investigate the linear calibration range of the following fluorescence experiment.

Fluorescence intensity 0.1 8.0 15.7 24.2 31.5 33.0
Concentration, µg ml−1 0 2 4 6 8 10

Inspection of the data shows that the part of the graph near the origin corres-
ponds rather closely to a straight line with a near-zero intercept and a slope of
about 4. The fluorescence of the 10 µg ml−1 standard solution is clearly lower than
would be expected on this basis, and there is some possibility that the departure
from linearity has also affected the fluorescence of the 8 µg ml−1 standard. We
first apply (unweighted) linear regression calculations to all the data. Application
of the methods of Sections 5.3 and 5.4 gives the results a = 1.357, b = 3.479 and
r = 0.9878. Again we recall that the high value for r may be deceptive, though it
may be used in a comparative sense (see below). The y-residuals are found to be
−1.257, −0.314, +0.429, +1.971, +2.314, and −3.143, with the sum of squares of
the residuals equal to 20.981. The trend in the values of the residuals suggests
that the last value in the table is probably outside the linear range.

We confirm this suspicion by applying the linear regression equations to the
first five points only. This gives a = 0.100, b = 3.950 and r = 0.9998. The slope
and intercept are much closer to the values expected for the part of the graph
closest to the origin, and the r value is higher than in the first calculation.
The residuals of the first five points from this second regression equation are
0, 0, −0.2, +0.4 and −0.2, with a sum of squares of only 0.24. Use of the second
regression equation shows that the fluorescence expected from a 10 µg ml−1

standard is 39.6, i.e. the residual is −6.6. Use of a t-test (Chapter 3) would
show that this last residual is significantly greater than the average of the other
residuals: alternatively a test could be applied (Section 3.7) to demonstrate that
it is an ‘outlier’ amongst the residuals (see also Section 5.15 below). In this
example, such calculations are hardly necessary: the enormous residual for the
last point, coupled with the very low residuals for the other five points and the
greatly reduced sum of squares, confirms that the linear range of the method
does not extend as far as 10 µg ml−1. Having established that the last data point
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Once a decision has been taken that a set of calibration points cannot be
satisfactorily fitted by a straight line, the analyst can play one further card before
becoming resigned to the complexities of curvilinear regression calculations. It may
be possible to transform the data so that a non-linear relationship is changed into
a linear one. Such transformations are regularly applied to the results of certain
analytical methods. For example, modern software packages for the interpretation
of immunoassay data frequently offer a choice of transformations: commonly used
methods involve plotting log y and/or log x instead of y and x, or the use of logit
functions (logit x = ln[x/(1 − x)]). It is important to note that the transformations
may also affect the nature of the errors at different points on the calibration plot.
Suppose, for example, that in a set of data of the form y = pxq, the magnitudes of the
random errors in y are independent of x. Any transformation of the data into linear

can be excluded from the linear range, we can repeat the process to study the
point (8, 31.5). We do this by calculating the regression line for only the first
four points in the table, with the results a = 0, b = 4.00, r = 0.9998. The correla-
tion coefficient value suggests that this line is about as good a fit of the points
as the previous one, in which five points were used. The residuals for this third
calculation are +0.1, 0, −0.3, and +0.2, with a sum of squares of 0.14. With this
calibration line the y-residual for the 8 µg ml−1 solution is −0.5: this value is
larger than the other residuals but probably not by a significant amount. It can
thus be concluded that it is reasonably safe to include the point (8, 31.5) within
the linear range of the method. In making a marginal decision of this kind, the
analytical chemist will take into account the accuracy required in the results,
and the reduced value of a method for which the calibration range is very short.
The calculations described above are summarized in Figure 5.14.

Figure 5.14 Curvilinear regression: identification of the linear range. The data in Example
5.13.1 are used; the unweighted linear regression lines through all the points (—), through
the first five points only (- - - - -), and through the first four points only (. . . . .) are shown.
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form by taking logarithms will obviously produce data in which the errors in log y
are not independent of log x. In this case, and in any other instance where the
expected form of the equation is known from theoretical considerations or from
long-standing experience, it is possible to apply weighted regression equations
(Section 5.10) to the transformed data. It may be shown that, if data of the general
form y = f(x) are transformed into the linear equation Y = BX + A, the weighting fac-
tor, w, used in equations (5.15)–(5.18) is obtained from the relationship:

(5.28)

Unfortunately, there are not many cases in analytical chemistry where the exact
mathematical form of a non-linear regression equation is known with certainty
(see below), so this approach is of restricted value.

It should also be noted that, in contrast to the situation described in the previous
paragraph, results can be transformed to produce data that can be treated by
unweighted methods. Data of the form y = bx with y-direction errors strongly depen-
dent on x are sometimes subjected to a log-log transformation: the errors in log y
then vary less seriously with log x, so the transformed data can reasonably be studied
by unweighted regression equations.

5.14 Curve fitting

In view of the difficulties that arise from transforming the data, and the increasing ease
with which curves can be calculated to fit a set of calibration points, curvilinear regres-
sion methods are now relatively common in analytical chemistry. It is important to
realize that the curved calibration plots encountered in practice often arise from the
superposition of two or more physical or chemical phenomena. Thus in molecular
fluorescence spectrometry, signal vs. concentration plots will often be approximately
linear in very dilute solution, but will show increasing (negative) curvature at higher
concentrations because of (a) optical artefacts (inner filter effects), (b) molecular inter-
actions (e.g. quenching, excimer formation), and (c) the failure of the algebraic
assumptions on which a linear plot is predicted. Effects (a)–(c) are independent of one
another, so many curves of different shapes may appear in practice. This example
shows why calibration curves of a known and predictable form are so rarely encoun-
tered in analytical work (see above). Thus the analyst has little a priori guidance on
which of the many types of equation that generate curved plots should be used to
fit the calibration data in a particular case. In practice, much the most common strat-
egy is to fit a curve which is a polynomial in x, i.e. y = a + bx + cx2 + dx3 + . . . .

The mathematical problems to be solved are then (i) how many terms should be
included in the polynomial, and (ii) what values must be assigned to the coefficients
a, b, etc.? Computer software packages which address these problems are normally
iterative: they fit first a straight line, then a quadratic curve, then a cubic curve, and so
on, to the data, and present to the user the information needed to decide which of
these equations is the most suitable. In practice quadratic or cubic equations are often
entirely adequate to provide a good fit to the data: polynomials with many terms are

wi = � 1
dYi/dyi

�
2
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almost certainly physically meaningless and do not significantly improve the analyti-
cal results. In any case, if the graph has n calibration points, the largest polynomial
permissible is that of order (n − 1).

To decide whether (for example) a quadratic or a cubic curve is the best fit to a cali-
bration data set we can use the ANOVA methods introduced in Section 5.12. ANOVA
programs generate values for R2, the coefficient of determination. Equation (5.26)
shows that, as the least squares fit of a curve (or straight line) to the data points
improves, the value of R2 will get closer to 1 (or 100%). It would thus seem that we have
only to calculate R2 values for the straight-line, quadratic, cubic, etc. equations, and
cease our search when R2 no longer increases. Unfortunately it turns out that the addi-
tion of another term to the polynomial always increases R2, even if only by a small
amount. ANOVA programs thus provide R′2 (‘adjusted R2’) values (equation (5.27)),
which utilize mean squares (MS) rather than sums of squares. The use of R′2 takes into
account that the number of residual degrees of freedom in the polynomial regression
(given by (n − k − 1) where k is the number of terms in the regression equation
containing a function of x) changes as the order of the polynomial changes. As the
following example shows, R′2 is always smaller than R2.

Example 5.14.1

In an instrumental analysis the following data were obtained (arbitrary units).

Concentration 0 1 2 3 4 5 6 7 8 9 10
Signal 0.2 3.6 7.5 11.5 15.0 17.0 20.4 22.7 25.9 27.6 30.2

Fit a suitable polynomial to these results, and use it to estimate the concen-
trations corresponding to signal of 5, 16 and 27 units.

Even a casual examination of the data suggests that the calibration plot
should be a curve, but it is instructive nonetheless to calculate the least-squares
straight line through the points using the method described in Section 5.4.
This line turns out to have the equation y = 2.991x + 1.555. The ANOVA table
for the data has the following form:

Source of variation Sum of squares d.f. Mean square

Regression 984.009 1 984.009
Residual 9.500 9 1.056

Total 993.509 10 99.351

As already noted, the number of degrees of freedom (d.f.) for the variation due to
regression is equal to the number of terms (k) in the regression equation con-
taining x, x2, etc. For a straight line, k is 1. There is only one constraint in the cal-
culation (viz. that the sum of the residuals is zero, see above), so the total number
of degrees of freedom is (n − 1). Thus the number of degrees of freedom assigned
to the residuals is (n − k − 1) = (n − 2) in this case. From the ANOVA table R2 is
given by 984.009/993.509 = 0.99044, i.e. 99.044%. An equation which explains
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over 99% of the relationship between x and y seems quite satisfactory but, just as
is the case with the correlation coefficient, r, we must use great caution in inter-
preting absolute values of R2: it will soon become apparent that a quadratic curve
provides a much better fit for the data. We can also calculate the R′2 value from
equation (5.27): it is given by [1 − (1.056/99.351)] = 0.98937, i.e. 98.937%.

As always, an examination of the residuals usually provides valuable inform-
ation on the success of a calibration equation. In this case the residuals are as
follows:

x yi y-residual

0 0.2 1.0 −1.4
1 3.6 4.5 −0.9
2 7.5 7.5 0
3 11.5 10.5 1.0
4 15.0 13.5 1.5
5 17.0 16.5 0.5
6 20.4 19.5 0.9
7 22.7 22.5 0.2
8 25.9 25.5 0.4
9 27.6 28.5 −0.9

10 30.2 31.5 −1.3

In this table, the numbers in the two right-hand columns have been rounded
to one decimal place for simplicity. The trend in the signs and magnitudes of
the residuals, which are negative at low x-values, rise to a positive maximum,
and then return to negative values, is a sure sign that a straight line is not a
suitable fit for the data.

When the data are fitted by a curve of quadratic form the equation turns
out to be y = 0.086 + 3.970x − 0.098x2, and the ANOVA table takes the form:

Source of variation Sum of squares d.f. Mean square

Regression 992.233 2 494.116
Residual 1.276 8 0.160

Total 993.509 10 99.351

Note that the number of degrees of freedom for the regression and residual
sources of variation have now changed in accordance with the rules described
above, but that the total variation is naturally the same as in the first ANOVA
table. Here R2 is 992.233/993.509 = 0.99872, i.e. 99.872%. This figure is notice-
ably higher than the value of 99.044% obtained from the linear plot, and
the R′2 value is also higher at [1 − (0.160/99.3511)] = 0.99839, i.e. 99.839%.
When the y-residuals are calculated, their signs (in increasing order of x-values)
are + − − + + − + − + − +. There is no obvious trend here, so on all grounds we
must prefer the quadratic over the linear fit.

yî
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We noted earlier in this section that non-linear calibration graphs often result from the
simultaneous occurrence of a number of physicochemical and/or mathematical phe-
nomena, so it is sensible to assume that no single mathematical function may be able
to describe the calibration curve entirely satisfactorily. It thus seems logical to try to fit
the points to a curve that consists of several linked sections whose mathematical form
may be different. This is the approach now used with increasing frequency through the
application of spline functions. Cubic splines are most commonly used in prac-
tice, i.e. the final curve is made up of a series of linked sections of cubic form. These
sections must clearly form a continuous curve at their junctions (‘knots’), so the first
two derivatives of each curve at any knot must be identical. Several methods have been
used for estimating both the number of knots and the equations of the curves joining
them: these techniques are too advanced to be considered in detail here, but many
commercially available statistics software packages now provide such facilities.
The spline function approach has been applied successfully to a variety of analytical
methods, including gas–liquid chromatography, competitive binding immunoassays
and similar receptor-based methods, and atomic-absorption spectrometry.

It is legitimate to ask whether, in the case of a calibration plot whose curvature is
not too severe, we could take the spline idea to its simplest conclusion, and plot the
curve as a series of straight lines joining successive points. This method is of course
entirely non-rigorous, and would not provide any information on the precision with
which x-values can be determined. However, its value as a simple initial data analy-
sis (IDA) method (see Chapter 6) is indicated by applying it to the data in the above
example. For y-values of 5, 16 and 27 this method of linear interpolation between

Lastly we repeat the calculation for a cubic fit. Here, the best-fit equation is
y = −0.040 + 4.170x − 0.150x2 + 0.0035x3. The cubic coefficient is very small
indeed, so it is questionable whether this equation is a significantly better fit
than the quadratic one. The R2 value is, inevitably, slightly higher than that
for the quadratic curve (99.879% compared with 99.872%), but the value of
R′2 is slightly lower than the quadratic value at 99.827%. The order of the signs
of the residuals is the same as in the quadratic fit. As there is no value in
including unnecessary terms, we can be confident that a quadratic fit is satis-
factory in this case.

When the above equations are used to estimate the concentrations corres-
ponding to instrument signals of 5, 16 and 27 units, the results (x-values in
arbitrary units) are:

Linear Quadratic Cubic

y = 5 1.15 1.28 1.27
y = 16 4.83 4.51 4.50
y = 27 8.51 8.61 8.62

As expected, the differences between the concentrations calculated from the
quadratic and cubic equations are insignificant, so the quadratic equation is
used for simplicity.
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successive points gives x-values of 1.36, 4.50 and 8.65 units respectively.
Comparison with the above table shows that these results, especially the last two,
would be quite acceptable for many purposes.

5.15 Outliers in regression

In this section we return to a problem already discussed in Chapter 3, the occurrence
of outliers in our data. These anomalous results inevitably arise in calibration experi-
ments, just as they occur in replicate measurements, but it is rather harder to deal
with them in regression statistics. One difficulty is that, although the individual
yi-values in a calibration experiment are assumed to be independent of one another,
the residuals are not independent of one another, as their sum is always
zero. It is therefore not normally permissible to take the residuals as if they were a
conventional set of replicate measurements, and apply (for example) a Q-test to
identify any outliers. (If the number of yi-values is large, a condition not generally
met in analytical work, this prohibition can be relaxed.)

How then do we identify outliers in a typical calibration experiment? First we note
that, in cases where an obvious error such as a transcription mistake or an instrument
malfunction has occurred it is natural and permissible to reject the resulting meas-
urement (and, if possible, to repeat it). If there are suspect measurements for which
there are no obvious sources of error, we must return to a study of the residuals. Most
computer programs handling regression data provide residual diagnostics routines
(see above). Some of these are simple, including plots of the individual residuals
against yi-values (Figure 5.15). Such plots would normally be expected to show that,
if the correct calibration model has been used, the residuals remain roughly uniform
in size as yi increases, and normally distributed about zero. The figure also illustrates
cases where the y-direction errors increase with yi (Section 5.10), and where the wrong
regression equation has been used (Sections 5.11 and 5.12). Similarly, the y-residuals
can be plotted against time if instrument drift or any other time-dependent effect
is suspected. These plots show up suspect values very clearly, but do not provide
criteria that can be immediately used to reject or accept them. Moreover, they are of
limited value in many analytical chemistry experiments, where the number of cali-
bration points is often small.

Some simple numerical criteria have been used in computer software to identify
possible outliers. Some packages ‘flag’ calibration points where the y-residual is
more than twice (or some other multiple of) the value of Sy/x. Several more advanced
methods have been developed, of which the best known is the estimation for each
point of Cook’s distance, first proposed in 1977. This statistic is provided rou-
tinely by several advanced suites of statistical software, though a full appreciation of
its significance requires a knowledge of matrix algebra. Cook’s distance is an exam-
ple of an influence function, i.e. it measures the effect that rejecting the calibration
point in question would have on the regression coefficients a and b.

Finally we note that, just as in the treatment of outliers in replicate measure-
ments, non-parametric and robust methods can be very effective in handling out-
liers in regression: robust regression methods have proved particularly popular in
recent years. These topics are covered in the next chapter.

(yi − ŷi)
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Figure 5.15 Residual plots in regression diagnostics: (a) satisfactory distribution of
residuals; (b) the residuals tend to grow as yi grows, suggesting that a weighted
regression plot would be suitable; (c) the residuals show a trend, first becoming more
negative, then passing through zero, and then becoming more positive as yi increases,
suggesting that a (different) curve should be plotted; and (d) a satisfactory plot, except
that y6 might be an outlier.

yi
^

yi
^

yi
^

y i
 –

 y
i^

yi
^

0

0

0

0

(a)

(b)

(c)

(d)

Bibliography

Analytical Methods Committee. 2002. Fitting a Linear Functional Relationship to Data
with Error on Both Variables, Royal Society of Chemistry, Cambridge. (This Technical
Brief provided by the Society’s Analytical Methods Committee is one of a series
obtainable at www.rsc.org/lap/rsccom/amc/amc_index.htm. The same site provides
links to the downloadable software.)

Draper, N. R. and Smith, H. 1998. Applied Regression Analysis, 3rd edn, Wiley,
New York. (An established work with comprehensive coverage of many aspects of
regression and correlation problems.)

Edwards, A. L. 1984. An Introduction to Linear Regression and Correlation, 2nd edn,
W. H. Freeman, New York. (Clearly written treatment, with a good introduction
to matrix algebra.)

Kleinbaum, D. G., Kupper, L. L. and Muller, K. E. 1988. Applied Regression Analysis
and Other Multivariable Methods, 3rd edn, Wadsworth, Boston, MA, USA. (Another
classic in its field with a good treatment of regression diagnostics.)

Mark, H. 1991. Principles and Practice of Spectroscopic Calibration, Wiley, New York.
(A clear explanation of the principles. The strong emphasis on near-IR spectro-
scopic data is not a significant disadvantage.)

SCA_C05.qxd  3/29/05  3:59 PM  Page 146



Exercises 147

..

Noggle, J. H. 1993. Practical Curve-Fitting and Data Analysis, Ellis Horwood–PTR
Prentice Hall, Englewood Cliffs, NJ, USA. (Software and data files are provided
with this book, and all the examples are chemical ones.)

Snedecor, G. M. and Cochran, W. G. 1993. Statistical Methods, 8th edn, Iowa State
University, USA. (Gives an excellent general account of regression and correlation
procedures.)

Exercises

1 In a laboratory containing polarographic equipment six samples of dust were
taken at various distances from the polarograph and the mercury content of each
sample was determined. The following results were obtained:

Distance from polarograph, m 1.4 3.8 7.5 10.2 11.7 15.0
Mercury concentration, ng g−1 2.4 2.5 1.3 1.3 0.7 1.2

Examine the possibility that the mercury contamination arose from the
polarograph.

2 The response of a colorimetric test for glucose was checked with the aid of stan-
dard glucose solutions. Determine the correlation coefficient from the following
data and comment on the result.

Glucose concentration, mM 0 2 4 6 8 10
Absorbance 0.002 0.150 0.294 0.434 0.570 0.704

3 The following results were obtained when each of a series of standard silver solu-
tions was analysed by flame atomic-absorption spectrometry.

Concentration,
ng ml−1 0 5 10 15 20 25 30

Absorbance 0.003 0.127 0.251 0.390 0.498 0.625 0.763

Determine the slope and intercept of the calibration plot, and their confidence
limits.

4 Using the data of Exercise 3, estimate the confidence limits for the silver concen-
trations in (a) a sample giving an absorbance of 0.456 in a single determination,
and (b) a sample giving absorbance values of 0.308, 0.314, 0.347, and 0.312 in
four separate analyses.

5 Estimate the limit of detection of the silver analysis from the data in Exercise 3.

6 The gold content of a concentrated sea-water sample was determined by using
atomic-absorption spectrometry with the method of standard additions. The
results obtained were as follows:

Gold added,  
ng per ml of 
concentrated 
sample 0 10 20 30 40 50 60 70

Absorbance 0.257 0.314 0.364 0.413 0.468 0.528 0.574 0.635

Estimate the concentration of the gold in the concentrated sea-water, and deter-
mine confidence limits for this concentration.
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7 The fluorescence of each of a series of acidic solutions of quinine was deter-
mined five times. The results are given below.

Concentration, ng ml−1 0 10 20 30 40 50
Fluorescence intensity 4 22 44 60 75 104
(arbitrary units) 3 20 46 63 81 109

4 21 45 60 79 107
5 22 44 63 78 101
4 21 44 63 77 105

Determine the slopes and intercepts of the unweighted and weighted regression
lines. Calculate, using both regression lines, the confidence limits for the
concentrations of solutions with fluorescence intensities of 15 and 90 units.

8 An ion-selective electrode (ISE) determination of sulphide from sulphate-
reducing bacteria was compared with a gravimetric determination. The results
obtained were expressed in milligrams of sulphide.

Sample: 1 2 3 4 5 6 7 8 9 10
Sulphide (ISE method): 108 12 152 3 106 11 128 12 160 128
Sulphide (gravimetry): 105 16 113 0 108 11 141 11 182 118

Comment on the suitability of the ISE method for this sulphide determination.
(Al-Hitti, I. K., Moody, G. J. and Thomas, J. D. R. 1983. Analyst 108: 43)

9 In the determination of lead in aqueous solution by electrochemical atomic-
absorption spectrometry with graphite-probe atomization, the following results
were obtained:

Lead concentration, ng ml−1 10 25 50 100 200 300
Absorbance 0.05 0.17 0.32 0.60 1.07 1.40

Investigate the linear calibration range of this experiment.
(Based on Giri, S. K., Shields, C. K., Littlejohn, D. and Ottaway, J. M. 1983.
Analyst 108: 244)

10 In a study of the complex formed between europium(III) ions and pyridine-2,6-
dicarboxylic acid (DPA), the absorbance values of solutions containing different
DPA:Eu concentrations were determined, with the following results:

Absorbance 0.008 0.014 0.024 0.034 0.042 0.050 0.055 0.065
DPA:Eu 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Absorbance 0.068 0.076 0.077 0.073 0.066 0.063 0.058
DPA:Eu 1.8 2.0 2.4 2.8 3.2 3.6 4.0

Use these data to determine the slopes and intercepts of two separate straight
lines. Estimate their intersection point and its standard deviation, thus deter-
mining the composition of the DPA–europium complex formed.
(Based on Arnaud, N., Vaquer, E. and Georges, J. 1998. Analyst 123: 261)

11 In an experiment to determine hydrolysable tannins in plants by absorption
spectroscopy the following results were obtained:

Absorbance 0.084 0.183 0.326 0.464 0.643
Concentration, mg ml−1 0.123 0.288 0.562 0.921 1.420

Use a suitable statistics or spreadsheet program to calculate a quadratic relationship
between absorbance and concentration. Using R2 and R′2 values, comment on
whether the data would be better described by a cubic equation.
(Based on Willis, R. B. and Allen, P. R. 1998. Analyst 123: 435)
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12 The following results were obtained in an experiment to determine spermine
by high performance thin layer chromatography of one of its fluorescent
derivatives.

Fluorescence intensity 36 69 184 235 269 301 327
Spermine, ng 6 18 30 45 60 75 90

Determine the best polynomial calibration curve through these points.
(Based on Linares, R. M., Ayala, J. H., Afonso, A. M. and Gonzalez, V. 1998.
Analyst 123: 725)

.
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6 Non-parametric and robust
methods

6.1 Introduction

The statistical tests developed in the previous chapters have all assumed that the
data being examined follow the normal (Gaussian) distribution. Some support for
this assumption is provided by the central limit theorem, which shows that the sam-
pling distribution of the mean may be approximately normal even if the parent popu-
lation has quite a different distribution. However, the theorem is not really valid for
the very small data sets (often only three or four readings) frequently used in ana-
lytical work.

There are several further reasons for an interest in methods that do not require
the assumption of normally distributed data. Some sets of data that are of interest
to analytical chemists certainly have different distributions. For example (see
Chapter 2) the concentrations of antibody in the blood sera of a group of different
people can be expressed approximately as a log-normal distribution: such results are
often obtained when a particular measurement is made on each member of a group
of human or animal subjects. More interestingly, there is growing evidence that,
even when repeated measurements are made on a single test material, the distribu-
tion of the results may sometimes be symmetrical but not normal: the data include
more results than expected which are distant from the mean. Such heavy-tailed dis-
tributions may be regarded as normal distributions with the addition of outliers (see
Chapter 3) arising from gross errors. Alternatively heavy-tailed data may arise from
the superposition of two normal distributions with the same mean value, but with
one distribution having a significantly larger standard deviation than the other. This
could arise if, for example, the measurements were made by more than one indi-
vidual or by using more than one piece of equipment.

This chapter introduces two groups of statistical tests for handling data that may
not be normally distributed. Methods which make no assumptions about the shape
of the distribution from which the data are taken are called non-parametric or
distribution-free methods. Many of them have the further advantage of greatly sim-
plified calculations: with small data sets some of the tests can be performed mentally.
The second group of methods, which has grown rapidly in use in recent years, is based
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on the belief that the underlying population distribution may indeed be approximately
normal, but with the addition of data such as outliers that may distort this distribution.
These robust techniques will naturally be appropriate in the cases of heavy-tailed
distributions described above. They differ from non-parametric methods in another
respect: they often involve iterative calculations that would be lengthy or complex
without a computer, and their rise in popularity certainly owes much to the universal
availability of personal computers.

6.2 The median: initial data analysis

In previous chapters we have used the arithmetic mean or average as the ‘measure
of central tendency’ or ‘measure of location’ of a set of results. This is logical enough
when the (symmetrical) normal distribution is assumed, but in non-parametric
statistics, the median is usually used instead. In order to calculate the median of n
observations, we arrange them in ascending order: in the unlikely event that n is
very large, this sorting process can be performed very quickly by programs available
for most computers.

The median is the value of the th observation if n is odd, and the average
of the and the th observations if n is even. �1

2n + 1�1
2 nth

1
2 (n + 1)

Example 6.2.1

Determine the mean and the median for the following four titration values.

25.01, 25.04, 25.06, 25.21 ml

It is easy to calculate that the mean of these four observations is 25.08 ml, and
that the median – in this case the average of the second and third values, the
observations already being in numerical order – is 25.05 ml. The mean is greater
than any of the three closely-grouped values (25.01, 25.04 and 25.06 ml) and
may thus be a less realistic measure of central tendency than the median.
Instead of calculating the median we could use the methods of Chapter 3 to test
the value 25.21 as a possible outlier, and determine the mean according to the
result obtained, but this approach involves extra calculation and assumes that
the data come from a normal population.

Determining the median of a set of experimental results usually requires little or no
calculation. Moreover, in many cases it may be a more realistic measure of central
tendency than the arithmetic mean.
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This simple example illustrates one valuable property of the median: it is unaffected
by outlying values. Confidence limits (see Chapter 2) for the median can be estim-
ated with the aid of the binomial distribution. This calculation can be performed
even when the number of measurements is small, but is not likely to be required in
analytical chemistry, where the median is generally used only as a rapid measure of
an average. The reader is referred to the bibliography for further information.

In non-parametric statistics the usual measure of dispersion (replacing the stan-
dard deviation) is the interquartile range. As we have seen, the median divides the
sample of measurements into two equal halves: if each of these halves is further
divided into two the points of division are called the upper and lower quartiles.
Several different conventions are used in making this calculation, and the interested
reader should again consult the bibliography. The interquartile range is not widely
used in analytical work, but various statistical tests can be performed on it.

The median and the interquartile range of a set of measurements are just two of the
statistics which feature strongly in initial data analysis (IDA), often also called
exploratory data analysis (EDA). This is an aspect of statistics that has grown rapidly
in popularity in recent years. One reason for this is, yet again, the ability of modern
computers and dedicated software to present data almost instantly in a wide range of
graphical formats: as we shall see, such pictorial representations form an important ele-
ment of IDA. A second element in the rising importance of IDA is the increasing accep-
tance of statistics as a practical and pragmatic subject not necessarily restricted to the
use of techniques whose theoretical soundness is unquestioned: some IDA methods
seem almost crude in their principles, but have nonetheless proved most valuable.

Example 6.2.2

In an experiment to determine whether Pb2+ ions interfered with the enzym-
atic determination of glucose in various foodstuffs, nine food materials were
treated with a 0.1 mM solution of Pb(II), while four other materials (the con-
trol group) were left untreated. The rates (arbitrary units) of the enzyme cata-
lysed reaction were then measured for each food and corrected for the different
amounts of glucose known to be present. The results were:

Treated foods 21 1 4 26 2 27 11 24 21
Controls 22 22 32 23

The main advantage of IDA methods is their ability to indicate which (if any)
further statistical methods are most appropriate to a given data set.

Several simple presentation techniques are of immediate help. We have already
noted (see Chapters 1 and 3) the use of dot-plots in the illustration of small data
sets. These plots help in the visual identification of outliers and other unusual fea-
tures of the data. The following example further illustrates their value.
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Another simple data representation technique, of greater value when rather larger
samples are studied, is the box-and-whisker plot. In its normal form such a diagram
consists of a rectangle (the box) with two lines (the whiskers) extending from oppo-
site edges of the box, and a further line in the box, crossing it parallel to the same
edges. The ends of the whiskers indicate the range of the data, the edges of the box
from which the whiskers protrude represent the upper and lower quartiles, and the
line crossing the box represents the median of the data (Figure 6.2).

Comment on these data.

Written out in two rows as above, the data do not convey much immediate mean-
ing, and an unthinking analyst might proceed straight away to perform a t-test
(Chapter 3), or perhaps one of the non-parametric tests described below, to see
whether the two sets of results are significantly different. But when the data are
presented as two dot-plots, or as a single plot with the two sets of results given sep-
arate symbols, it is apparent that the results, while interesting, are so inconclusive
that little can be deduced from them without further measurements (Figure 6.1).

The medians of the two sets of data are similar: 21 for the treated foods and
22.5 for the controls. But the range of reaction rates for the Pb(II) treated mate-
rials is enormous, with the results apparently falling into at least two groups:
five of the foods seem not to be affected by the lead (perhaps because in these
cases Pb(II) is complexed by components other than the enzyme in question),
while three others show a large inhibition effect (i.e. the reaction rate is much
reduced), and another lies somewhere in between these two extremes. There is
the further problem that one of the control group results is distinctly different
from the rest, and might be considered an outlier (Chapter 3). In these cir-
cumstances it seems most unlikely that a conventional significance test will
reveal chemically useful information: the use of the simplest IDA method has
guided us away from thoughtless significance testing and (as so often happens)
towards more experimental measurements.

0 8 16 24 32

0 8 16 24 32

Treated foods

Controls

Figure 6.1 Dot-plots for Example 6.2.2.

Figure 6.2 Box-and-whisker plot.
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value
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Upper
quartile

Median
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Some computer programs enhance the data presentation by identifying possible
outliers separately. In such cases outliers are often defined as data points which are
lower than the lower quartile, or higher than the upper quartile, by more than 1.5
times the interquartile range. The whiskers then only extend to these upper and
lower limits or fences and outlying data are shown as separate points. (These refine-
ments are not shown in Figure 6.2.)

The box-and-whisker plot, accompanied by a numerical scale, is a graphical
representation of the five-number summary, i.e. the data set is described by
its extremes, its lower and upper quartiles, and its median. The plot shows at
a glance the spread and the symmetry of the data.

Example 6.2.3

The levels of a blood plasma protein in 20 men and 20 women (mg 100 ml−1)
were found to be:

Men 3 2 1 4 3 2 9 13 11 3
18 2 4 6 2 1 8 5 1 14

Women 6 5 2 1 7 2 2 11 2 1
1 3 11 3 2 3 2 1 4 8

What information can be gained about any differences between the levels of
this protein in men and women?

As in the previous example, the data as presented convey very little, but the
use of two box-and-whisker plots or five-number summaries is very revealing.
The five-number summaries are:

Min. Lower quartile Median Upper quartile Max.

Men 1 2 3.5 8.5 18
Women 1 2 2.5 5.5 11

It is left as a simple sketching exercise for the reader to show that (a) the dis-
tributions are very skewed in both men and women, so statistical methods that
assume a normal distribution are not appropriate (as we have seen this is often
true when a single measurement is made on a number of different subjects, par-
ticularly when the latter are living organisms); (b) the median concentrations
for men and women are similar; and (c) the range of values is considerably
greater for men than for women. The conclusions suggest that we might apply
the Siegel–Tukey test (see Section 6.6) to see whether the greater variation in
protein levels amongst men is significant.
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While it is usual for analysts to handle relatively small sets of data there are occa-
sions when a larger set of measurements is to be examined. Examples occur in the
areas of clinical and environmental analysis, where in many instances there are large
natural variations in analyte levels. Table 6.1 shows, in numerical order, the levels
of a pesticide in 30 samples of butter beans. The individual values range from 0.03
to 0.96 mg kg−1. They might be expressed as a histogram. This would show that, for
example, there are four values in the range 0–0.095 mg kg−1, four in the range
0.095–0.195 mg kg−1, and so on. But a better IDA method uses a stem and leaf dia-
gram, as shown in Figure 6.3.

The left-hand column of figures – the stem – shows the first significant digit for
each measurement, while the remaining figures in each row – the leaves – provide
the second significant digit. The length of the rows thus correspond to the lengths
of the bars on the corresponding histogram, but the advantage of the stem and leaf
diagram is that it retains the value of each measurement. The leaves use only whole
numbers, so some indication of the scale used must always be given. In this case a
key is used to provide this information. The Minitab software package provides facil-
ities for stem and leaf diagrams.

Table 6.1 Levels of pp-DDT in 30 butter bean specimens (mg kg−1)

0.03 0.05 0.08 0.08 0.10 0.11 0.18 0.19 0.20 0.20
0.22 0.22 0.23 0.29 0.30 0.32 0.34 0.40 0.47 0.48
0.55 0.56 0.58 0.64 0.66 0.78 0.78 0.86 0.89 0.96

In summary, IDA methods are simple, readily handled by personal computers,
and most valuable in indicating features of the data not apparent on initial
inspection. They are helpful in deciding the most suitable significance tests or
other statistical procedures to be adopted in further work, and sometimes even in
suggesting that statistics has no further role to play until more data are obtained.

Figure 6.3 Stem and leaf diagram for data from Table 6.1.
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They can of course be extended to the area of calibration and other regression tech-
niques: the very crude method of plotting a curved calibration graph suggested at
the end of the previous chapter can be regarded as an IDA approach. Numerous
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techniques are described in the books by Chatfield and by Velleman and Hoaglin
listed in the bibliography at the end of this chapter.

6.3 The sign test

The sign test is among the simplest of all non-parametric statistical methods, and
was first discussed in the early eighteenth century. It can be used in a number of
ways, the simplest of which is demonstrated by the following example.

Example 6.3.1

A pharmaceutical preparation is claimed to contain 8% of a particular compo-
nent. Successive batches were found in practice to contain 7.3, 7.1, 7.9, 9.1,
8.0, 7.1, 6.8 and 7.3% of the constituent. Are these results consistent with the
manufacturer’s claim?

In Chapter 3 (Section 3.2) it was shown that such problems could be tackled
by using the t-test after calculation of the mean and standard deviation of the
experimental data. The t-test assumes, however, that the data are normally dis-
tributed. The sign test avoids such an assumption, and is much easier to per-
form. The same underlying principles are used as in other significance tests: a
null hypothesis is established, the probability of obtaining the experimental
results is determined, and the null hypothesis is rejected if this probability is
less than a certain critical level. Here the null hypothesis is that the data come
from a population with a median value of 8.0% of the constituent. This pos-
tulated median is subtracted from each experimental value in turn, and the
sign of each result is considered. Values equal to the postulated median are
ignored entirely. In this case, therefore, we effectively have seven experimental
values, six of them lower than the median and hence giving minus signs, and
one higher than the median and hence giving a plus sign. To test whether this
preponderance of minus signs is significant we use the binomial theorem. This
theorem shows that the probability of r out of n signs being minus is given by

P(r) = nCrp
rq(n − r) (6.1)

where nCr is the number of combinations of r items from a total of n items,
p is the probability of getting a minus sign in a single result, and q is the prob-
ability of not getting a minus sign in a single result. i.e. q = 1 − p. Since the
median is defined so that half the experimental results lie above it and half
below it, it is clear that if the median is 8.0 in this case then both p and q
should be . Using equation (6.1) we find that .
Similarly we can calculate that the chance of getting seven minus signs, P(7), is
1/128. Overall, therefore, the probability of getting six or more negative signs in
our experiment is 8/128. We are only asking, however, whether the data differ
significantly from the postulated median. We must therefore perform a two-
sided test (see Chapter 3), i.e. we must calculate the probability of obtaining six

P(6) = 7C6 × �1
2�

6 × 1
2 = 7/1281

2

SCA_C06.qxd  3/29/05  4:00 PM  Page 156



The sign test 157

..

It is apparent from this example that the sign test will involve the frequent use
of the binomial distribution with p = q = . So common is this approach to non-
parametric statistics that most sets of statistical tables include the necessary data,
allowing such calculations to be made instantly (see Table A.9). Moreover, in many
practical situations, an analyst will always take the same number of readings or
samples, and will be able to memorize easily the probabilities corresponding to the
various numbers of + or − signs.

The sign test can also be used as a non-parametric alternative to the paired t-test
(Section 3.4) to compare two sets of results for the same samples. Thus if 10 samples
are examined by each of two methods, A and B, we can test whether the two methods
give significantly different readings by calculating for each sample [(result obtained by
method A) – (result obtained by method B)]. The null hypothesis will be that the two
methods do not give significantly different results – in practice this will again mean
that the probability of obtaining a plus sign (or a minus sign) for each difference is 0.5.
The number of plus or minus signs actually obtained can be compared with the prob-
ability derived from equation (6.1). An example of this application of the sign test is
given in the exercises at the end of the chapter.

A further use of the sign test is to indicate a trend. This application is illustrated
by the following example.

1
2

or more identical signs (i.e. ≥6 plus or ≥6 minus signs) when seven results are
taken at random. This is clearly 16/128 = 0.125. Since this value is >0.05, the crit-
ical probability level usually used, the null hypothesis, i.e. that the data come
from a population with median 8.0, cannot be rejected. As in Chapter 3, it is
important to note that we have not proved that the data do come from such a
population; we have only concluded that such a hypothesis cannot be rejected.

Example 6.3.2

The level of a hormone in a patient’s blood plasma is measured at the same
time each day for 10 days. The resulting data are:

Day 1 2 3 4 5 6 7 8 9 10
Level, ng ml−1 5.8 7.3 4.9 6.1 5.5 5.5 6.0 4.9 6.0 5.0

Is there any evidence for a trend in the hormone concentration?

Using parametric methods, it would be possible to make a linear regression
plot of such data and test whether its slope differed significantly from zero
(Chapter 5). Such an approach would assume that the errors were normally
distributed, and that any trend that did occur was linear. The non-parametric
approach is again simpler. The data are divided into two equal sets, the
sequence being retained:

5.8 7.3 4.9 6.1 5.5
5.5 6.0 4.9 6.0 5.0
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(If there is an odd number of measurements, the middle one in the time
sequence is ignored.) The result for the sixth day is then subtracted from that
for the first day, that for the seventh day from that for the second day, etc. The
signs of the differences between the pairs of values in the five columns are
determined in this way to be +, +, 0, +, +. As usual the zero is ignored com-
pletely, leaving four results, all positive. The probability of obtaining four
identical signs in four trials is 2 × (1/16) = 0.125. (Note that a two-sided test is
again used, as the trend in the hormone level might be upwards or down-
wards.) The null hypothesis, that there is no trend in the results, can therefore
not be rejected at the P = 0.05 probability level.

The price paid for the extreme simplicity of the sign test is some loss of statistical
power. The test does not utilize all the information offered by the data, so it is not
surprising to find that it also provides less discriminating information. In later sec-
tions, non-parametric methods that do use the magnitudes of the individual results
as well as their signs will be discussed.

6.4 The Wald–Wolfowitz runs test

In some instances we are interested not merely in whether observations generate posi-
tive or negative signs, but also in whether these signs occur in a random sequence.
In Section 5.11, for example, we showed that if a straight line is a good fit to a set of
calibration points, positive and negative residuals will occur more or less at random.
By contrast, attempting to fit a straight line to a set of points that actually lie on a
curve will yield non-random sequences of positive or negative signs: there might, for
example, be a sequence of + signs, followed by a sequence of − signs, and then
another sequence of + signs. Such sequences are technically known as runs – the
word being used here in much the same way as when someone refers to ‘a run of bad
luck’, or ‘a run of high scores’. In the curve-fitting case, it is clear that a non-random
sequence of + and − signs will lead to a smaller number of runs than a random
sequence.

The Wald–Wolfowitz method tests whether the number of runs is small
enough for the null hypothesis of a random distribution of signs to be rejected.

The number of runs in the experimental data is compared with the numbers in
Table A.10, which refers to the P = 0.05 probability level. The table is entered by using
the appropriate values for N, the number of + signs, and M, the number of − signs.
If the experimental number of runs is smaller than the tabulated value, then the null
hypothesis can be rejected.
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The Wald–Wolfowitz test can be used with any results that can be divided or con-
verted into just two categories. Suppose, for example, that it is found that 12 suc-
cessively used spectrometer light sources last for 450, 420, 500, 405, 390, 370,
380, 395, 370, 370, 420 and 430 hours. The median lifetime, in this case the aver-
age of the sixth and seventh numbers when the data are arranged in ascending
order, is 400 hours. If all those lamps with lifetimes less than the median are given
a minus sign, and those with longer lifetimes are given a plus sign, then the
sequence becomes + + + + − − − − − − + +. This is the same sequence as in the regres-
sion example above, where it was shown to be significantly non-random. In this
case, the significant variations in lifetime might be explained if the lamps came
from different batches or different manufacturers.

We may be concerned with unusually large numbers of short runs, as well as
unusually small numbers of long runs. If six plus and six minus signs occurred in
the order + − + − + − + − + − + − we would strongly suspect a non-random sequence.
Table A.10 shows that, with N = M = 6, a total of 11 or 12 runs indicates that the null
hypothesis of random order should be rejected, and some periodicity in the data
suspected.

6.5 The Wilcoxon signed rank test

Section 6.3 described the use of the sign test. Its value lies in the minimal assump-
tions it makes about the experimental data. The population from which the sample
is taken is not assumed to be normal, or even to be symmetrical. On the other hand
a disadvantage of the sign test is that it uses so little of the information provided.
The only material point is whether an individual measurement is greater than or less
than the median – the size of this deviation is not used at all.

In many instances we will have every reason to believe that our measurements will
be symmetrically distributed but will not wish to make the assumption that they are
normally distributed. This assumption of symmetrical data, and the consequence

Example 6.4.1

Linear regression equations are used to fit a straight line to a set of 12 calibra-
tion points. The signs of the resulting residuals in order of increasing x value
are + + + + − − − − − − + +. Comment on whether it would be better to attempt
to fit a curve to the points.

Here M = N = 6, and the number of runs is three. Table A.10 shows that, at
the P = 0.05 level, the number of runs must be <4 if the null hypothesis is to
be rejected. So in this instance we can reject the null hypothesis, and conclude
that the sequence of + and − signs is not a random one. The attempt to fit a
straight line to the experimental points is therefore unsatisfactory, and a curvi-
linear regression plot is indicated instead.
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that the mean and the median of the population will be equal, allows more power-
ful significance tests to be developed. Important advances were made by Wilcoxon,
and his signed rank test has several applications. Its mechanism is best illustrated by
an example.

An important advantage of the signed rank test is that it can also be used on
paired data, because they can be transformed into the type of data given in the pre-
vious example. The signed rank method can thus be used as a non-parametric alter-
native to the paired t-test (Section 3.4).

Example 6.5.1

The blood lead levels (in pg ml−1) of seven children were found to be 104, 79,
98, 150, 87, 136 and 101. Could such data come from a population, assumed
to be symmetrical, with a median/mean of 95 pg ml−1?

On subtraction of the reference concentration (95) the data give values of

9, −16, 3, 55, −8, 41, 6

These values are first arranged in order of magnitude without regard to sign:

3, 6, 8, 9, 16, 41, 55

Their signs are then restored to them (in practice these last two steps can be
combined):

3, 6, −8, 9, −16, 41, 55

The numbers are then ranked: in this process they keep their signs but are
assigned numbers indicating their order (or rank):

1, 2, −3, 4, −5, 6, 7

The positive ranks add up to 20, and the negative ones to 8. The lower of these
two figures (8) is taken as the test statistic. If the data came from a population
with median 95 the sums of the negative and positive ranks would be expected
to be approximately equal numerically; if the population median was very dif-
ferent from 95 the sums of the negative and positive ranks would be unequal.
The probability of a particular sum occurring in practice is given by a set of
tables (see Table A.11). In this test the null hypothesis is rejected if the experi-
mental value is less than or equal to the tabulated value, i.e. the opposite of the
situation encountered in most significance tests. In the present example exam-
ination of Table A.11 shows that, for n = 7, the test statistic must be less than
or equal to 2 before the null hypothesis – that the data do come from a popu-
lation of median (mean) 95 – can be rejected at a significance level of P = 0.05.
In this example, the null hypothesis must be retained. As usual, a two-sided
test is used though there may be occasional cases where a one-sided test is
more appropriate.
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The signed rank test is seen from these examples to be a simple and valuable
method. Its principal limitation is that it cannot be applied to very small sets of data:
for a two-tailed test at the significance level P = 0.05, n must be at least 6.

Example 6.5.2

The following table gives the percentage concentration of zinc, determined by
two different methods, for each of eight samples of health food.

Sample EDTA titration Atomic spectrometry

1 7.2 7.6
2 6.1 6.8
3 5.2 4.6
4 5.9 5.7
5 9.0 9.7
6 8.5 8.7
7 6.6 7.0
8 4.4 4.7

Is there any evidence for a systematic difference between the results of the two
methods? The approach to this type of problem is very simple. If there were
no systematic difference between the two methods, then we would expect that
the differences between the results for each sample, i.e. [(titration result) –
(spectrometry result)], should be symmetrically distributed about zero. The
signed differences are:

−0.4, −0.7, 0.6, 0.2, −0.7, −0.2, −0.4, −0.3

Arranging these values in numerical order while retaining their signs, we have:

−0.2, 0.2, −0.3, −0.4, −0.4, 0.6, −0.7, −0.7

The ranking of these results presents an obvious difficulty, that of tied ranks.
There are two results with the numerical value 0.2, two with a numerical value
of 0.4, and two with a numerical value of 0.7. How are the ranks to be calcu-
lated? This problem is resolved by giving the tied values average ranks, with
appropriate signs. Thus the ranking for the present data is:

−1.5, 1.5, −3, −4.5, −4.5, 6, −7.5, −7.5

In such cases, it is worth verifying that the ranking has been done correctly by cal-
culating the sum of all the ranks without regard to sign. The sum for the numbers
above is 36, which is the same as the sum of the first eight integers, and therefore
correct. The sum of the positive ranks is 7.5, and the sum of the negative ranks is
28.5. The test statistic is thus 7.5. Inspection of Table A.11 shows that, for n = 8,
the test statistic has to be ≤3 before the null hypothesis can be rejected at the level
P = 0.05. In the present case, the null hypothesis must be retained – there is no
evidence that the median (mean) of the difference is not zero, and hence no evi-
dence for a systematic difference between the two analytical methods.
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6.6 Simple tests for two independent samples

The signed rank test described in the previous section is valuable for the study of sin-
gle sets of measurements, and for paired sets that can readily be reduced to single sets.
In many instances, however, it is necessary to compare two independent samples
that cannot be reduced to a single set of data. Such samples may contain different
numbers of measurements. Several non-parametric tests to tackle such problems have
been devised. The simplest to understand and perform is the Mann–Whitney U-test,
the operation of which is most easily demonstrated by an example.

Example 6.6.1

A sample of photographic waste was analysed for silver by atomic absorption
spectrometry, five successive measurements giving values of 9.8, 10.2, 10.7,
9.5, and 10.5 µg ml−1. After chemical treatment, the waste was analysed again
by the same procedure, five successive measurements giving values of 7.7, 9.7,
8.0, 9.9 and 9.0 µg ml−1. Is there any evidence that the treatment produced a
significant reduction in the levels of silver?

The Mann–Whitney procedure involves finding the number of results in one
sample that exceeds each of the values in the other sample.

In the present case, we believe that the silver concentration of the treated solu-
tion should, if anything, be lower than that of the untreated solution (i.e. a one-
sided test is appropriate). We thus expect to find that the number of cases in
which a treated sample has a higher value than an untreated one should be small.
Each of the values for the untreated sample is listed, and the number of instances
where the values for the treated sample are greater are counted in each case.

Untreated sample Higher values in treated sample Number of higher values

9.8 9.9 1
10.2 – 0
10.7 – 0
9.5 9.7, 9.9 2

10.5 – 0

The total of the numbers in the third column, in this case 3, is the test statis-
tic. Table A.12 is used for the Mann–Whitney U-test: again the critical values
leading to the rejection of the null hypothesis are those which are less than
or equal to the tabulated numbers. The table shows that for a one-sided test
at P = 0.05, with five measurements of each sample, the test statistic must be
≤4 if the null hypothesis is to be rejected. In our example we can thus reject
H0: the treatment of the silver-containing material probably does reduce the
level of the metal.
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When, as in this example, the numbers of measurements are small the
Mann–Whitney calculation can be done mentally, a great advantage. If ties (identi-
cal values) occur in the U-test, each tie is assigned a value of 0.5 in the count of U.

A further convenient method with some interesting features is Tukey’s quick
test. Its use can be shown using the same example.

Tukey’s quick test involves counting the total number of measurements in the
two independent samples that are not included in the overlap region of the
two data sets.

Example 6.6.2

Apply Tukey’s quick test to the data of the previous example.

The test can be regarded as having two stages, though when only a few results
are available, these two steps will doubtless be amalgamated into one rapid
mental calculation. In the first step, the number of results in the second set of
data that are lower than all the values in the first set are counted. If there are no
such values, the test ends at once, and the null hypothesis of equal medians is
accepted. In the present example, there are three such values, the readings 7.7,
8.0 and 9.0 being lower than the lowest value from the first set (9.5). The test
thus continues to the second step, in which we count all the values in the first
data set that are higher than all the values in the second set. Again, if there are no
such values, the test ends and the null hypothesis is accepted. Here, there are
again three such values, the readings 10.2, 10.5 and 10.7 exceeding the high-
est value in the second set (9.7). (This approach contrasts with that of the
Mann–Whitney U-test, which identifies high values in the sample that might
be expected to have the lower median.) Overall there are thus six values that
are not within the range over which the two samples overlap. This total (often
called T ) is the test statistic. The most interesting and valuable aspect of
Tukey’s quick test is that statistical tables are not normally needed to interpret
this result. Provided that the number of readings in each sample does not
exceed about 20, and that the two sample sizes are not greatly different (con-
ditions that would probably be valid in most analytical laboratory experi-
ments), the critical values of T for a particular level of significance are
independent of sample size. For a one-sided test the null hypothesis may
be rejected if T ≥ 6 (for P = 0.05), ≥7 (P = 0.025), ≥10 (P = 0.005), and ≥14
(P = 0.0005). (For a two-tailed test the critical T values at P = 0.05, 0.025, 0.005
and 0.0005 are 7, 8, 11 and 15 respectively.) In the present example, therefore,
the experimental T value is big enough to be significant at P = 0.05 in a one-
sided test. We can thus reject the null hypothesis and report that the treatment
does reduce the silver content of the photographic waste significantly, a result
in accord with that of the Mann–Whitney U-test.
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If ties occur in Tukey’s quick test (i.e. if one of the values in the hypothetically
higher sample is equal to the highest value in the other sample, or if one of the val-
ues in the ‘lower’ sample is equal to the lowest value in the ‘higher’ sample) then
each tie counts 0.5 towards the value of T.

A test which is distantly related to the Mann–Whitney method has been developed
by Siegel and Tukey to compare the spread of two sets of results, and thus offer a
genuinely non-parametric alternative to the F-test (see Section 3.6). The data from
the two sets of measurements are first pooled and arranged in numerical order, but
with one set of results distinguished by underlining. Then they are ranked in an
ingenious way: the lowest measurement is ranked one, the highest measurement
ranked two, the highest but one measurement ranked three, the lowest but one
ranked four, the lowest but two ranked five, and so on. (If the total number of meas-
urements is odd, the central measurement is ignored.) This paired alternate ranking pro-
duces a situation in which the low and high results receive low ranks, and the central
results receive high ranks. If one data set has a significantly wider spread than the
other, its sum of ranks should thus be much lower, while if the dispersion of the two
sets of results is similar, their rank sums will be similar. Application of this method to
the data from Example 6.6.1 gives the following rankings:

Data 7.7 8.0 9.0 9.5 9.7 9.8 9.9 10.2 10.5 10.7
Ranks 1 4 5 8 9 10 7 6 3 2

Two rank sums are then calculated. The sum of the underlined ranks (treated silver-
containing samples) is 26, and the rank sum for the untreated samples is 29. In this
example the sample sizes for the two sets of measurements are equal, but this
will not always be the case. Allowance is made for this by subtracting from the
rank sums the number ni(ni + 1)/2, where the ni values are the sample sizes. In our
example ni = 5 in each case, so 15 must be subtracted from each rank sum. The
lower of the two results is the one used in the test, and the critical values are the
same as those used in the Mann–Whitney test (Table A.12). The test statistic
obtained in this example is (26 − 15) = 11, much higher than the critical value of 2
(for a two-tailed test at P = 0.05). The null hypothesis, in this case that the spread
of the results is similar for the two sets of data, is thus retained.

The Siegel–Tukey test pools the two data samples with identification, ranks
them, applies paired alternate ranking to generate rank sums, and allows for
the sample sizes, to provide a test statistic that can be evaluated using the same
tables as for the Mann–Whitney U-test.

A little thought will show that the validity of this useful test will be reduced if the
average values for the two sets of data are substantially different. In the extreme case
where all the measurements in one sample are lower than all the measurements in
the other sample, the rank sums will always be as similar as possible, whatever the
spread of the two samples. If it is feared that this effect is appreciable, it is permis-
sible to estimate the means of the two samples, and add the difference between the
means to each of the measurements of the lower set. This will remove any effect due
to the different means, while preserving the dispersion of the sample. An example
of the application of this test is provided at the end of the chapter.
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6.7 Non-parametric tests for more than two samples

The previous section described tests in which two statistical samples were com-
pared with each other. Non-parametric methods are not, however, limited to two
sets of data: several methods which compare three or more samples are available.
Before two of these tests are outlined, it is important to mention one pitfall to be
avoided in all multi-sample comparisons. When (for example) three sets of meas-
urements are examined to see whether or not their medians are similar, there is a
great temptation to compare only the two samples with the highest and lowest
medians. This simplistic approach can give misleading results. When several sam-
ples are taken from the same parent population, there are cases where the highest
and lowest medians, considered in isolation, appear to be significantly different.
This is because, as the number of samples increases, the difference between the
highest and the lowest medians will tend to increase. The correct approach is to
perform first a test that considers all the samples together: if it shows that they
might not all come from the same population, then separate tests may be per-
formed to try to identify where the significant differences occur. Here we describe
in outline the principles of two non-parametric tests for three or more sets of data:
the reader seeking further detail is recommended to consult the books given in the
bibliography.

The Kruskal–Wallis test is applied to the comparison of the medians of three or
more unmatched samples. (An extension of the silver analysis described in the pre-
vious section, with three samples of photographic waste, one untreated and the
other two treated by different methods, would provide an instance where the test
would be useful.) The results from the three (or more) samples are pooled and
arranged in rank order. The rank totals for the data from the different samples are
determined: tied ranks are averaged, as shown above, though a special correction
procedure is advisable if there are numerous ties. If each sample has the same num-
ber of measurements (this is not a requirement of the test), and if the samples have
similar medians, then the rank totals for each sample should be similar, and the
sum of their squares should be a minimum. For example, if we have three samples,
each with five measurements, the rankings will range from 1 to 15 and the sum of
all the ranks will be 120. Suppose that the three medians are very similar, and that
the rank totals for each sample are thus equal, each being 40. The sum of the
squares of these totals will thus be 402 + 402 + 402 = 4800. If the medians are signifi-
cantly different, then the rank totals will also be different from one another – say
20, 40, and 60. The sum of the squares of such totals will always be larger than 4800
(202 + 402 + 602 = 5600).

The probability of obtaining any particular sum of squares can be determined
by using the chi-squared statistic (see Chapter 3). If the samples are referred to as A,
B, C, etc. (k samples in all), with numbers of measurements nA, nB, nC, etc. and rank
totals RA, RB, RC, etc., then the value of χ2 is given by:

(6.2)

where N = nA + nB + nC, etc. This χ2 value is compared as usual with tabulated values.
The latter are identical to the usual values when the total number of measurements

χ 2 =
12

N2 + N�RA
2

nA

+
RB

2

nB

+
RC

2

nC

+ . . .� − 3(N + 1)
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is more than ca. 15, but special tables are used for smaller numbers of measurements.
The number of degrees of freedom is k − 1. Experimental values of χ2 that exceed
the tabulated values allow the null hypothesis (that the medians of the samples
are not significantly different) to be rejected. As already noted, in the latter situation
further tests can be performed on individual pairs of samples: again, texts listed in
the bibliography provide more details.

We have already seen (Sections 3.4 and 6.3) that when paired results are compared,
special statistical tests can be used. These tests use the principle that, when two exper-
imental methods that do not differ significantly are applied to the same chemical
samples, the differences between the matched pairs of results should be close to zero.
This principle can be extended to three or more matched sets of results by using a
non-parametric test devised in 1937 by Friedman. In analytical chemistry, the main
application of Friedman’s test is in the comparison of three (or more) experimental
methods applied to the same chemical samples. The test again uses the χ2 statistic, in
this case to assess the differences that occur between the total rank values for the dif-
ferent methods. The following example illustrates the simplicity of the approach.

Example 6.7.1

The levels of a pesticide in four plant extracts were determined by (A) high-
performance liquid chromatography, (B) gas–liquid chromatography, and
(C) radioimmunoassay. The following results (all in ng ml−1) were obtained:

Sample Method

A B C

1 4.7 5.8 5.7
2 7.7 7.7 8.5
3 9.0 9.9 9.5
4 2.3 2.0 2.9

Do the three methods give values for the pesticide levels that differ significantly?

This problem is solved by replacing the values in the table by ranks. In each
row the method with the lowest result is ranked 1, and that with the highest
result is ranked 3:

Sample Method

A B C

1 1 3 2
2 1.5 1.5 3
3 1 3 2
4 2 1 3
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The Friedman test could alternatively be used in the reverse form: assuming that
the three analytical methods give indistinguishable results, the same procedure
could be used to test differences between the four plant extracts. In this case k and
n are 4 and 3 respectively, and the reader may care to verify that R is 270 and that
the resulting χ2 value is 9.0. This is higher than the critical value for P = 0.05, n = 3,
k = 4, which is 7.4. So in this second application of the test we can reject the null
hypothesis, and state that the four samples do differ in their pesticide levels. Further
tests, which would allow selected comparisons between pairs of samples, are then
available.

Friedman’s test is evidently much simpler to perform in practice than the ANOVA
method (Sections 3.8–3.10), though it does not have the latter’s ability to study
interaction effects (see Chapter 7).

6.8 Rank correlation

Ranking methods can also be applied to correlation problems. The Spearman rank
correlation coefficient method to be described in this section is the oldest appli-
cation of ranking methods in statistics, dating from 1904. Like other ranking
methods, it is of particular advantage when one or both of the sets of observa-
tions under investigation can be expressed only in terms of a rank order
rather than in quantitative units. Thus, in the following example, the possible
correlation between the sulphur dioxide concentrations in a series of table
wines and their taste quality is investigated. The taste quality of a wine is not
easily expressed in quantitative terms, but it is relatively simple for a panel of

The use of an average value is necessary in the case of tied ranks in sample 2
(see Section 6.5). The sums of the ranks for the three methods A, B and C are
5.5, 8.5 and 10 respectively. These sums should total nk(k + 1)/2, where k is the
number of methods (three here) and n the number of samples (four here). The
rank sums are squared, yielding 30.25, 72.25 and 100 respectively, and these
squares are added to give the statistic R, which here is 202.5. The experimen-
tal value of χ2 is then calculated from:

(6.3)

which gives a result of 2.625. At the level P = 0.05, and with k = 3, the critical
values of χ2 are 6.0, 6.5, 6.4, 7.0, 7.1 and 6.2 for n = 3, 4, 5, 6, 7 and 8 respec-
tively. (More extensive data are given in many sets of statistical tables, and
when k > 7 the usual χ2 tables can be used at k − 1 degrees of freedom.) In this
instance, the experimental value of χ2 is much less than the critical value, and
we must retain the null hypothesis: the three methods give results that do not
differ significantly.

χ 2 =
12R

nk(k + 1)
− 3n(k + 1)
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wine-tasters to rank the wines in order of preference. Examples of other attributes
that are easily ranked, but not easily quantified, include the condition of experi-
mental animals, the quality of laboratory accommodation, and the efficiency
of laboratory staff. It should also be remembered that if either or both the sets
of data under study should happen to be quantitative, then (in contrast to
the methods described in Chapter 5) there is no need for them to be normally
distributed. Like other non-parametric statistics, the Spearman rank correlation
coefficient, rs, is easy to determine and interpret. This is shown in the following
example.

Example 6.8.1

Seven different table wines are ranked in order of preference by a panel of
experts. The best wine is ranked 1, the next best 2, and so on. The sulphur
dioxide content (in parts per million) of each wine is then determined by flow
injection analysis with colorimetric detection. Use the following results to
determine whether there is any relationship between perceived wine quality
and sulphur dioxide content.

Wine A B C D E F G
Taste ranking 1 2 3 4 5 6 7
SO2 content 0.9 1.8 1.7 2.9 3.5 3.3 4.7

The first step in the calculation is to convert the sulphur dioxide concentra-
tions from absolute values into ranks (tied ranks are averaged as described in
previous sections):

Wine A B C D E F G
Taste ranking 1 2 3 4 5 6 7
SO2 content 1 3 2 4 6 5 7

The differences, di, between the two ranks are then calculated. They are 0, −1,
1, 0, −1, 1, 0. The correlation coefficient, rs, is then given by:

(6.4)

In this example, rs is 1 − (24/336), i.e. 0.929. Theory shows that, like the
product–moment correlation coefficient, rs can vary between −1 and +1.
When n = 7, rs must exceed 0.786 if the null hypothesis of no correlation is
to be rejected at the significance level P = 0.05 (Table A.13). Here, we can
conclude that there is a correlation between the sulphur dioxide content of
the wines and their perceived quality. Bearing in mind the way the rankings
were defined, there is strong evidence that higher sulphur dioxide levels pro-
duce less palatable wines!

rs = 1 −
6∑

i
di

2

n(n2 − 1)
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6.9 Non-parametric regression methods

In the detailed discussion of linear regression methods in the previous chapter, the
assumption of normally distributed y-direction errors was emphasized, and the com-
plexity of some of the calculation methods was apparent. This complexity is largely
overcome by using calculators or computers, and there are also some rapid approxim-
ate methods for fitting straight lines to experimental data (see Bibliography).
There is still an interest in non-parametric approaches to fitting a straight line to a
set of points. Of the several methods available, perhaps the simplest is Theil’s
‘incomplete’ method, so called to distinguish it from another more complex proce-
dure developed by the same author (the ‘complete’ method).

The method assumes that a series of points (x1, y1), (x2, y2), etc. is fitted by a line of
the form y = a + bx. The first step in the calculation involves ranking the points in
order of increasing x. If the number of points, x, is odd, the middle point, i.e. the
median value of x, is deleted: the calculation always requires an even number of
points. For any pair of points (xi, yi), (xj, yj) where xj > xi, the slope, bij, of the line join-
ing the points can be calculated from:

(6.5)

Slopes bij are calculated for the pair of points (x1, y1) and the point immediately after
the median x-value, for (x2, y2) and the second point after the median x-value, and
so on until the slope is calculated for the line joining the point immediately before
the median x with the last point. Thus, if the original data contained 11 points, five
slopes would be estimated (the median point having been omitted). For eight origi-
nal points there would be four slope estimates, and so on. These slope estimates are
arranged in ascending order and their median is the estimated slope of the straight
line. With this value of b, values ai for the intercept are estimated for each point with
the aid of the equation y = a + bx. Again the estimates of a are arranged in ascend-
ing order and the median value is chosen as the best estimate of the intercept of the
line. The method is illustrated by the following example.

bij =
(yj − yi)
(xj − xi)

Theil’s method determines the slope of a regression line as the median of the
slopes calculated from selected pairs of points: the intercept of the line is the
median of the intercept values calculated from the slope and the coordinates
of the individual points.

Another rank correlation coefficient, due to Kendall, was introduced in 1938.
It claims to have some theoretical advantages over the Spearman method, but
is harder to calculate (especially when tied ranks occur) and is not so fre-
quently used.
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Example 6.9.1

The following results were obtained in a calibration experiment for the absorp-
tiometric determination of a metal chelate complex:

Concentration, µg ml−1 0 10 20 30 40 50 60 70
Absorbance 0.04 0.23 0.39 0.59 0.84 0.86 1.24 1.42

Use Theil’s method to estimate the slope and the intercept of the best straight
line through these points.

In this case the calculation is simplified by the occurrence of an even number
of observations, and by the fact that the x-values (i.e. the concentrations)
occur at regular intervals and are already in ranking order. We thus calculate
slope estimates from four pairs of points:

b15 = (0.84 − 0.04)/40 = 0.0200

b26 = (0.86 − 0.23)/40 = 0.0158

b37 = (1.24 − 0.39)/40 = 0.0212

b48 = (1.42 − 0.59)/40 = 0.0208

We now arrange these slope estimates in order, obtaining 0.0158, 0.0200,
0.0208, 0.0212. The median estimate of the slope is thus the average of 0.0200
and 0.0208, i.e. 0.0204. We now use this value of b to estimate the intercept, a.
The eight individual ai values are:

a1 = 0.04 − (0.0204 × 0) = +0.040

a2 = 0.23 − (0.0204 × 10) = +0.026

a3 = 0.39 − (0.0204 × 20) = −0.018

a4 = 0.59 − (0.0204 × 30) = −0.022

a5 = 0.84 − (0.0204 × 40) = +0.024

a6 = 0.86 − (0.0204 × 50) = −0.160

a7 = 1.24 − (0.0204 × 60) = +0.016

a8 = 1.42 − (0.0204 × 70) = −0.008

Arranging these intercept estimates in order, we have −0.160, −0.022, −0.018, 
−0.008, +0.016, +0.024, +0.026, +0.040. The median estimate is +0.004. So the
best straight line is given by y = 0.0204x + 0.004. The ‘least squares’ line, calcu-
lated by the methods of Chapter 5, is y = 0.0195x + 0.019. Figure 6.4 shows that
the two lines are very similar when plotted. However, the Theil method has three
distinct advantages: it does not assume that all the errors are in the y-direction;
it does not assume that either the x- or y-direction errors are normally distributed;
and it is not affected by the presence of outlying results. This last point is clearly
illustrated by the point (50, 0.86) in the present example. It has every appearance
of being an outlier, but its value does not affect the Theil calculation at all, since
neither b26 nor a6 directly affects the median estimates of the slope and intercept
respectively. In the least squares calculation, however, this outlying point carries
as much weight as the other points. This is reflected in the calculated results; the
least squares line passes closer to the outlier than the non-parametric line does.
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Unlike most non-parametric methods, Theil’s method involves fairly tedious calcu-
lations, so a computer program such as a spreadsheet macro is necessary in practice.
It should be noted that non-parametric methods for fitting curves are also available,
but these are beyond the scope of the present book.

6.10 Robust methods – Introduction

At the beginning of this chapter, it was noted that there is growing evidence for the
occurrence in the experimental sciences of heavy-tailed error distributions. These can
be regarded as normal (Gaussian) distributions with the addition of outliers arising
from gross errors, or as the result of the superposition of several normal distributions
with similar means but different variances. In either case, and in other instances
where the departure from a normal distribution is not great, it seems to be a waste
of information to use non-parametric methods, which make no assumptions at
all about the underlying error distribution. A better approach would be to develop
methods which do not entirely exclude suspicious results, but which reduce the weight
given to such data. This is the philosophy underlying the robust methods to be sum-
marized in this section and the next: such methods can be applied to repeated meas-
urements and also to calibration/regression data. Many robust methods have been
developed, so only a brief survey of this rapidly developing field is possible here: the
reader is referred to the Bibliography for sources of further material.

Figure 6.4 Straight-line calibration graph calculated by Theil’s method (———), and by the
least squares method of Chapter 5 (- - -).
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Robust statistical methods can be applied to samples from symmetrical but
heavy-tailed distributions, or when outliers may occur. They should not be
applied in situations where the underlying distribution is bi-modal, multi-
modal, or very asymmetrical, e.g. log-normal distributions.
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An obvious problem occurs in virtually all these methods. If we are to downgrade
the significance of some of our measurements, one or more criteria are needed on
which to base such decisions, but we cannot use such criteria unless we initially con-
sider all the data, i.e. before we know whether some measurements are suspect or
not. This problem is solved by using iterative methods: we estimate or guess a start-
ing value or values for some property of our data, use such initial estimates with our
weighting criteria to arrive at a second estimate, then we re-apply our criteria, etc.
Such methods are only practicable if a computer is available, though it must be
stressed that many otherwise excellent suites of statistics software do not yet include
programs for robust methods.

There are some very simple robust methods that do not require such iterations,
because they arbitrarily eliminate, rather than downweight, a proportion of
the data. For example, the trimmed mean for any set of data is found by omitt-
ing r observations at the top and at the bottom of the range of measurements.
This principle can be applied to the set of data in Example 3.7.2 in Section 3.7.
This example considered seven replicate measurements of nitrite ion in river
water (mg l−1):

0.380, 0.400, 0.401, 0.403, 0.408, 0.410, 0.413

The data have been arranged in numerical order for convenience: this emphasizes
that the obvious question is whether or not the measurement 0.380 is an outlier. If
the number 0.380 is retained, the mean of the seven measurements is 0.4021, and
their standard deviation is 0.0109. If, as Grubbs’ and Dixon’s tests (Section 3.7) sug-
gest, it is permissible to reject the result 0.380 (at P = 0.05), the mean and standard
deviation then become 0.4058 and 0.0053 respectively. This confirms, as noted in
Section 3.3, that the mean and (especially) the standard deviation are vulnerable to
the occurrence of outliers. Now suppose that we omit the smallest (0.380) and the
largest (0.413) of the above measurements, and recalculate the mean. This produces
a number technically known as the 14.28% trimmed mean, the percentage being
calculated as 100r/n where r top and bottom measurements have been omitted from
n results. The trimmed mean and standard deviation are 0.4044 and 0.0044, clearly
closer to the values determined after rejection of the possible outlier 0.380. The
robustness of this trimmed mean is obvious – it would have been the same, whatever
the values taken by the smallest and largest results. But this also illustrates the cru-
dity of the trimmed mean method. Why should we omit the value 0.413, except for
reasons of symmetry? Is it acceptable to calculate a statistic that completely ignores
the suspect result(s)? What fraction of the data should be removed by trimming? (In
practice 10–20% trimming is common.)

A rather less arbitrary robust approach is provided by winsorization. In its simplest
form this reduces the importance of the measurements yielding the largest positive or
negative deviations from the mean or median by moving them so that their devia-
tions or residuals are equal to the next largest (or perhaps the third largest) positive or
negative values. If the method is applied to data lacking outliers, the changes made
are very small, so the resulting measures of location and of spread are largely unaf-
fected and no harm is done. For the nitrite analysis data above, the simplest form of
this ‘symmetrical’ winsorization would change the value 0.380 to 0.400, and the value
0.413 to 0.410. The resulting mean and standard deviation would be 0.4046 and
0.0046 respectively, again close to the values obtained after rejection of the possible
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outlier and after trimming. The principles of winsorization are applied in a more
sophisticated way in Huber’s approach to robust estimation (see Section 6.11).

A simple robust estimate of the standard deviation is provided by the interquar-
tile range (IQR, see Section 6.2). For a normal error distribution, the IQR is ca. 1.35σ.
(The IQR divided by 1.35 is sometimes called the standardized IQR, abbreviated
SIQR.) This relationship supplies a standard deviation estimate that is not affected
by any value taken by the largest or smallest measurements. Unfortunately, the IQR
is not a very meaningful concept for very small data sets. Moreover, and somewhat
surprisingly, there are several different conventions for its calculation. For large sam-
ples the convention chosen makes little difference, but for small samples the differ-
ences in the calculated IQR values are large, so the IQR has little application in
analytical chemistry.

6.11 Robust estimates of location and spread

In experimental science we normally have no advance knowledge of whether or
not our data might come from a heavy-tailed distribution or might contain out-
liers. So ideally we would like to use an estimate of location (the mean and the
median are location estimates) that behaves like the mean when the underlying
distribution is truly normal, but has the robust properties of the median when out-
liers or heavy tails do occur. Analogous arguments apply to measures of spread.
Over 30 years ago Huber and others showed that these desirable properties are
available.

Suppose we have a series of n results x1 . . . xn, and we wish to estimate µ, the mean
of the ‘reliable’ results. Usually our estimate of µ, given here the symbol , is
obtained by minimizing the sum of squares (SS) . (This sum of squared terms 
is the source of the sensitivity of the mean to large errors.) The expression (xi − µ)2

is referred to as a distance function, since it measures the distance of a point from µ.
A more useful distance function in the present context is xi − µ. A widely
used method to test measurements for downweighting (winsorization) is to compare
xi − µ with cσ, where c is usually taken to be 1.5 and σ is a robust estimate of the
standard deviation. We consider first the estimation of σ, and then discuss the down-
weighting procedure.

The robust variance estimate can be derived from a statistic related to the unfor-
tunately abbreviated median absolute deviation (MAD!), which is calculated from

MAD = median[xi − median(xi)] (6.6)

where, for example, median (xi) is the median of all the xi values, i.e. all the meas-
urements.

The MAD is an extremely useful statistic: one rough method for evaluating out-
liers (x0) is to reject them if [x0 − median (xi)]/MAD > 5. It can be shown that
MAD/0.6745 is a useful robust estimate of σ (often called the standard deviation
based on MAD, the standardized MAD, or SMAD, and given the symbol ) which
can be used unchanged during the iterative estimates of .µ̂

σ̂

∑
i

(xi − µ)2
µ̂
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Example 6.11.1

These techniques can be applied to the measurements discussed above (0.380,
0.400, 0.401, 0.403, 0.408, 0.410, 0.413). First it is necessary to calculate the
MAD. The median of these numbers is 0.403 (i.e. the fourth of the seven ordered
values), so the individual deviations (without regard to their signs) are 0.023,
0.003, 0.002, 0, 0.005, 0.007, and 0.010. Rewriting these in numerical order we
have 0, 0.002, 0.003, 0.005, 0.007, 0.010, and 0.023. The MAD is the median of
these seven numbers, i.e. 0.005, so = MAD/0.6745 = 0.005/0.6745 = 0.0074,
and 1.5 is 0.0111.

We are now in a position to begin iterative estimates of . This process is
begun by taking any reasonable estimate for and calculating values for
each measurement. In this example, suppose the initial -value is the median,
0.403. As we have seen, the individual deviations from this value (in numerical
order, but neglecting their signs) are 0, 0.002, 0.003, 0.005, 0.007, 0.010, and
0.023. In the first iteration for the original measurements are retained if these
deviations from the median are ≤0.0111 (i.e. 1.5 ). This applies to all the devia-
tions listed except the last. In the event that the deviation is >0.0111, the origi-
nal value in question is changed (winsorized) to become or ,
depending on whether it was originally below or above the median respectively.
In the present example, the value 0.380, which gives rise to the large deviation
of 0.023, has to be changed to , i.e. 0.403 − 0.0111 = 0.3919.

There is thus now a new data set, with the measurement 0.380 in the original
set having been replaced by 0.3919. This new set of numbers is called a set of
pseudo-values ( ), and the calculation is repeated using this new set. The first step
is to calculate the mean of the new values (note that although the initial value of

can be based on the mean or the median or any other sensible estimate, sub-
sequent steps in the iteration always use the mean): this gives the result 0.4038.
The individual deviations from this new estimate of are, in numerical order
and without signs, 0.0008, 0.0028, 0.0038, 0.0042, 0.0062, 0.0092, and 0.0119.
Since the range of the data set has been reduced by the process of winsorization,
we should also calculate a new value for . This is given by 1.134s, where s is the
standard deviation of the pseudo-values, in this instance 0.0071. (The number
1.134 is derived from the properties of the normal distribution, and should be
used if c = 1.5.) Thus = 0.0071 × 1.134 = 0.0081, and 1.5 is 0.0121. Only devi-
ations from larger than this need further adjustment. The largest deviation in
the pseudo-data set is 0.0119, so no further steps are necessary in this case. (Had
the largest deviation been >0.1121 one or more further winsorizations of the sus-
pect value would have been necessary, with the calculation of a new mean and
standard deviation at each stage.) A single application of the Huber method has
produced the situation in which we can conclude that a robust estimate of is
0.4038, say 0.404, with a standard deviation of 0.0071. This robust mean is simi-
lar to the values obtained after rejection of the suspect result, and after trimming
or symmetrical winsorization (see above). The robust standard deviation is, as
expected, smaller than the value obtained when the suspect value is included
unchanged, but larger than that found after rejection of the suspect value, trimm-
ing, or symmetrical winsorization.

µ̂

µ̂
σ̂σ̂

σ̂

µ̂

µ̂

x̃i

µ̂ − cσ̂

µ̂ + cσ̂µ̂ − cσ̂

σ̂
µ̂

µ̂
xi − µ̂µ̂
µ̂

σ̂
σ̂
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This calculation deserves several comments. The first is that, like so many iterative
procedures, it is much more tedious to describe and explain than it is to perform!
The second point to note is that in this example we have applied the conventional
value c = 1.5 to define the distance function. Other values for c have been explored:
if it is too large, potential outliers are not winsorized, while if it is too small only the
measurements near the centre of the data set carry any weight. Different weighting
methods have been suggested, including some that reject extreme outliers entirely,
and apply winsorization to moderate outliers. Lastly, it is worth re-emphasizing that
these robust methods do not have the worries and ambiguities of outlier tests. In the
example just examined, the Dixon test (Section 3.7) suggests that the value 0.380
could be rejected as an outlier (P = 0.05), but the simple MAD-based test suggests
that it should not, as [x0 − median(xi)]/MAD = [0.380 − 0.403]/0.005 = 4.6,
below the (rough) critical value of 5. The Grubbs test suggests that the decision on
whether or not to reject is marginal (Section 3.7). Such concerns and contradictions
disappear in robust statistics, where the outliers are usually neither wholly rejected
nor accepted unchanged, but accepted in a downweighted form.

These and other robust techniques are sure to find increasing use in analytical
chemistry in future. One area where their use is already recommended is in inter-
laboratory comparisons (see Chapter 4), and many of the methods discussed in pre-
vious chapters, such as regression (see below) and ANOVA, can be ‘robustified’ with
the aid of suitable software.

6.12 Robust regression methods

The problems caused by possible outliers in regression calculations have been out-
lined in Sections 5.13 and 6.9, where rejection using a specified criterion and non-
parametric approaches respectively have been discussed. It is clear that robust
approaches will be of value in regression statistics as well as in the statistics of
repeated measurements, and there has indeed been a rapid growth of interest in
robust regression methods amongst analytical scientists. A summary of two of the
many approaches developed must suffice.

In Section 6.9 it was noted that a single suspect measurement has a considerable
effect on the a and b values calculated for a straight line by the normal ‘least squares’
method, which seeks to minimize the sum of the squares of the y-residuals. This is

In this simple example (a small data set with only one suspect result) there
is no need for more than one application of the Huber procedure, but this is
usually not the case, and in some examples the convergence will be quite slow.
It is possible to simplify the iteration process by using the original value of 
(0.0074) throughout, rather than calculating a new value at each stage. This
has the effect of speeding up the convergence of the iterations, but is only of
value if a true robust estimate of spread is not required. A Minitab® algorithm
is available for the full Huber procedure (see Bibliography).

σ̂
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because, just as in the nitrite determination example given above, the use of squared
terms causes such suspect data points to have a big influence on the sum of squares.
A clear and obvious alternative is to seek to minimize the median of the squared
residuals, which will be much less affected by large residuals. This least median of
squares (LMS) method is very robust: its breakdown point, i.e. the proportion of
outliers amongst the data that it can tolerate, is 50%, the theoretical maximum value.
(If the proportion of ‘suspect’ results exceeds 50% it clearly becomes impossible to
distinguish them from the ‘reliable’ results.) Simulations using data sets with deliber-
ately included outliers show that this is a much better performance than that
obtained with the Theil method. The LMS method also provides a robust estimate of
R2 (see Section 5.12), which is given by:

(6.7)

where ri and yi are respectively the y-residuals and the individual y-values of the
points of the LMS plot. Its disadvantage is that it involves an iterative calculation
which converges rather slowly: that is, many iterations are often required before the
estimated a and b values become more or less constant, though this should not be
a great problem with modern high-speed computers.

Other robust regression methods are being increasingly used. The iteratively
re-weighted least squares method begins with a straightforward least-squares estimate
of the parameters of a line. The resulting residuals are then given different weights,
usually via a biweight approach. Points with very large residuals (e.g. at least six
times greater than the median residual value) are rejected, i.e. given zero weight,
while points with smaller residuals are given weights which increase as the residuals
themselves get smaller. A weighted least-squares calculation (Section 5.10) is then
applied to the new data set, and these steps are repeated until the values for a and b
converge to stable levels. In this method convergence is usually fairly rapid.

6.13 Re-sampling statistics

The development of high-speed personal computers provides access to a further
group of statistical methods, generally referred to as re-sampling techniques. Such
approaches again involve iterative calculations, but are quite distinct from the
robust methods discussed in the preceding sections. The best-known re-sampling
method is known as the bootstrap. (The title refers to people or organizations suc-
ceeding from small beginnings by ‘pulling themselves up by their bootstraps’.)
It operates as follows. Suppose we have a series of measurements x1, x2, x3, . . . , xn,
and we wish to find a statistical parameter such as the 95% confidence limits of
the mean. As shown in Chapter 2, we can do this by calculating the mean and the
standard deviation of the data, and then applying the properties of the normal dis-
tribution. The bootstrap does not require the assumption of the normal (or
any other) distribution, and involves taking a large number of samples of the
same size with replacement from the original data. So if the original data were (units
irrelevant) 1, 2, 3, 4, 5, then one bootstrap sample of the same size might be 2, 4,
3, 1, 2. Note that the same measurement might well appear more than once in a

R2 = 1 − �median ri 
MAD(yi)

�
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given bootstrap sample, since the sampling is done with replacement. That is,
when the number 2 has been taken as the first member of the sample, it is replaced
in the original set of five data and is thus available for random selection again. As
a result some of the original measurements might not appear at all in a single
bootstrap sample (e.g. 1 in this simple example). The number of possible bootstrap
samples from n measurements is nn, so even with only five measurements 3125
such samples are possible. In practice it is commoner to take only a few hundred
samples. Once the samples have been taken, their means are determined and can
be plotted as a histogram (or sorted into numerical order) by the computer. The
95% confidence limits can then be determined by inspection. For example, with
200 bootstrap samples the 95% confidence limits of the mean would be given by
the fifth and 195th of the mean values sorted into numerical order. Confidence
limits obtained in this way do not depend on any assumptions about the under-
lying error distribution, and would be expected to reflect (for example) any skew-
ness in the measurements.

Example 6.13.1

The levels of a blood plasma protein in 10 men (in numerical order) were
1, 1, 2, 2, 3, 6, 8, 13, 14 and 18 mg 100 ml−1. We wish to determine the 95%
confidence limits for the mean of these values which seem to show a dis-
tribution skewed towards the lower values. If we use the methods of
Chapter 2 we find that the mean, , of the 10 measurements is 6.80 and the
standard deviation, s, is 6.20. Using equation (2.9) we find that the 95%
confidence interval is given by 6.80 ± (2.23 × 6.20)/ = 6.80 ± 4.37, so the
95% confidence limits are 11.17 and 2.43. Using the bootstrap approach
instead, we take 500 samples with replacement and obtain the results sum-
marized in the histogram in Figure 6.5. The mean value of these 500 sam-
ples is 6.84, and the 95% confidence limits, defined by the average of the
12th and 13th and the 487th and 488th ordered values respectively, are 3.5
and 10.9. The confidence interval defined by these limits is narrower than
the conventionally calculated values and is asymmetrical relative to the
mean, so both the interval and the histogram suggest the negative skewness
of the data. No assumptions have been made in the bootstrap method
about the error distribution in the original data, i.e. the method is non-
parametric.

√10

x

The underlying principles of the bootstrap approach are easily understood, and
the iterative calculations are simple, for example as a macro written for Minitab® (see
Bibliography). The most important applications in analytical practice are likely to be
more complex situations than the one in the above example. Suggested uses have
included the estimation of between-laboratory precision in collaborative trials (see
Chapter 4), and in the determination of the best model to use in multivariate cali-
bration (see Chapter 8).
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6.14 Conclusions

The robust and non-parametric tests described in this chapter are only a small frac-
tion of the total available number of such methods. The examples given exemplify
their strengths and weaknesses. The speed and convenience of the non-parametric
tests give them a distinct advantage over conventional methods, and the non-
parametric tests do not involve the assumption of a normal distribution. They are
ideally suited to the preliminary examination of small numbers of measurements,
and to quick calculations made – often without the need for tables – while the ana-
lyst is at the bench or on the shop floor. They can also be used when three or more
samples are studied (Section 6.7). The power (i.e. the probability that a false null
hypothesis is rejected: see Section 3.13) of a non-parametric method may be less
than that of the corresponding parametric test, but the difference is only rarely
serious. For example, many comparisons have been made of the powers in differ-
ent conditions (i.e. different population distributions and sample sizes) of the
Mann–Whitney U-test and the t-test. The former performs very well in almost all
circumstances and is only marginally less powerful than the t-test even when the
data come from a normally distributed population. Many suites of programs for
personal computers now include several non-parametric tests. Such programs
allow a particular set of data to be evaluated rapidly by two or more methods, and
seem certain to enhance rather than reduce interest in these very convenient
methods.

Robust methods may not be quite so easy to use, in view of the need for iterative
computer calculations, but they represent the best way of tackling one of the most
common and difficult problems for practising analysts, the occurrence of suspicious
or outlying results.

Overall a great variety of significance tests – parametric, non-parametric, and
robust – are available, and often the most difficult task in practice is to decide which
method is best suited to a particular problem. The diagram in Appendix 1 is
designed to make such choices easier, though inevitably it cannot cover all possible
practical situations.

Figure 6.5 Histogram of 500 bootstrap samples from data in Example 6.13.1. The
additional vertical lines show the 95% confidence limits from the bootstrap method.
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Exercises

1 A titration was performed four times, with the results 9.84, 9.91, 9.89 and
10.20 ml. Calculate and comment on the median and the mean of these results.

2 The level of sulphur in batches of an aircraft fuel is claimed by the manufacturer
to be symmetrically distributed with a median value of 0.10%. Successive
batches are found to have sulphur concentrations of 0.09, 0.12, 0.10, 0.11, 0.08,
0.17, 0.12. 0.14 and 0.11%. Use the sign test and the signed rank test to check
the manufacturer’s claim.

SCA_C06.qxd  3/29/05  4:00 PM  Page 179



180 6: Non-parametric and robust methods

.

3 The concentrations (g 100 ml−1) of immunoglobulin G in the blood sera of
10 donors are measured by radial immunodiffusion (RID) and by electro-
immunodiffusion (EID), with the following results:

Donor 1 2 3 4 5 6 7 8 9 10
RID result 1.3 1.5 0.7 0.9 1.0 1.1 0.8 1.8 0.4 1.3
EID result 1.1 1.6 0.5 0.8 0.8 1.0 0.7 1.4 0.4 0.9

Are the results of the two methods significantly different?

4 Ten carbon rods used successively in an electrothermal atomic-absorption spec-
trometer were found to last for 24, 26, 30, 21, 19, 17, 23, 22, 25 and 25 samples.
Test the randomness of these rod lifetimes.

5 After each drinking three pints of beer, five volunteers were found to have blood
alcohol levels of 104, 79, 88, 120 and 90 mg 100 ml−1. A further set of six volun-
teers drank three pints of lager each, and were found to have blood alcohol levels
of 68, 86, 71, 79, 91 and 66 mg 100 ml−1. Use Tukey’s quick test or the
Mann–Whitney U-test to investigate the suggestion that drinking lager produces a
lower blood alcohol level than drinking the same amount of beer. Use the
Siegel–Tukey method to check whether the spreads of these two sets of results dif-
fer significantly.

6 A university chemical laboratory contains seven atomic-absorption spectrometers
(A–G). Surveys of the opinions of the research students and of the academic staff
show that the students’ order of preference for the instruments is B, G, A, D, C,
F, E, and that the staff members’ order of preference is G, D, B, E, A, C, F. Are the
opinions of the students and the staff correlated?

7 Use Theil’s incomplete method to calculate the regression line for the data of
Exercise 1 in Chapter 5.

8 The nickel levels in three samples of crude oil were determined (six replicates in
each case) by atomic-absorption spectrometry, with the following results:

Sample Measurements (Ni, ppm)

1 14.2 16.8 15.9 19.1 15.5 16.0
2 14.5 20.0 17.7 18.0 15.4 16.1
3 18.3 20.1 16.9 17.7 17.9 19.3

Use the Kruskal–Wallis method to decide whether the nickel levels in the three
oils differ significantly.
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7 Experimental design
and optimization

7.1 Introduction

A recurring theme in this book has been that statistical methods are invaluable not
only in the analysis of experimental data, but also in designing and optimizing
experiments. So many experiments fail in their purpose because they are not prop-
erly thought out and designed in the first place, and in that case even the best data
analysis procedures cannot compensate for such a fatal lack of foresight and plan-
ning. This chapter introduces the basic concepts of experimental design and opti-
mization, and summarizes the methods that should be carefully considered and
used before any new experimental procedure is started.

In Chapter 3 we introduced the idea of a factor, i.e. any aspect of the experi-
mental conditions which affects the result obtained from an experiment. Section 3.9
gave the example of the dependence of a fluorescence signal on the conditions under
which a solution was stored. The factor of interest was these storage conditions; it
was called a controlled factor because it could be altered at will by the experimenter.
In another example in Section 4.3, in which salt from different parts of a barrel was
tested for purity, the factor of interest, i.e. the part of the barrel from which the salt
was taken, was chosen at random, so that factor was called an uncontrolled factor.
In both these examples the factors were qualitative since their possible ‘values’ could
not be arranged in numerical order. A factor for which the possible values can be
arranged in numerical order, e.g. temperature, is a quantitative one. The different
values that a factor takes are known as different levels.

As presented in Chapters 3 and 4, these experiments were intended as an introduc-
tion to the calculations involved in the analysis of variance (ANOVA). No mention was
made of other conditions that might have introduced further factors affecting the
results, so experimental designs could not be considered. But in reality the fluorescence
experiment might be affected by additional factors such as the ambient temperature,
the use of the same or a different fluorescence spectrometer for each measurement, and
the dates, times and experimenters used in making the measurements. Any of these
factors might have influenced the results to give the observed behaviour, thus invali-
dating the conclusions concerning the effect of the storage conditions. Clearly, if the
correct conclusions are to be drawn from an experiment, the various factors affecting
the result must be identified in advance and, if possible, controlled.
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Since many factors will affect experimental results, quite complex experimental
designs may be necessary. The choice of the best practical levels of these factors,
i.e. the optimization of the experimental conditions, will also require detailed study.
These methods, along with other multivariate methods covered in the next chapter,
are amongst those given the general term chemometrics.

7.2 Randomization and blocking

One of the assumptions of one-way (and other) ANOVA calculations is that the
uncontrolled variation is truly random. However, in measurements made over a
period of time, variation in an uncontrolled factor such as pressure, temperature,
deterioration of apparatus, etc., may produce a trend in the results. As a result the
errors due to uncontrolled variation are no longer random since the errors in suc-
cessive measurements are correlated. This can lead to a systematic error in the results.
Fortunately this problem is simply overcome by using the technique of random-
ization. Suppose we wish to compare the effect of a single factor, the concentration
of perchloric acid in aqueous solution, at three different levels or treatments (0.1 M,
0.5 M, and 1.0 M) on the fluorescence intensity of quinine (which is widely used as
a primary standard in fluorescence spectrometry). Let us suppose that four replicate
intensity measurements are made for each treatment, i.e. in each perchloric acid
solution. Instead of making the four measurements in 0.1 M acid, followed by the
four in 0.5 M acid, then the four in 1 M acid, we make the 12 measurements in a
random order, decided by using a table of random numbers. Each treatment is
assigned a number for each replication as follows:

0.1 M 0.5 M 1 M
01 02 03 04 05 06 07 08 09 10 11 12

(Note that each number has the same number of digits.) We then enter a random
number table (see Table A.8) at an arbitrary point and read off pairs of digits, dis-
carding the pairs 00, 13–99 and also discarding repeats. Suppose this gives the
sequence 02, 10, 04, 03, 11, 01, 12, 06, 08, 07, 09, 05. Then, using the numbers
assigned above, the measurements would be made at the different acid levels in the
following order: 0.1 M, 1 M, 0.1 M, 0.1 M, 1 M, 0.1 M, 1 M, 0.5 M, 0.5 M, 0.5 M,
1 M, 0.5 M. This random order of measurement ensures that the errors at each acid
level due to uncontrolled factors are random.

.

The term experimental design is usually used to describe the stages of:

1 identifying the factors which may affect the result of an experiment;

2 designing the experiment so that the effects of uncontrolled factors are
minimized;

3 using statistical analysis to separate and evaluate the effects of the various
factors involved.
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One disadvantage of complete randomization is that it fails to take advantage
of any natural sub-divisions in the experimental material. Suppose, for example,
that all the 12 measurements in this example could not be made on the same day
but were divided between four consecutive days. Using the same order as before
would give:

Day 1 0.1 M, 1 M, 0.1 M
Day 2 0.1 M, 1 M, 0.1 M
Day 3 1 M, 0.5 M, 0.5 M
Day 4 0.5 M, 1 M, 0.5 M

With this design all the measurements using 0.1 M perchloric acid as the quinine
solvent occur (by chance) on the first two days, whereas those using 0.5 M
perchloric acid happen to be made on the last two days. If it seemed that there
was a difference between the effects of these two acid levels, it would not be
possible to tell whether this difference was genuine or was caused by the effect of
using the two treatments on different pairs of days. A better design is one in
which each treatment is used once on each day, with the order of the treatments
randomized on each day. For example:

Day 1 0.1 M, 1 M, 0.5 M
Day 2 0.1 M, 0.5 M, 1 M
Day 3 1 M, 0.5 M, 0.1 M
Day 4 1 M, 0.1 M, 0.5 M

A group of results which contains one measurement for each treatment (here, the
measurements on each day) is known as a block, so this design is called a random-
ized block design. Further designs that do not use randomization at all are considered
in Section 7.4.

7.3 Two-way ANOVA

When two factors may affect the results of an experiment, two-way Analysis of
Variance must be used to study their effects. Table 7.1 shows the general form of
a layout for this method. Each of the N measurements, xij, is classified under the
terms treatment levels and blocks: the latter term was introduced in the previous
section. (These terms are derived from the original use of ANOVA by R. A. Fisher
in agricultural experiments, but are still generally adopted.) Using the con-
ventional symbols there are c treatment levels and r blocks, so N = cr. The row
totals (T1., T2., etc.) and the column totals (T.1, T.2, etc.), and the grand total, T, are
also given as they are used in the calculations. (The dots in the column and row
totals remind us that in each case only one of the two factors is being studied.) The
formulae for calculating the variation from the three different sources, viz.
between-treatment, between-block, and experimental error, are given in Table 7.2.
Their derivation will not be given in detail here: the principles are similar to those
for one-way ANOVA (Section 3.9) and the texts listed in the Bibliography provide
further details.
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As in one-way ANOVA, the calculations are simplified by the repeated appearance of
the term T2/N, and by the fact that the residual (random experimental) error is obtained
by subtraction. Note that an estimate of this experimental error can be obtained, even
though only one measurement is made at each combination of treatment level and
block (e.g. each chelating agent is tested only once on each day in the example below).

Table 7.1 General form of table of two-way ANOVA

Treatment Row total

1 2 . . . j . . . c

Block 1 x11 x12 . . . x1j . . . x1c T1.

Block 2 x21 x22 . . . x2j . . . x2c T2.

. . . . . . . . . . . .
Block i xi1 xi2 . . . xij . . . xic Ti.

. . . . . . . . . . . .
Block r xr1 xr2 xrj xrc Tr.

Column total T.1 T.2 T.j T.c T = grand total

Table 7.2 Formulae for two-way ANOVA

Source of variation Sum of squares Degrees of freedom

Between-treatment c − 1

Between-block r − 1

Residual by subtraction by subtraction

Total N − 1∑∑ xij
2 − T 2/N

∑T 2
i. /c − T 2/N

∑T 2
.j /r − T 2/N

Example 7.3.1

In an experiment to compare the percentage efficiency of different chelating
agents in extracting a metal ion from aqueous solution, the following results
were obtained:

Chelating agent

Day A B C D

1 84 80 83 79
2 79 77 80 79
3 83 78 80 78

On each day a fresh solution of the metal ion (with a specified concentration)
was prepared and the extraction performed with each of the chelating agents
taken in a random order.
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In this experiment the use of different chelating agents is a controlled fac-
tor since the chelating agents are chosen by the experimenter. The day on
which the experiment is performed introduces uncontrolled variation, caused
both by changes in laboratory temperature, pressure, etc., and by slight differ-
ences in the concentration of the metal ion solution, i.e. the day is a random
factor. In previous chapters it was shown that ANOVA can be used either to
test for a significant effect due to a controlled factor, or to estimate the vari-
ance of an uncontrolled factor. In this case, where both types of factor occur,
two-way ANOVA can be used in both ways: (i) to test whether the different
chelating agents have significantly different efficiencies; and (ii) to test
whether the day-to-day variation is significantly greater than the variation due
to the random error of measurement and, if it is, to estimate the variance of
this day-to-day variation. As in one-way ANOVA, the calculations can be sim-
plified by subtracting an arbitrary number from each measurement. The table
below shows the measurements with 80 subtracted from each.

Blocks Treatments Row totals, Ti.

A B C D

Day 1 4 0 3 −1 6 36
Day 2 −1 −3 0 −1 −5 25
Day 3 3 −2 0 −2 −1 1

Column totals, T.j 6 −5 3 −4 0 = Grand total, T

36 25 9 16

We also have r = 3, c = 4, N = 12, and .

The calculation of the ANOVA table gives the following results:

Source of variation Sum of squares d.f. Mean square

Between-treatment 86/3 − 02/12 = 28.6667 3 28.6667/3 = 9.5556
Between-block 62/4 − 02/12 = 15.5 2 15.5/2 = 7.75
Residual by subtraction = 9.8333 6 9.8333/6 = 1.6389

Total 54 − 02/12 = 54.0 11

It is important to note that, since the residual mean square is obtained by sub-
traction, many significant figures should initially be used in the table to avoid
significant errors in cases where this calculated difference is small.

It is instructive to verify that this calculation does indeed separate the
between-treatment and between-block effects. For example, if all the values in
one block are increased by a fixed amount and the sums of squares recalcu-
lated, it is found that, while the between-block and total sums of squares are
changed, the between-treatment and residual sums of squares are not.

∑∑ xij
2 = 54

∑T2
.j = 86T2

.j

∑T2
i. = 62

T2
i.

.
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If there is no difference between the efficiencies of the chelators, and no day-
to-day variation, then all three mean squares should give an estimate of , the
variance of the random variation due to experimental error (see Section 3.9). As
in one-way ANOVA, the F-test is used to see whether the variance estimates
differ significantly. Comparing the between-treatment mean square with the
residual mean square gives:

F = 9.5556/1.6389 = 5.83

From Table A.3 the critical value of F3,6 (one-tailed, P = 0.05) is 4.76, so we find
that there is a difference between the two variances, i.e. between the efficiency
of the chelating agents, at the 5% level. Comparing the between-block
(i.e. between-day) and residual mean squares gives:

F = 7.75/1.6389 = 4.73

Here the critical value is 5.14, so there is no significant difference between
days. Nevertheless the between-block mean square is considerably larger than
the residual mean square, and had the experiment been ‘unblocked’, so that
these two effects were combined in the estimate of experimental error, the
experiment would probably have been unable to detect whether different treat-
ments gave significantly different results. If the difference between days had
been significant it would indicate that other factors such as temperature, pres-
sure, the preparation of the solution, etc., were having an effect. It can be
shown that the between-block mean square gives an estimate of ,
where is the variance of the random day-to-day variation. Since the resid-
ual mean square gives an estimate of , an estimate of can be obtained.σ 2

bσ 2
0

σ 2
b

σ 2
0 + cσ b

2

σ 2
0

This example illustrates clearly the benefits of considering carefully the design of an
experiment before it is performed. Given a blocked and an unblocked experiment
with the same number of measurements in each, the former is more sensitive and
yields more information. The sensitivity of the experiment depends on the size of
the random variation: the smaller this is, the smaller the difference between the
treatments that can be detected. In an unblocked experiment the random variation
would be larger since it would include a contribution from the day-to-day variation,
so the sensitivity would be reduced.

The two-way ANOVA calculation performed above is based on the assumption
that the effects of the chelators and the days, if any, are additive, not interactive. This
point is discussed further in Section 7.5.

7.4 Latin squares and other designs

In some experimental designs it is possible to take into account an extra factor without
a large increase in the number of experiments performed. A simple example is provided
by the study of the chelating agents in the previous section, where an uncontrolled fac-
tor not taken into account was the time of day at which the measurements were made.
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Systematic variation during the day due to deterioration of the solutions or an increase
in laboratory temperature could have produced a trend in the results.

In such cases, when there is an equal number of blocks and treatments (this was
not the case in the previous example) it is possible to use an experimental design
which allows the separation of such an additional factor. Suppose that the treat-
ments are simply labelled A, B, and C, then a possible design would be:

Day 1 A B C
Day 2 C A B
Day 3 B C A

This block design, in which each treatment appears once in each row and once in
each column, is known as a Latin square. It allows the separation of the variation
into the between-treatment, between-block, between-time-of-day and random
experimental error components. More complex designs are possible which remove
the constraint of equal numbers of blocks and treatments. If there are more than
three blocks and treatments a number of Latin square designs are obviously possi-
ble (one can be chosen at random). Experimental designs of the types discussed so
far are said to be cross-classified designs, as they provide for measurements for
every possible combination of the factors. But in other cases (for example when
samples are sent to different laboratories, and are analysed by two or more differ-
ent experimenters in each laboratory) the designs are said to be nested or hierar-
chical, because the experimenters do not make measurements in laboratories
other than their own. Mixtures between nested and cross-classified designs are also
possible.

7.5 Interactions

In the example in Section 7.3 we saw that the two-way ANOVA calculations
used assumed that the effects of the two factors (chelating agents and days) were
additive. This means that if, for example, we had had only two chelating agents,
A and B, and studied them both on each of two days, the results might have been
something like:

Chelating agents

A B

Day 1 80 82
Day 2 77 79

That is, using chelating agent B instead of A produces an increase of 2% in extrac-
tion efficiency on both days; and the extraction efficiency on day 2 is lower than
that on day 1 by 3%, whichever chelating agent is used. In a simple table of the kind
shown, this means that when three of the measurements are known, the fourth can
easily be deduced. Suppose, however, that the extraction efficiency on day 2 for
chelating agent B had been 83% instead of 79%. Then we would conclude that the
difference between the two agents depended on the day of the measurements, or
that the difference between the results on the two days depended on which agent

.
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was in use. That is, there would be an interaction between the two factors affecting
the results. Such interactions are in practice extremely important: a recent estimate
suggests that at least two-thirds of the processes in the chemical industry are affected
by interacting, as opposed to additive, factors.

Unfortunately the detection of interactions is not quite so simple as the above
example implies, as the situation is confused by the presence of random errors. If a
two-way ANOVA calculation is applied to the very simple table above, the residual
sum of squares will be found to be zero, but if any of the four values is altered this
is no longer so. With this design of experiment we cannot tell whether a non-zero
residual sum of squares is due to random errors, to an interaction between the fac-
tors, or to both effects. To resolve this problem the measurements in each cell must
be replicated. The manner in which this is done is important: the measurements
must be repeated in such a way that all the sources of random error are present in
every case. Thus in our example if different glassware or other equipment items have
been used in experiments on the different chelating agents, then the replicate meas-
urements applied to each chelating agent on each day must also use different appar-
atus. If the same equipment is used for these replicates, clearly the random error in
the measurements will be underestimated. If the replicates are performed properly,
the method by which the interaction sum of squares and the random error can be
separated is illustrated by the following new example.

Example 7.5.1

In an experiment to investigate the validity of a solution as a liquid absorbance
standard, the value of the molar absorptivity, ε, of solutions of three different
concentrations was calculated at four different wavelengths. Two replicate
absorbance measurements were made for each combination of concentration
and wavelength. The order in which the measurements were made was ran-
domized. The results are shown in Table 7.3: for simplicity of calculation the
calculated ε values have been divided by 100.

Table 7.4 shows the result of the Minitab calculation for these results. (NB.
In using this program for two-way ANOVA calculations with interaction, it is
essential to avoid the option for an additive model: the latter excludes the
desired interaction effect. Excel also provides facilities for including interaction

Table 7.3 Molar absorptivity values for a possible absorbance standard

Concentration, g l−1 Wavelength, nm

240 270 300 350

0.02 94, 96 106, 108 48, 51 78, 81
0.04 93, 93 106, 105 47, 48 78, 78
0.06 93, 94 106, 107 49, 50 78, 79
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Table 7.4 Minitab output for Example 7.5.1

Two-way analysis of variance

Analysis of Variance for Response

Source DF SS MS
Conc. 2 12.33 6.17
Wavelength 3 11059.50 3686.50
Interaction 6 2.00 0.33
Error 12 16.00 1.33
Total 23 11089.83

effects in two-way ANOVA.) Here we explain in more detail how this ANOVA
table is obtained.

The first stage of the calculation is to find the cell totals. This is done in Table
7.5, which also includes other quantities needed in the calculation. As before, Ti.

denotes the total of the ith row, T.j the total of the jth column, and T the grand
total.

As before, the between-row, between-column and total sums of squares are
calculated. Each calculation requires the term T2/nrc (where n is the number of
replicate measurements in each cell, in this case 2, r is the number of rows and
c is the number of columns). This term is sometimes called the correction
term, C. Here we have:

C = T2/nrc = 19662/(2 × 3 × 4) = 161048.17

The sums of squares are now calculated:

= 1288484/(2 × 4) − 161048.17

= 12.33

with r − 1 = 2 degrees of freedom.

Between-row sum of squares = ∑
i

T2
i. /nc − C

Table 7.5 Cell totals for two-way ANOVA calculation

240 nm 270 nm 300 nm 350 nm Ti. .

0.02 g l−1 190 214 99 159 662 438244
0.06 g l−1 186 211 95 156 648 419904
0.10 g l−1 187 213 99 157 656 430336

T.j 563 638 293 472 T = 1966

316969 407044 85849 222784

∑
i

T 2
i. = 1288484∑

j

T 2
.j = 1032646

T 2
.j

T2
i

SCA_C07.qxd  3/29/05  4:38 PM  Page 189



.

190 7: Experimental design and optimization

.

= 1032646/(2 × 3) − 161048.17

= 11059.50

with c − 1 = 3 degrees of freedom.

where xijk is the kth replicate in the ith row and jth column, i.e. is the sum
of the squares of the individual measurements in Table 7.3.

Total sum of squares = 172138 − 161048.17

= 11089.83

with nrc − 1 = 23 degrees of freedom.
The variation due to random error (usually called the residual variation)

is estimated from the within-cell variation, i.e., the variation between
replicates.

The residual sum of squares = , where Tij is the total for the cell
in the ith row and jth column, i.e. the sum of the replicate measurements in
the ith row and jth column.

= 172138 − (344244/2)

= 16

with (n − 1)rc = 12 degrees of freedom.
The interaction sum of squares and number of degrees of freedom can now

be found by subtraction. Each source of variation is compared with the residual
mean square to test whether it is significant.

1 Interaction. This is obviously not significant since the interaction mean
square is less than the residual mean square.

2 Between-column (i.e. between-wavelength). This is highly significant since
we have:

F = 3686.502/1.333 = 2765

The critical value of F3,12 is 3.49 (P = 0.05). In this case a significant result
would be expected since absorbance is wavelength-dependent.

3 Between-row (i.e. between-concentration). We have:

F = 6.17/1.3333 = 4.63

The critical value of F2,12 is 3.885 (P = 0.05), indicating that the between-row vari-
ation is too great to be accounted for by random variation. So the solution is
not suitable as an absorbance standard. Figure 7.1 shows the molar absorptivity
plotted against wavelength, with the values for the same concentration joined

Residual sum of squares = ∑ xijk
2 − ∑ Tij

2/n

∑xijk
2 − ∑Tij

2/n

∑xijk
2

Total sum of squares = ∑ xijk
2 − C

Between-column sum of squares = ∑
j

T2
.j/nr − C
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by straight lines. This illustrates the results of the analysis above in the follow-
ing ways:

1 The lines are parallel, indicating no interaction.

2 The lines are not quite horizontal, indicating that the molar absorptivity
varies with concentration.

3 The lines are at different heights on the graph, indicating that the molar
absorptivity is wavelength-dependent.

.

100

50

0
0.02 0.06 0.10

Concentration, g l–1

270 nm

240 nm

350 nm

300 nm

ε

Figure 7.1 Relationships in the two-way ANOVA example (Example 7.5.1).

The formulae used in the calculation above are summarized in Table 7.6.
In this experiment both factors, i.e. the wavelength and the concentration of the

solution, are controlled factors. In analytical chemistry an important application of
ANOVA is the investigation of two or more controlled factors and their interactions
in optimization experiments. This is discussed in Section 7.7.

Table 7.6 Formulae for two-way ANOVA with interaction

Source of variation Sum of squares Degrees of freedom

Between-row r − 1

Between-column c − 1

Interaction by subtraction by subtraction

Residual rc(n − 1)

Total rcn − 1∑x 2
ijk − C

∑x 2
ijk − ∑T 2

ij /n

∑
j

T 2
.j /nr − C

∑
i
T 2

i. /nc − C
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As discussed in Section 4.12, another important application of ANOVA is in col-
laborative investigations of precision and accuracy between laboratories. In full-
scale collaborative trials, several different types of sample are sent to a number of
laboratories, with each laboratory performing a number of replicate analyses on
each sample. Mathematical analysis of the results would yield the following sums
of squares: between-laboratory, between-samples, laboratory–sample interaction,
and residual. The purpose of such an experiment would be to test first whether
there is any interaction between laboratory and sample, i.e. whether some labora-
tories showed unexpectedly high or low results for some samples. This is done by
comparing the interaction and residual sums of squares. If there is no interaction,
then we could test whether the laboratories obtained significantly different results,
i.e. whether there is any systematic difference between laboratories. If there is, then
the inter-laboratory variance can be estimated. However, if there is a significant
interaction, the testing for a significant difference between laboratories has little
relevance.

For two-way ANOVA to be valid the following conditions must be fulfilled (see
also Section 3.10):

1 The random error is the same for all combinations of the levels of the factors.
2 The random errors are approximately normally distributed.

7.6 Factorial versus one-at-a-time design

An experiment such as the one in the previous example, where the response vari-
able (i.e. the molar absorptivity) is measured for all possible combinations of the
chosen factor levels, is known as a complete factorial design. The reader may have
noticed that this design of the experiment is the antithesis of the classical approach
in which the response is investigated for each factor in turn while all the other
factors are held at a constant level. There are two reasons for preferring a factorial
design to a classical design in experiments that test whether the response depends
on factor level:

1 The factorial experiment detects and estimates any interaction, which the one-at-
a-time experiment cannot.

2 If the effects of the factors are additive, then the factorial design needs fewer meas-
urements than the classical approach in order to give the same precision. This
can be seen by turning again to the molar absorptivity experiment. There, all 24
measurements were used to estimate the effect of varying the wavelength and the
same 24 were used to estimate the effect of varying concentration. In a one-at-a-
time experiment, first the concentration would have been fixed and, to obtain
the same precision for the effect of varying the wavelength, six measurements
would have been needed at each wavelength, i.e. 24 in all. Then the wavelength
would have been fixed and another 24 measurements made at different concen-
trations, making a total of 48 altogether. In general, for k factors, a classical
approach involves k times as many measurements as a factorial one with the same
precision.
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7.7 Factorial design and optimization

In many analytical techniques the response of the measurement system depends
on a variety of experimental factors under the control of the operator. For
example, enzyme assays involve the direct or indirect measurement of reaction
rates. In a given experiment the reaction rate will depend on factors such as the
temperature, the pH, ionic strength, and chemical composition of the buffer solu-
tion, the enzyme concentration, and so on. For a particular application it will be
important to set the levels of these factors to ensure that (for example) the reac-
tion rate is as high as possible. The process of finding these optimum factor levels
is known as optimization. Several methods of optimization are discussed in
detail in subsequent sections. But before an optimization process can begin we
must determine which factors, and which interactions between them, are impor-
tant in affecting the response: it is also valuable to know which factors have lit-
tle or no effect, so that time and resources are not wasted on unnecessary
experiments.

Such studies frequently use a factorial experiment with each factor at two levels
usually known as ‘low’ and ‘high’. In the case of a quantitative variable the terms
‘low’ and ‘high’ have their usual meaning. The exact choice of levels is determined
principally by the experience and knowledge of the experimenter and the physical
constraints of the system, e.g. in aqueous solutions only temperatures in the range
0−100°C are practicable. Some problems affecting the choice of levels are discussed
below. For a qualitative variable ‘high’ and ‘low’ refer to a pair of different condi-
tions, e.g. the presence or absence of a catalyst, use of mechanical or magnetic
stirring, a sample in powdered or granular form, etc. Since we have already consid-
ered two-factor experiments in some detail, we will turn to one with three factors:
A, B and C. This means that there are 2 × 2 × 2 = 8 possible combinations of factor
levels, as shown in the table below. A plus sign denotes that the factor is at the high
level and a minus sign that it is at the low level. The first column gives a notation
often used to describe the combinations, where the presence of the appropriate
lower-case letter indicates that the factor is at the high level and its absence that
the factor is at the low level. The number 1 is used to indicate that all factors are at
the low level.

Combination A B C Response

1 − − − y1

a + − − y2

b − + − y3

c − − + y4

ab − + + y5

ac + − + y6

bc + + − y7

abc + + + y8

The method by which the effects of the factors and their interactions are estimated
is illustrated by the following example.

.
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Example 7.7.1

In a high-performance liquid chromatography experiment, the dependence of
the retention parameter, k′, on three factors was investigated. The factors were
pH (factor P), the concentration of a counter-ion (factor T) and the concentra-
tion of the organic solvent in the mobile phase (factor C). Two levels were used
for each factor and two replicate measurements made for each combination.
The measurements were randomized. The table below gives the average value
for each pair of replicates.

Combination of factor levels k′

1 4.7
p 9.9
t 7.0
c 2.7
pt 15.0
pc 5.3
tc 3.2
ptc 6.0

Effect of individual factors

The effect of changing the level of P can be found from the average difference
in response when P changes from high to low level with the levels of C and T
fixed. There are four pairs of responses that give an estimate of the effect of the
level of P as shown in the table below.

Level of C Level of T Level of P Difference

+ −

− − 9.9 4.7 5.2
+ − 5.3 2.7 2.6
− + 15.0 7.0 8.0
+ + 6.0 3.2 2.8

Total = 18.6

Average effect of altering the level of P = 18.6/4 = 4.65.

The average effects of altering the levels of T and C can be found similarly to be:

Average effect of altering the level of C = −4.85
Average effect of altering the level of T = 2.15

Interaction between two factors

Consider now the two factors P and T. If there is no interaction between them
then the change in response between the two levels of P should be indepen-
dent of the level of T. The first two figures in the last column of the table above
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give the change in response when P changes from high to low level with T at
low level. Their average is (5.2 + 2.6)/2 = 3.9. The last two figures in the same
column give the effect of changing P when T is at high level. Their average is
(8.0 + 2.8)/2 = 5.4. If there is no interaction and no random error (see Section
7.5) these estimates of the effect of changing the level of P should be equal.
The convention is to take half their difference as a measure of the interaction:

Effect of PT interaction = (5.4 − 3.9)/2 = 0.75

It is important to realize that this quantity estimates the degree to which the
effects of P and T are not additive. It could equally well have been calculated
by considering how far the change in response for the two levels of T is inde-
pendent of the level of P.

The other interactions are calculated in a similar fashion:

Effect of CP interaction = −1.95
Effect of CT interaction = −1.55

Interaction between three factors

The PT interaction calculated above can be split into two parts according to the
level of C. With C at low level the estimate of interaction would be (8.0 − 5.2)/2 =
1.4 and with C at high level it would be (2.8 − 2.6)/2 = 0.1. If there is no inter-
action between all three factors and no random error, these estimates of the PT
interaction should be equal. The three-factor interaction is estimated by half
their difference [= (0.1 − 1.4)/2 = − 0.65]. The three-factor interaction measures
the extent to which the effect of the PT interaction and the effect of C are not
additive: it could equally well be calculated by considering the difference
between the PC estimates of interaction for low and high levels of T or the dif-
ference between the TC estimates of interaction for low and high levels of P.

These results are summarized in the table below.

Effect

Single factor (main effect)
P 4.65
T 2.15
C −4.85

Two-factor interactions
TP 0.75
CT −1.55
CP −1.95

Three-factor interactions
PTC −0.65

These calculations have been presented in some detail in order to make the
principles clear. An algorithm due to Yates (see Bibliography) simplifies the
calculation.
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One problem with a complete factorial experiment such as this is that the num-
ber of experiments required rises rapidly with the number of factors: for k factors at
two levels with two replicates for each combination of levels, 2k + 1 experiments are
necessary, e.g. for five factors, 64 experiments. When there are more than three fac-
tors some economy is possible by assuming that three-way and higher-order inter-
actions are negligible. The sums of squares corresponding to these interactions can
then be combined to give an estimate of the residual sum of squares, and replicate

In order to test which effects, if any, are significant, ANOVA may be used
(provided that there is homogeneity of variance). It can be shown that in a
two-level experiment, like this one, the required sums of squares can be calcu-
lated from the estimated effects by using

Sum of squares = N × (estimated effect)2/4

where N is the total number of measurements, including replicates. In this case
N is 16 since two replicate measurements were made for each combination of
factor levels. The calculated sums of squares are given below.

Factor(s) Sum of squares

P 86.49
T 18.49
C 94.09
PT 2.25
TC 9.61
PC 15.21
PCT 1.69

It can be shown that each sum of squares has one degree of freedom. Since the
mean square is given by

mean square = sum of squares/number of degrees of freedom

each mean square is simply the corresponding sum of squares. To test for the
significance of an effect, the mean square is compared with the error (residual)
mean square. This is calculated from the individual measurements by the
method described in the molar absorptivity example in Section 7.5. In the pre-
sent experiment the calculated residual mean square was 0.012 with 8 degrees
of freedom. Testing for significance, starting with the highest-order inter-
action, we have for the PTC interaction:

F = 1.69/0.012 = 141

which is obviously significant. If there is interaction between all three factors
there is no point in testing whether the factors taken in pairs or singly are sig-
nificant, since all factors will have to be considered in any optimization pro-
cess. A single factor should be tested for significance only if it does not interact
with other factors.
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measurements are no longer necessary. The rationale for this approach is that higher-
order effects are usually much smaller than main effects and two-factor interaction
effects. If higher-order interactions can be assumed negligible, a suitable fraction of
all possible combinations of factor levels is sufficient to provide an estimate of the
main and two-factor interaction effects. As mentioned in Section 4.12, such an
experimental design is called an incomplete or fractional factorial design.

Among the simplest and most popular incomplete factorial designs are the
Plackett–Burman designs, which provide information on the main effects of the
factors, but not on their interactions. A feature of these methods is that they all
depend on performing 4n experiments, where n = 1, 2, 3, etc., giving 4, 8, 12, etc.,
experiments. Just as in the ruggedness test example given in Section 4.12, such
designs are suitable for the study of up to 3, 7, 11, etc., factors. But they are widely
used when the number of factors to be studied is less than the maximum for a
given design. Suppose, for example, that there are four factors to be considered. Four
experiments are insufficient, catering for only three factors, so we should use a design
with eight experiments, which would accommodate up to seven factors. The three
remaining factors are called dummy factors, which have no chemical meaning at all.
They are valuable nonetheless, because their apparent effects, determined as indi-
cated in Section 4.12 and Example 7.7.1, can be used to estimate the measurement
errors. This attractive feature of the Plackett–Burman designs, which is analogous to
ignoring higher-order interactions in some other designs (see above), allows us to
determine which of the real factors are significant at any given confidence level.
Details of these calculations are supplied by texts listed in the bibliography.

Another problem in using a factorial design to determine which factors have a sig-
nificant effect on the response is that, for factors which are continuous variables, the
effect depends on the high and low levels used. If the high and low levels are too close
together, the effect of the corresponding factor may be found to be not significant
despite the fact that over the whole possible range of factor levels the effect of this fac-
tor is not negligible. On the other hand, if the levels are too far apart they may fall on
either side of a maximum and still give a difference in response that is not significant.
One solution is to use a design involving three levels rather than two. Such designs
are sometimes called response surface designs, as they can be used to model curved
response surfaces. The main problem with three-level designs is, as expected, the num-
ber of experiments involved. For example, a full factorial three-level design with only
two factors requires 32 = 9 experiments. With more than two factors the size of such
a design would usually be impracticable, so fractional designs, often using a mixture
of two different methods to produce a composite design, are usually used. Again the
bibliography provides further details of these methods. Programs such as Minitab®

provide advice on suitable designs for a reasonable range of problems, and more
advanced experimental design software is also available (see the bibliography).

7.8 Optimization: basic principles and univariate methods

When the various factors and interactions affecting the results of an experiment have
been identified, separate methods are needed to determine the combination of factor
levels which will provide the optimum response. It is first necessary to define carefully

.
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what is meant by the ‘optimum response’ in a given analytical procedure. In some cases
the aim will be to ensure that the measuring instrument gives a maximum response
signal, e.g. the largest possible absorbance, current, emission intensity, etc. However,
in many other cases the optimum outcome of an experiment may be the maximum
signal-to-noise or signal-to-background ratios, the best resolution (in separation meth-
ods), or even a minimum response (e.g. when an interfering signal is under study),
though mathematically finding maxima and minima are virtually identical processes.
It may be stating the obvious to emphasize that the exact aim of an optimization exper-
iment must be carefully defined in advance, but in practice many optimization pro-
cesses have failed simply because the target was not sufficiently clearly laid down.

A good optimization method has two qualities. It produces a set of experi-
mental conditions that provide the optimum response, or at least a response
that is close to the optimum; and it does so with the smallest possible number
of trial experimental steps. Speed and convenience will be extremely import-
ant, and it is often sufficient to use a method that gets reasonably close to the
true optimum in a small number of steps.

Even the optimization of a single factor presents some interesting problems.
Suppose we wish to find the optimum pH of an enzyme-catalysed reaction within the
pH range 2–12, the best pH being that at which the reaction rate is a maximum. Each
rate measurement will be a separate experiment, with a different buffer solution and
taking significant time and effort, so it is particularly important to get as much infor-
mation as possible from the smallest possible number of experiments. Two approaches
suggest themselves. One is to make a fixed number of rate measurements, for example
by dividing the pH interval of interest up into a number of equal regions. The second
and more logical method is to make the measurements sequentially, so that the pH
used for each experiment depends on the results of the previous experiments.

Figure 7.2 shows the result of making four rate measurements at pH values of
4, 6, 8, and 10. In considering them we shall assume, as in most of our other opti-
mization examples, that there is only one maximum within the range of the factor
level(s) under study. (Inevitably, this is not always true, and we return to the point
later.) The four points on the graph show that the highest reaction rate is obtained
at pH 10, and the next highest at pH 8. But even with the assumption of a single
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Figure 7.2 Optimization experiment with equally spaced factor levels.
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maximum, it is possible to draw two types of curve through the points: the maxi-
mum may occur between pH 8 and 10, or between pH 10 and 12. So starting with
the pH range between 2 and 12, we conclude that the optimum pH is actually
between 8 and 12, i.e. we have narrowed the possible range for the optimum by a
factor of 4/10. This is an example of the general result that, if n experiments are
done using equal intervals of the factor level, the range for the optimum is narrowed
by a factor of 2/(n + 1) or 2/5 here. This is not a very impressive result! The weakness
of the method is emphasized by the fact that, if we wished to define the optimum
pH within a range of 0.2 units, i.e. a 50-fold reduction of the original range of
10 units, 99 experiments would be needed, an obvious impossibility.

The principle of the superior step-wise approach is shown in Figure 7.3, which
shows a possible relationship between reaction rate and pH. (This curve would of
course not be known in advance to the experimenter.) In brief, the procedure is as
follows. The first two experiments are carried out at pH A and pH B, equidistant
from the extremes of the pH range, 2 and 12. (The choice of pH values for these first
experiments is discussed below.) The experiment at B will give the higher reaction
rate so, since there is only one maximum in the curve, the portion of the curve
between pH 2 and A can be rejected. The remainder of the pH range, between A and
pH 12, certainly includes the maximum, and it already has one reading, B, within it.
A new measurement, C, is then made at a pH such that the pH difference between C
and A is the same as that between B and pH 12. The pH at C gives a higher reaction
rate than B, so the interval between B and pH 12 can now be rejected, and a new
measurement, D, made so that the A–D and C–B distances are equal. Further mea-
surements use the same principle, so it only remains to establish how many steps are
necessary, and where the starting points A and B should be.

In one approach the distances between the pairs of measurements and the extremes
of the corresponding ranges are related to the Fibonacci series. This series of numbers,
known since the thirteenth century, starts with 1 and 1 (these terms are called F0

and F1), with each subsequent term being the sum of the two previous ones. Thus F2,
F3, etc., are 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . . To use this series to optimize a single fac-
tor over a defined range we begin by deciding either on the degree of optimization
required, which automatically determines the number of experiments necessary, or on
the number of experiments we can perform, which automatically determines the
degree of optimization obtained. Suppose that, as before, we require the optimum
pH to be known within 0.2 units, a 50-fold reduction of the original pH interval of

.

Figure 7.3 Step-wise approach to univariate searching.
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10 units. We must then take the first Fibonacci number above 50: this is 55, F9. The
subscript tells us that nine experiments will be needed to achieve the desired result. The
spacing of the first two points, A and B, within the range, is also given by the series.
We use F9 and the member of the series two below it, F7, to form the fraction F7/F9, i.e.
21/55. Point A is then at pH [2 + (10 × 21/55)], and point B is at pH [12 − (10 × 21/55)],
i.e. 5.8 and 8.2 respectively. (The 10s appear in these expressions because the pH range
of interest is 10 units.) Once these first points are established, the positions of C, D, etc.
follow automatically by symmetry. It is striking that the Fibonacci search method
achieves in just nine experiments a degree of optimization that requires 99 experi-
ments using the ‘equal intervals’ method. This method is the most efficient univariate
search procedure for a given range when the degree of optimization is known or
decided in advance. In other optimization methods, it is not necessary to decide in
advance either the number of experiments or the degree of optimization needed.
Further details of such methods are given in the texts listed in the bibliography.

The success of optimization procedures depends on the assumption that the ran-
dom measurement errors (of reaction rates in the example above) are significantly
smaller than the rate of change of the response with the factor level (pH). This
assumption is most likely to fail near to the optimum value of the response, where
the slope of the response curve is near to zero. This confirms that in many practical
cases a method which gets fairly close to the optimum in a few experiments will be
most valuable. Trying to refine the optimum by doing too many experiments might
fail if the experimental errors give misleading results.

7.9 Optimization using the alternating variable search method

When the response of an analytical system depends on two factors which are continu-
ous variables, the relationship between the response and the levels of the two factors
can be represented by a surface in three dimensions as shown in Figure 7.4. This sur-
face is known as the response surface, with the target optimum being the top of the
‘mountain’. A more convenient representation is a contour diagram (Figure 7.5).
Here the response on each contour is constant, and the target optimum is close to the
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Figure 7.4 A response surface for two factors.
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centre of the contours. The form of the contour lines is, of course, unknown to the
experimenter who wishes to determine the optimum levels, x0 and y0 for the factors X
and Y respectively. A search method using a one-at-a-time approach would set the ini-
tial level of X to a fixed value, e.g. x1, and vary the level of Y to give a maximum
response at the point A, where the level of Y is y1. Next, holding the level of Y at y1

and varying the level of X would give a maximum at B. Obviously this is not the true
maximum, as the position obtained depends on the initial value chosen for x1. A bet-
ter response can be obtained by repeating the process, varying the levels of X and Y
alternately. This method is known as the alternating variable search (AVS) or the
iterative univariate method. When there is no interaction between the two factors
this method is extremely efficient. In such a case the response surface has the form of
Figure 7.6(a) or (b) and varying X and then Y just once will lead to the maximum
response. If, however, there is interaction between the two variables then the response
surface has the form of Figure 7.6(c) and X and Y must then be varied in turn more
than once. In some cases, even this will not lead to the true maximum: this is illus-
trated in Figure 7.7 where, although C is not the true maximum, the response falls on
either side of it in both the X and the Y directions.

.

Figure 7.5 The contour diagram for a two-factor response surface.
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Figure 7.6 Simplified contour diagrams. (a) and (b) show no X − Y interaction; (c) shows
significant X − Y interaction.
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The AVS method is used infrequently in analytical chemistry. It is practicable
only if the response can be monitored continuously as the factor level is altered eas-
ily, for example in spectrometry when the monochromator wavelength or slit
width is readily changed. Otherwise a choice of step size has to be made for the
change in each of the factors. These step sizes could vary, depending on the
observed change in response, but in practice other approaches involving fewer sep-
arate experiments are superior. A number of other methods are used to overcome
the problems of one-at-a-time optimization. All of them can be applied to any
number of factors, but the response surface cannot easily be visualized for three or
more factors: our remaining discussion will thus largely be confined to experiments
involving two factors.

7.10 The method of steepest ascent

The process of optimization can be visualized in terms of a person standing on a
mountain (Figure 7.4) in thick fog, with the task of finding the summit! In these
circumstances an obvious approach is to walk in the direction in which the gra-
dient is steepest. This is the basis of the method of steepest ascent. Figure 7.8
shows two possible contour maps. The direction of steepest ascent at any point is
at right angles to the contour lines at that point, as indicated by the arrows.
When the contour lines are circular this will be towards the summit, but when
the contour lines are elliptical it may not. The shape of the contour lines depends
on the scales chosen for the axes: the best results are obtained from the method
if the axes are scaled so that a unit change in either direction gives a roughly
equal change in response. The first step is to perform a factorial experiment with

Figure 7.7 Contour diagram: a situation in which the one-at-a-time method fails to locate the
maximum.
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each factor at two levels. The levels are chosen so that the design forms a square
as shown in Figure 7.9. Suppose, for example, that the experiment is an enzyme-
catalysed reaction in which the reaction rate, which in this case is the response,
is to be maximized with respect to pH (X) and temperature (Y ). The table below
gives the results (reaction rate measured in arbitrary units) of the initial factorial
experiment.

.

Figure 7.8 Contour diagrams: the arrow in each diagram indicates the path of steepest
ascent. In (a) it goes close to the maximum but in (b) it does not.

Figure 7.9 A 2 × 2 factorial design to determine the direction of steepest ascent, indicated
by the broken line.
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θ

pH (X)
6.8 7.0

Temperature, °C (Y) 20 30 35
25 34 39
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The effects of the two factors can be separated as described in Section 7.7. Rewriting
the table above, in the notation of that section, gives:

Figure 7.10 Contour diagram: the initial direction of steepest ascent is shown by the broken
line. Further experiments are done at points 5, 6 and 7.

Combination of levels Rate of reaction

1 30
x 35
y 34
xy 39

Average effect of change in level of X = [(35 − 30) + (39 − 34)]/2 = 5
Average effect of change in level of Y = [(34 − 30) + (39 − 35)]/2 = 4

The effects of X and Y indicate that in Figure 7.9 we should seek for the maximum
response to the right and above the original region. Since the change in the X direc-
tion is greater than that in the Y direction, the distance moved in the former should
be greater. To be more exact, the distance moved in the X direction should be in the
ratio 5:4 to the direction moved in the Y direction, i.e. in the direction indicated by
the dotted line in Figure 7.9.

The next step in the optimization is to carry out further experiments in the direc-
tion indicated by the dotted line in Figure 7.10, at (say) the points numbered 5, 6
and 7. This would indicate point 6 as a rough position for the maximum in this
direction. Another factorial experiment is carried out in this region to determine the
new direction of steepest ascent.

This method gives satisfactory progress towards the maximum provided that,
over the region of the factorial design, the contours are approximately straight. This
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is equivalent to the response surface being a plane which can be described mathe-
matically by a linear combination of terms in x and y. Nearer the summit terms in
xy, x2 and y2 are also needed to describe the surface. The xy term represents the inter-
action between X and Y and can be estimated by using replication as described in
Section 7.7. The squared terms, which represent the curvature of the surface, can be
estimated by comparing the response at the centre of the factorial design with the
average of the responses at the corners. When interaction and curvature effects
become appreciable compared with the experimental error (estimated by replica-
tion), a more elaborate factorial design is used which allows the form of the curved
surface, and thus the approximate position of the maximum, to be determined.

It is evident that factorial design and the method of steepest ascent will be very
complicated when several factors are involved. The next section describes a method
of optimization which is conceptually much simpler.

7.11 Simplex optimization

Simplex optimization may be applied when all the factors are continuous variables.
A simplex is a geometrical figure which has k + 1 vertices, k being the number of
factors. In the optimization of two factors the simplex will therefore be a triangle.
The method of optimization is illustrated by Figure 7.11. The initial simplex is
defined by the points labelled 1, 2 and 3. In the first experiments the response is
measured at each of the three combinations of factor levels given by the vertices of
this triangle. The worst response in this case would be found at point 3 and it is
logical to suggest that a better response might be found at a point which is the
reflection of 3 with respect to the line joining 1 and 2, i.e. at 4. The points 1, 2 and
4 form a new simplex and the response is measured for the combination of factor
levels given by 4. (We immediately notice a major advantage of the simplex method,
i.e. that at each stage of the optimization, only a single additional experiment is
required.) Comparing the responses for the points 1, 2 and 4 will show that 1 now

.

Figure 7.11 Simplex optimization.
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gives the worst response. The reflection process is repeated to give the simplex
defined by 2, 4 and 5. The continuation of this process is shown in the figure. It can
be seen that no further progress is possible beyond the stage shown, since points 6
and 8 both give a worse response than 5 and 7, so the simplex oscillates across the
region of the true optimum. Depending on the shape of the response surface, oscil-
lations of this kind may occur even when the simplex is not close to the optimum.
Further improvements can then sometimes be made by reflecting the next-worst
point rather than the worst one to continue the simplex in a new direction.

The position of the new vertex of a simplex is in practice found by calculation
rather than drawing: this is essential when there are more than two factors. The cal-
culation (using constant step sizes) is most easily set out as shown in Table 7.7, the
calculation lines being labelled (i)–(v). In this example there are five factors and
hence the simplex has six vertices. (Note that it is not essential for each factor to have
a different level for each of the vertices: for example factor A takes the value 2.5
for each of the vertices 3–6.) In the initial simplex the response for vertex 4 is the
lowest and so this vertex is to be replaced. The coordinates of the centroid of the ver-
tices which are to be retained are found by summing the coordinates for the retained
vertices and dividing by the number of factors, k. The displacement of the new point
from the centroid is given by (iv) = (ii) − (iii), and the coordinates of the new vertex,
vertex 7, by (v) = (ii) + (iv).

An obvious question in using the simplex method is the choice of the initial
simplex. If this is a regular figure in k dimensions, then the positions taken by the
vertices in order to produce such a figure will depend on the scales used for the axes.
As with the method of steepest ascent, these scales should be chosen so that unit
change in each factor gives roughly the same change in response. If there is insuf-
ficient information to achieve this, the difference between the highest and lowest
feasible value of each factor can be represented by the same distance. One obvious
problem with the method is that, if the initial simplex is too small, too many experi-
ments may be needed to approach the optimum. If the initial simplex is too big,

Table 7.7 Simplex optimization example

Factors Response

A B C D E

Vertex 1 1.0 3.0 2.0 6.0 5.0 7
Vertex 2 6.0 4.3 9.5 6.9 6.0 8
Vertex 3 2.5 11.5 9.5 6.9 6.0 10
Vertex 4 (rejected) 2.5 4.3 3.5 6.9 6.0 6
Vertex 5 2.5 4.3 9.5 9.7 6.0 11
Vertex 6 2.5 4.3 9.5 6.9 9.6 9

(i) Sum (excluding vertex 4) 14.50 27.40 40.00 36.40 32.60

(ii) Sum/k (excluding vertex 4) 2.90 5.48 8.00 7.28 6.52

(iii) Rejected vertex (i.e. 4) 2.50 4.30 3.50 6.90 6.00

(iv) Displacement = (ii) − (iii) 0.40 1.18 4.50 0.38 0.52

(v) Vertex 7 = (ii) + (iv) 3.30 6.66 12.50 7.66 7.04
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the precision with which the optimum is determined will be poor (see Figure 7.11).
The size of the initial simplex is not so critical if it can be expanded or contracted
as the method proceeds (see below). Algorithms that can be used to calculate the
initial positions of the vertices have been developed: one vertex is normally
positioned at the currently accepted levels of the factors. This is a reminder that the
analyst is rarely completely in the dark at the start of an optimization process:
previous experience will provide some guidance on feasible values for the vertices of
the starting simplex.

In order to improve the performance of the simplex method many modifications
have been proposed. In particular it is possible to move towards the optimum by
varying the step size according to how the response for the new vertex in a simplex
compares with the other vertices. The principle is illustrated in Figure 7.12, in which
the three initial vertices are called W (giving the worst response), B (best response)
and M (middle response). When W is reflected in the line joining B and M the
response is called R. If the response at R is better than that at B, i.e. R gives a new
best response, this indicates that the simplex is moving in the right direction, so the
reflection is extended, normally by a factor of 2, to give a new vertex R′. If the
response at R′ is also better than that at B, R′ becomes one vertex of a new simplex,
BMR′. If the R′ response is not better than that at B, then the expansion of the sim-
plex has evidently failed, and the conventional simplex BMR is used as the basis of
the next step. In some cases the point R might produce a response that is poorer
than that at B, but still better than that at M, so again the simplex BMR is used for
the next reflection. If the response at R is poorer than that at M, the simplex has
apparently moved too far. In that case a new vertex, C, is used, the reflection being
restricted to (usually) half its normal extent: the new simplex is then BMC. Lastly,
if the response at R is worse even than that at W, then the new vertex, I, should be
inside the original simplex, giving a new simplex BMI. All these changes can be cal-
culated by insertion of the appropriate positive or negative numerical factors in row
(iv) of Table 7.7.

The effect of these variable step sizes is that (when two factors are being studied)
the triangles making up each simplex are not necessarily equilateral ones. The bene-
fit of the variable step sizes is that initially the simplex is large, and gives rapid

.
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Figure 7.12 Optimization using variable-size simplexes: for details, see text.
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progress towards the optimum. Near the optimum it contracts to allow the latter to
be found more accurately. When several factors are under study, it may be helpful to
alter some of them by a constant step size, but change others with a variable step size.

It can be seen that in contrast to factorial designs used in the method of steepest
ascent, the number of experiments required in the simplex method does not
increase rapidly with the number of factors. For this reason all the factors which
might reasonably be thought to have a bearing on the response should be included
in the optimization.

Once an optimum has been found, the effect on the response when one factor is
varied while the others are held at their optimum levels can be investigated for each
factor in turn. This procedure can be used to check the optimization. It also indi-
cates how important deviations from the optimum level are for each factor: the
sharper the response peak in the region of the optimum the more critical any vari-
ation in factor level.

Simplex optimization has been used with success in many areas of analytical
chemistry, e.g. atomic-absorption spectrometry, gas chromatography, colorimetric
methods of analysis, plasma spectrometry, and the use of centrifugal analysers in
clinical chemistry. When an instrument is interfaced with a computer, the results
of simplex optimization can be used to initiate automatic improvements in the
instrument variables.

Simplex optimization has some disadvantages. As always, difficulties may arise if
the random measurement errors are larger than the slope of the response surface
near the optimum (see above). Moreover the small number of experiments per-
formed, while usually advantageous in practice, means that little information is
gained on the overall shape of the response surface. Occasionally response surfaces
with more than one maximum occur, such as that shown in Figure 7.13. Both the
alternating variable search and simplex optimization methods may then locate a
local optimum such as A rather than the true optimum B. Starting the optimization
process in a second region of the factor space and verifying that the same optimum
conditions are obtained is the preferred method for checking this point. Again the
simplex method is valuable here, as it minimizes the extra work required.

Level of factor X

Le
ve

l o
f f

ac
to

r 
Y

B

A

Figure 7.13 Contour diagram showing localized optimum (A) and true optimum B.
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7.12 Simulated annealing

In recent years there has been much interest in the application of calculation
methods that mimic natural processes: these are collectively known as natural
computation methods. Neural networks (see Chapter 8) are now being applied
more frequently in analytical chemistry, and in the area of optimization simulated
annealing (SA) has found some recent applications. Annealing is the process by
which a molten metal or other material cools slowly in controlled conditions to a
low energy state. In principle the whole system should be in equilibrium during the
whole of the annealing process, but in practice random processes occur which
result in short-lived and/or local increases in energy. When an analogous process is
applied to an optimization problem the algorithm used allows access to positions
in factor space that give a poorer response than the previous position. The result is
that, unlike the AVS and simplex methods, which almost inevitably lead to the
identification of an optimum which is closest to the starting point, SA methods can
handle any local optima which occur, and successfully identify the true overall
optimum.

In simple terms the method operates as follows. The first step is to identify, either
at random or from experience, starting values for the levels of the k factors. These
values give an initial response, R1. In the second step a random vector, obtained
using k random numbers, is added to the starting values, and a new set of experi-
mental conditions generated: these yield a new response, R2. As in other optimiza-
tion methods, if R2 is a better response than R1, that is a good outcome, and the
random addition step is repeated. The crucial characteristic of the method, however,
is that even if R2 is a poorer response than R1, it is accepted as long as it is not much
worse. (Clearly, numerical rules have to be applied to make this decision.)
Eventually a situation arises in which a response is rejected, and, for example, five
alternatives generated at random are also rejected as giving unacceptably poorer
responses. In that situation it is assumed that the previous response was the opti-
mum one. SA methods have been applied in UV-visible and near-IR spectroscopy,
and in some cases found to be superior to simplex methods.
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1 2 3

1 67 69 82
2 78 66 76
3 78 73 75
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Exercises

1 Four standard solutions were prepared, each containing 16.00% (by weight) of chlor-
ide. Three titration methods, each with a different technique of end-point deter-
mination, were used to analyse each standard solution. The order of the experiments
was randomized. The results for the chloride found (% w/w) are shown below:

Solution Method

A B C

1 16.03 16.13 16.09
2 16.05 16.13 16.15
3 16.02 15.94 16.12
4 16.12 15.97 16.10

Test whether there are significant differences between (a) the concentration of chlo-
ride in the different solutions, and (b) the results obtained by the different methods.

2 A new microwave-assisted extraction method for the recovery of 2-chlorophenol
from soil samples was evaluated by applying it to five different soils on each of
three days. The percentage recoveries obtained were:

Determine whether there were any significant differences in percentage recovery
(a) between soils, and/or (b) between days.
(Data adapted from Egizabal, A., Zuloaga, O., Etxebarria, N., Fernández, L. A. and
Madariaga, J. M. 1998. Analyst 123: 1679)
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3 In studies of a fluorimetric method for the determination of the anionic surfactant
sodium dodecyl sulphate (SDS) the interfering effects of four organic compounds
at three different SDS:compound molar ratios were studied. The percentage recov-
eries of SDS were found to be:

Determine whether the SDS recovery depends on the presence of the organic
compounds and/or on the molar ratios at which they are present. How should
the experiment be modified to test whether any interaction effects are present?
(Recalde Ruiz, D. L., Carvalho Torres, A. L., Andrés Garcia, E. and Díaz García, M. E.
1998. Analyst 123: 2257)

4 Mercury is lost from solutions stored in polypropylene flasks by combination with
traces of tin in the polymer. The absorbance of a standard aqueous solution of
mercury stored in such flasks was measured for two levels of the following factors:

The following results were obtained. Calculate the main and interaction effects.

(Adapted from Kuldvere, A. 1982. Analyst 107: 179)

5 In an inter-laboratory collaborative experiment on the determination of arsenic
in coal, samples of coal from three different regions were sent to each of three
laboratories. Each laboratory performed a duplicate analysis on each sample, with
the results shown below (measurements in µg g−1).

.

Organic compound Molar ratios

1:1 1:2 1:3

2,3-naphthalene dicarboxylic acid 91 84 83
Tannic acid 103 104 104
Phenol 95 90 94
Diphenylamine 119 162 222

Factor Low High

A – Agitation of flask Absent Present
C – Cleaning of flask Once Twice
T – Time of standing 1 hour 18 hours

Combination of factor levels Absorbance

1 0.099
a 0.084
c 0.097
t 0.076
ac 0.082
ta 0.049
tc 0.080
atc 0.051
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Verify that there is no significant sample–laboratory interaction, and test for sig-
nificant differences between the laboratories.

6 The optimum pH for an enzyme-catalysed reaction is known to lie between 5
and 9. Determine the pH values at which the first two experiments of an
optimization process should be performed in the following circumstances:

(a) The optimum pH needs to be known with a maximum range of 0.1 pH units.
(b) Only six experiments can be performed.

In (b) what is the degree of optimization obtained?

7 If the response at vertex 7 in the example on simplex optimization (Section 7.11)
is found to be 12, which vertex should be rejected in forming the new simplex
and what are the coordinates of the new vertex?

Sample Laboratory

1 2 3

A 5.1, 5.1 5.3, 5.4 5.3, 5.1
B 5.8, 5.4 5.4, 5.9 5.2, 5.5
C 6.5, 6.1 6.6, 6.7 6.5, 6.4
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8 Multivariate analysis

8.1 Introduction

Modern automatic analysis methods provide opportunities to collect large amounts
of data very easily. For example, in clinical chemistry it is routine to determine
many analytes for each specimen of blood, urine, etc. A number of chromatographic
and spectroscopic methods can provide analytical data on many components of a
single specimen. Situations like these, where several variables are measured for each
specimen, yield multivariate data. One use of such data in analytical chemistry is
in discrimination, for example determining whether an oil-spill comes from a par-
ticular source by analysing the fluorescence spectrum. Another use is classification,
for example dividing the stationary phases used in gas–liquid chromatography into
groups with similar properties by studying the retention behaviour of a variety
of solutes with different chemical properties. In each case it would be possible to
compare specimens by considering each variable in turn, but modern computers
allow more sophisticated processing methods where all the variables are considered
simultaneously.

Each specimen, or, to generalize, each object is characterized by a set of meas-
urements. When only two variables are measured this information can be repre-
sented graphically, as shown in Figure 8.1, where the coordinates of the point give
the values taken by the two variables. The point can also be defined by a vector,
called a data vector, drawn to it from the origin. Objects which have similar prop-
erties will have similar data vectors, that is they will lie close to each other in the
space defined by the variables. Such a group is called a cluster.

A graphical representation is less easy for three variables and no longer possible
for four or more: it is here that computer analysis is particularly valuable in finding
patterns and relationships. Matrix algebra is needed in order to describe the methods
of multivariate analysis fully. No attempt will be made to do this here. The aim is
to give an appreciation of the purpose and power of multivariate methods. Simple
data sets will be used to illustrate the methods and some practical applications will
be described.
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8.2 Initial analysis

Table 8.1 shows an example of some multivariate data. This gives the relative inten-
sities of fluorescence emission at four different wavelengths (300, 350, 400, 450 nm)
for 12 compounds, A–L. In each case the emission intensity at the wavelength of
maximum fluorescence would be 100. As a first step it may be useful to calculate the
mean and standard deviation for each variable. These are also shown in the table.

yi

Variable X

Va
ria

bl
e 

Y

(xi 
, yi )

xi 

ri

Figure 8.1 A diagram to illustrate a data vector, ri.xi and Yi are the values taken by the
variables X and Y respectively.

Table 8.1 The intensity of the fluorescence spectrum at
four different wavelengths for a number of compounds

Compound Wavelength (nm)

300 350 400 450

A 16 62 67 27
B 15 60 69 31
C 14 59 68 31
D 15 61 71 31
E 14 60 70 30
F 14 59 69 30
G 17 63 68 29
H 16 62 69 28
I 15 60 72 30
J 17 63 69 27
K 18 62 68 28
L 18 64 67 29

Mean 15.75 61.25 68.92 29.25

Standard deviation 1.485 1.658 1.505 1.485
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In addition, since we have more than one variable, it is possible to calculate a
product–moment (Pearson) correlation coefficient for each pair of variables. These
are summarized in the correlation matrix in Table 8.2, obtained using Minitab.

This shows that, for example, the correlation coefficient for the intensities at 300
and 350 nm is 0.914. The relationships between pairs of variables can be illustrated
by a draftsman plot as shown in Figure 8.2. This gives scatter diagrams for each pair
of variables. Both the correlation matrix and the scatter diagrams indicate that there
is some correlation between some of the pairs of variables.

8.3 Principal component analysis

One problem with multivariate data is that its sheer volume may make it difficult to
see patterns and relationships. For example, a spectrum would normally be character-
ized by several hundred intensity measurements rather than just four as in Table 8.1
and in this case the correlation matrix would contain hundreds of values. Thus the aim
of many methods of multivariate analysis is data reduction. Quite frequently there
is some correlation between the variables, as there is for the data in Table 8.1, and
so some of the information is redundant. Principal component analysis (PCA) is a
technique for reducing the amount of data when there is correlation present. It is
worth stressing that it is not a useful technique if the variables are uncorrelated.

.

Table 8.2 The correlation matrix for the data in Table 8.1

Correlations (Pearson)

300 350 400
350 0.914
400 -0.498 -0.464
450 -0.670 -0.692 0.458

Figure 8.2 Draftsman plot for the data in Table 8.1.
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The idea behind PCA is to find principal components Z1, Z2, . . . , Zn which are lin-
ear combinations of the original variables describing each specimen, X1, X2, . . . , Xn, i.e.

Z1 = a11X1 + a12X2 + a13X3 + · · · a1n Xn

Z2 = a21X1 + a22X2 + a23X3 + · · · a2n Xn

etc.

For example, for the data in Table 8.1 there would be four principal components
Z1, Z2, Z3 and Z4, each of which would be a linear combination of X1, X2, X3 and X4,
the fluorescence intensities at the given wavelengths. The coefficients, a11, a12, etc.
are chosen so that the new variables, unlike the original variables, are not correlated
with each other. Creating a new set of variables in this way may seem a pointless
exercise, since we obtain n new variables in place of the n original ones, and hence
no reduction in the amount of data. However, the principal components are also
chosen so that the first principal component (PC1), Z1, accounts for most of the vari-
ation in the data set, the second (PC2), Z2, accounts for the next largest variation
and so on. Hence, when significant correlation occurs the number of useful PCs is
much less than the number of original variables.

Figure 8.3 illustrates the method when there are only two variables and hence only
two principal components. In Figure 8.3(a) the principal components are shown by
the dotted lines. The principal components are at right-angles to each other, a prop-
erty known as orthogonality. Figure 8.3(b) shows the points referred to these two new
axes and also the projection of the points on to PC1 and PC2. We can see that in this
example Z1 accounts for most of the variation and so it would be possible to reduce
the amount of data to be handled by working in one dimension with Z1 rather than
in two dimensions with X1 and X2. (In practice we would not need to use PCA when
there are only two variables because such data are relatively easy to handle.)

Figure 8.3 shows that PCA is equivalent to a rotation of the original axes in such
a way that PC1 is in the direction of maximum variation, but with the angle
between the axes unchanged. With more than two variables it is not possible to

X1

X2(a)

PC2

PC1

PC2

PC1

(b)

Figure 8.3 (a) Diagram illustrating the two principal components, PC1 and PC2, for the two
variables, X1 and X2. (b) Points referred to the principal component axes. � indicates data
points, � their projection onto the axes.
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illustrate the method diagrammatically, but again we can think of PCA as a rotation
of the axes in such a way that PC1 is in the direction of maximum variation, PC2 is
in the direction of next greatest variation, and so on. It is often found that PC1 and
PC2 then account between them for most of the variation in the data set. As a result
the data can be represented in only two dimensions instead of the original n.

The principal components are obtained from the covariance matrix. The term
‘covariance’ (see Section 5.3) is a measure of the joint variance of two variables. The
covariance matrix for the data in Table 8.1 is

300 350 400 450
300 2.20455
350 2.25000 2.75000
400 −1.11364 −1.15909 2.26515
450 −1.47727 −1.70455 1.02273 2.20455

This shows that, for example, the covariance for the fluorescence intensities at 350
and 400 nm is −1.15909. The table also gives the variances of the fluorescence inten-
sities at each wavelength along the leading diagonal of the matrix. For example, for
the fluorescence intensities at 350 nm the variance is 2.75. In mathematical terms
the principal components are the eigenvectors of the covariance matrix and the
technique for finding these eigenvectors is called eigenanalysis. Corresponding to
each principal component (i.e. eigenvector) is an eigenvalue which gives the
amount of variance in the data set which is explained by that principal component.

.

Example 8.3.1

Carry out a principal component analysis of the data in Table 8.1.

This can be done using a variety of computer packages (for example Minitab,
SAS, The Unscrambler, etc.). The printout below was obtained from Minitab.

Principal Component Analysis

Eigenanalysis of the Covariance Matrix

Eigenvalue 6.8519 1.4863 0.8795 0.2066
Proportion 0.727 0.158 0.093 0.022
Cumulative 0.727 0.885 0.978 1.000

Variable PC1 PC2 PC3 PC4
300 0.529 −0.218 −0.343 0.745
350 0.594 −0.319 −0.324 −0.664
400 −0.383 −0.917 0.100 0.050
450 −0.470 0.099 −0.876 −0.041

The sum of the variances of the original variables can be calculated from the
covariance matrix. It is equal to 2.20455 + 2.75000 + 2.26515 + 2.20455 =
9.42425. It can be seen that the variances of the variables are similar, so each
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one accounts for about 25% of the total. The first line of the table shows how
the total variance is shared between the four principal components and the
second line shows each variance as a proportion of the total. Thus PC1 has a
variance of 6.8519, which is 72.7% of the total. This is a much greater propor-
tion than any of the original variables. PC2 accounts for 15.8% of the total
variance. The last line of the first block gives the cumulative proportion. It
shows, for example, that between them, PC1 and PC2 account for 88.5% of the
variation.

The bottom half of the table gives the coefficients of the principal compon-
ents. For example, the first principal component is Z1 = 0.529X1 + 0.594X2 −
0.383X3 − 0.470X4, where X1, X2, X3 and X4 are the intensities at 300, 350, 400 and
450 nm respectively. The values that the principal components take for each of
the compounds can be calculated by substituting the relevant values of X1, X2, X3

and X4 into this formula. For example, the value of PC1 for compound A is
equal to (0.529 × 16) + (0.594 × 62) − (0.383 × 67) − (0.470 × 27) = 6.941. This
value is sometimes referred to as the ‘score’ of PC1 for compound A. Figure 8.4
plots the scores of the first two principal components, calculated in this way, for
the compounds A–L. This diagram reveals that the compounds fall into two dis-
tinct groups, a fact which is not readily apparent from the original data.

Figure 8.4 The scores of the first two principal components for the data in Table 8.1.

Table 8.3 shows the original data rearranged so that compounds with similar
spectra are grouped together. The differences between the two groups are now
apparent. There is a difference at all four wavelengths, and the magnitudes of these
differences are similar. This corresponds to the fact that the coefficients for the first
principal component are similar in size. The top group in Table 8.3 has higher inten-
sities than the bottom group at 300 and 350 nm and the opposite is true at 400 and
450 nm. This corresponds to the fact that the first two coefficients of Z1 have the
opposite sign from the second two. Once two or more groups have been identified
by using PCA, it may be possible to explain the differences between them in terms
of chemical structure. Sometimes it may be possible to give a physical interpretation
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to the principal components. For this reason, principal components are sometimes
referred to as latent (i.e. hidden) variables.

In this example the values of the coefficients show that each of the variables con-
tributes to PC1 and at least three of them contribute to PC2. In other cases it is
found that some variables do not contribute significantly even to PC1. An import-
ant benefit of PCA is that such variables can then be rejected.

Sometimes the PCA is carried out by analysing the correlation matrix rather
than the covariance matrix, as was done in Example 8.3.1. The effect of using the
correlation matrix is to standardize each variable to zero mean and unit variance.
For standardized data, each variable has a variance of 1 and thus the sum of the
eigenvalues is equal to the number of variables. Standardization is desirable when
the variables are measured on different scales. Another reason for standardizing
would be that one variable has a much larger variance than the others and as a
result dominates the first principal component: standardizing avoids this by mak-
ing all variables carry equal weight. Neither of these considerations applies to the
data in Example 8.3.1. It should be noted that standardization can have a con-
siderable effect on the results of a PCA when the original variables have very dif-
ferent variances.

PCA is primarily a mathematical method for data reduction and it does not
assume that the data have any particular distribution. We have seen how PCA can
be used to reduce the dimensionality of a data set and how it may thus reveal
clusters. It has been used, for example, on the results of Fourier transform spec-
troscopy in order to reveal differences between hair from different racial groups
and for classifying different types of cotton fibre. In another example the con-
centrations of a number of chlorobiphenyls were measured in specimens from a
variety of marine mammals. A PCA of the results revealed differences between
species, differences between males and females, and differences between young
and adult individuals. PCA also finds application in multiple regression (see
Section 8.10).

.

Table 8.3 The data in Table 8.1 rearranged so that compounds with
similar spectra are grouped together

Compound Wavelength (nm)

300 350 400 450

A 16 62 67 27
G 17 63 68 29
H 16 62 69 28
J 17 63 69 27
K 18 62 68 28
L 18 64 67 29

B 15 60 69 31
C 14 59 68 31
D 15 61 71 31
E 14 60 70 30
F 14 59 69 30
I 15 60 72 30
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8.4 Cluster analysis

Although PCA may reveal groups of like objects, it is not always successful in doing so.
Figure 8.5 shows a situation in which the first principal component does not give
a good separation between two groups. In this section we turn to methods whose
explicit purpose is to search for groups.

Cluster analysis is a method for dividing a group of objects into classes so that
similar objects are in the same class. As in PCA, the groups are not known prior to
the mathematical analysis and no assumptions are made about the distribution of
the variables. Cluster analysis searches for objects which are close together in the
variable space. The distance, d, between two points in n-dimensional space with
coordinates (x1, x2, . . . , xn) and (y1, y2, . . . , yn) is usually taken as the Euclidean
distance defined by

For example the distance between the compounds E and F in Table 8.3 (if the
unstandardized variables are used) is given by:

As in PCA, a decision has to be made as to whether or not the data are standardized.
Standardizing the data will mean that all the variables are measured on a common
scale so that one variable does not dominate the others.

There are a number of methods for searching for clusters. One method starts by
considering each object as forming a ‘cluster’ of size one, and compares the distances
between these clusters. The two points which are closest together are joined to form
a new cluster. The distances between the clusters are again compared and the two
nearest clusters combined. This procedure is repeated and, if continued indefinitely,
will group all the points together. There are a variety of ways of computing the dis-
tance between two clusters which contain more than one member. The simplest con-
ceptually is to take the distance between two clusters as the distance between nearest
neighbours. This is called the single linkage method. It is illustrated in Figure 8.6.
The successive stages of grouping can be shown on a dendrogram as in Figure 8.7.
The vertical axis can show either the distance, dij, between two points i and j when
they are joined, or alternatively the similarity, sij, defined by sij = 100(1 − dij/dmax)

d = √(14 − 14)2 + (60 − 59)2 + (70 − 69)2 + (30 − 30)2 = √2

d = √(x1 − y1)
2 + (x2 − y2)

2 + . . . + (xn − yn)
2

X1

X2

PC1

PC2

Figure 8.5 A situation in which the first principal component does not give a good separation
between two groups.
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Figure 8.7 A dendrogram illustrating the stages of clustering for Figure 8.6.

Figure 8.6 Stages in clustering: the dotted lines enclose clusters.
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where dmax is the maximum separation between any two points. The resulting dia-
grams look the same but their vertical scales differ. The stage at which the grouping
is stopped, which determines the number of clusters in the final classification, is a
matter of judgement for the person carrying out the analysis.

Example 8.4.1

Apply the single linkage method to the (unstandardized) data in Table 8.1.

The printout below was obtained using Minitab. With this software the linkages
continue until there is only one cluster, unless the user specifies otherwise.

Hierarchical Cluster Analysis of Observations

Euclidean Distance, Single Linkage

Amalgamation Steps

Step Number of Similarity Distance Clusters New Number of
clusters level level joined cluster Obs in new

cluster

1 11 80.20 1.414 5 6 5 2
2 10 80.20 1.414 3 5 3 3
3 9 75.75 1.732 7 12 7 2
4 8 75.75 1.732 7 11 7 3
5 7 75.75 1.732 8 10 8 2
6 6 75.75 1.732 4 9 4 2
7 5 75.75 1.732 2 3 2 4
8 4 71.99 2.000 7 8 7 5
9 3 71.99 2.000 2 4 2 6
10 2 68.69 2.236 1 7 1 6
11 1 49.51 3.606 1 2 1 12

The dendrogram in Figure 8.8 illustrates the stages of the linkage. The vertical
scale gives the distance between the two groups at the point when they were
combined. The table above shows that the first two points to be joined were
5 (compound E) and 6 (compound F) with a separation of 1.414 (= as calcu-
lated earlier). The reader can verify that the distance of C from F is also so the
next stage is to join point 3 to the cluster consisting of points 5 and 6. The pro-
cess continues until all the points are in one cluster. However, if we ‘cut the tree’,
i.e. stop the grouping, at the point indicated by the dotted line in Figure 8.8, this
analysis suggests that the compounds A–L fall into two distinct groups. Not sur-
prisingly, the groups contain the same members as they did with PCA.

√2
√2

The method of cluster analysis described here is hierarchical, meaning that
once an object has been assigned to a group the process cannot be reversed. For non-
hierarchical methods the opposite is the case. One such method is the k-means
method which is available, for example, in Minitab. This starts by either dividing the
points into k clusters or alternatively choosing k ‘seed points’. Then each individual is
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assigned to the cluster (or seed point) whose centroid is nearest. When a cluster loses
or gains a point the position of the centroid is recalculated. The process is continued
until each point is in the cluster whose centroid is nearest.

This method has the disadvantage that the final grouping reflects the initial
choice of clusters or seed points. Another disadvantage is that the value of k has to
be chosen in advance. Many methods have been suggested for deciding on the best
value of k but none of them is really satisfactory.

Cluster analysis has been used to classify the many phases used in gas–liquid
chromatography. A small preferred set of phases can then be selected by taking one
phase from each cluster: this provides a range of stationary phases, each with dis-
tinctive separation characteristics. Another application is the classification of antibi-
otics in terms of their activity against various types of bacteria in order to elucidate
the relationship between biological activity and molecular structure. A further
recent application of cluster analysis is the classification of wine vinegars on the
basis of a variety of organic and inorganic constituents.

8.5 Discriminant analysis

The methods described so far in this chapter have helped us to see whether objects fall
into groups when we have no prior knowledge of the groups to be expected. Such
methods are sometimes called unsupervised pattern recognition. We will now turn
to so-called supervised pattern recognition. Here we start with a number of objects
whose group membership is known, for example apple juices extracted from different
varieties of fruit. These objects are sometimes called the learning or training objects.
The aim of supervised pattern recognition methods is to use these objects to find a rule
for allocating a new object of unknown group to the correct group.

The starting point of linear discriminant analysis (LDA) is to find a linear
discriminant function (LDF), Y, which is a linear combination of the original
variables X1, X2, etc.:

Y = a1X1 + a2X2 + · · · anXn

.

Figure 8.8 A dendrogram for the data in Table 8.1.
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The original n measurements for each object are combined into a single value of Y,
so the data have been reduced from n dimensions to one dimension. The coefficients
of the terms are chosen in such a way that Y reflects the difference between groups as
much as possible: objects in the same group will have similar values of Y and objects
in different groups will have very different values of Y. Thus the linear discriminant
function (LDF) provides a means of discriminating between the two groups.

The simplest situation is that in which there are two classes and two variables, X1

and X2, as illustrated in Figure 8.9(a). This diagram also shows the distribution of the
individual variables for each group in the form of dot-plots. For both the variables,
there is a considerable overlap in the distributions for the two groups. It can be
shown that the LDF for these data is Y = 0.91X1 + 0.42X2. This LDF is shown by the
line labelled Y in Figure 8.9(b), and the value which the function takes for a given
point is given by the projection of the point on to this line. Figure 8.9(b) shows the
dot-plots of the LDF, Y, for each group. It can be seen that there is no overlap
between the distribution of Y for the two groups. This means that Y is better at dis-
criminating between the groups than the original variables.

An unknown object will be classified according to its Y value. An initial com-
mon sense approach would be to compare Y with and , the Y values for the
means of the two groups. If Y is closer to than to then the object belongs to
group 1, otherwise it belongs to group 2. For these data, = 3.15 and = 10.85.
So if Y −3.15 < 10.85 − Y, that is Y < 7.0 we classify the object in group 1, otherwise
we classify it in group 2. This method is satisfactory only if the two groups have
similarly shaped distributions. Also, if experience shows that a single object is more
likely to belong to one of the groups rather than the other, then the decision rule
will need to be modified. Software such as Minitab permits such a modification.

The success of LDA at allocating an object correctly can be tested in several ways.
The simplest is to use the classification rule to classify each object in the group
and to record whether the resulting classification is correct. The table summarizing
the results of this procedure is sometimes called the confusion matrix (always

Y2Y1

Y2Y1

Y2Y1

Figure 8.9 (a) Two groups and the distributions of each variable for each group. (b) The
distribution of the linear discriminant function for each group.
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displayed in Minitab). This method tends to be over-optimistic since the
object being classified was part of the set which was used to form the rule. A better
method divides the original data into two groups chosen at random. The first
group, known as the training set, is used to find the LDF. Then the objects in
the second group (the test set) are allocated using this function and a success
rate found. A third method, which uses the data more economically, is cross-
validation, sometimes called the ‘leave one out method’. As the latter name sug-
gests, this finds the LDF with one object omitted and checks whether this LDF
then allocates the omitted object correctly. The procedure is then repeated for each
object in turn and again a success rate can be found. This method is an option in
Minitab.

If the distributions do not have similar shapes, then a modification of LDA
known as quadratic discriminant analysis (QDA) may be used. This method
assumes that the two groups have multivariate normal distributions but with differ-
ent variances.

LDA and QDA can both be extended to the situation where there are more
than two groups of objects. To avoid complex decision rules of the type given above
(if y − 3.15 < 10.85 − y, etc.) many programs assume a multivariate normal distribu-
tion and find a new function, which includes a constant term, for each group. From
these functions a score is calculated for each new object and the object is assigned to
the group for which the score is highest. This is illustrated in the following example.

.

Example 8.5.1

The table below gives the concentration in g l−1 of sucrose, glucose, fructose and
sorbitol in apple juice from three different sources, A, B and C. Carry out an
LDA and evaluate the method using cross-validation.

Variety Sucrose Glucose Fructose Sorbitol

A 20 6 40 4.3
A 27 11 49 2.9
A 26 10 47 2.5
A 34 5 47 2.9
A 29 16 40 7.2
B 6 26 49 3.8
B 10 22 47 3.5
B 14 21 51 6.3
B 10 20 49 3.2
B 8 19 49 3.5
C 8 17 55 5.3
C 7 21 59 3.3
C 15 20 68 4.9
C 14 19 74 5.6
C 9 15 57 5.4

Classify an apple juice with 11, 23, 50 and 3.9 g l−1 of sucrose, glucose, fructose
and sorbitol, respectively.
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The analysis below was obtained using Minitab.

Discriminant Analysis

Linear Method for Response: Variety
Predictors: Sucrose Glucose Fructose Sorbitol

Group A B C
Count 5 5 5

Summary of Classification

Put into . . . .True Group . . . .

Group A B C

A 5 0 0
B 0 5 0
C 0 0 5
Total N 5 5 5
N Correct 5 5 5
Proportion 1.000 1.000 1.000

N = 15 N Correct = 15 Proportion Correct = 1.000

Summary of Classification with Cross-validation

Put into . . . .True Group . . . .

Group A B C

A 5 0 0
B 0 5 0
C 0 0 5
Total N 5 5 5
N Correct 5 5 5
Proportion 1.000 1.000 1.000

N = 15 N Correct = 15 Proportion Correct = 1.000

Linear Discriminant Function for Group

A B C

Constant −44.19 −74.24 −114.01
Sucrose 0.39 −1.66 −2.50
Glucose 0.42 1.21 0.54
Fructose 1.46 2.53 3.48
Sorbitol 2.19 3.59 5.48

The ‘summary of classification’ gives the confusion matrix and shows a 100%
success rate. The ‘summary of classification with cross-validation’ also shows a
100% success rate.

For the new apple juice the linear discriminant scores for each group have
values:

Group A: −44.19 + 0.39 × 11 + 0.42 × 23 + 1.46 × 50 + 2.19 × 3.9 = 51.301

Group B: −74.24 − 1.66 × 11 + 1.21 × 23 + 2.53 × 50 + 3.59 × 3.9 = 75.831

Group C: −114.01 − 2.5 × 11 + 0.54 × 23 + 3.48 × 50 + 5.48 × 3.9 = 66.282

The score for group B is highest, so the unknown apple juice is presumed to
have come from source B.
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Unlike the other procedures described in this chapter, standardizing the variables has
no effect on the outcome of linear discriminant analysis: it merely re-scales the axes. It
may, however, be useful to work with standardized variables in order to decide which
variables are important in providing discrimination between the groups. As a general
guide it will be those variables which have the larger coefficients in the linear discrimi-
nant functions. Once these variables have been identified, the performance of the
method with fewer variables can be investigated to see whether a satisfactory discrimina-
tion between the groups can still be achieved (see Exercise 1 at the end of this chapter).

Some recent applications of LDA include the classification of vegetable oils using
the data obtained from an array of gas sensors and the use of proton magnetic
resonance spectra to discriminate between normal and cancerous ovarian tissue.

Although the above method appears to analyse all the groups simultaneously, the
method is actually equivalent to analysing the groups pairwise. An alternative
method for more than two groups which genuinely analyses them simultaneously
is canonical variate analysis (CVA). This is an extension of LDA which finds a
number of canonical variates Y1, Y2, etc. (which are again linear combinations of
the original variables). As with LDA, Y1 is chosen in such a way that it reflects the
difference between the groups as much as possible. Then Y2 is chosen so that it
reflects as much of the remaining difference between the groups as possible, subject
to the constraint that there is no correlation between Y1 and Y2, and so on. CVA
could be thought of as PCA for groups but, unlike PCA, the results are not depen-
dent on scale, so no pre-treatment of the data is necessary.

The following section describes an alternative method which can be used when
there are two or more groups.

8.6 K-nearest neighbour method

This is a conceptually simple method for deciding how to classify an unknown
object when there are two or more groups of objects of known class. It makes no
assumption about the distribution in the classes and can be used when the groups
cannot be separated by a plane, as illustrated in Figure 8.10. In its simplest form an

.

X2

X1

Group 1

Group 2

Figure 8.10 Two groups which cannot be separated by a plane.
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unknown object is allocated to the class of its nearest neighbour. Alternatively, the
K nearest neighbours (where K is a small integer) are taken and the class member-
ship is decided by a voting scheme. For example, provided K is odd, the unknown
object can be allocated to the class of the majority of its K nearest neighbours. In
more sophisticated versions, different weightings can be given to the neighbours,
depending on their relative distances.

8.7 Disjoint class modelling

The emphasis in the methods described in Sections 8.5 and 8.6 has been on trying
to find a boundary between two or more classes, so that an unknown object may be
allocated to the correct class. However, the situation may arise when the unknown
object does not belong to any of the classes being considered. For example, in
Example 8.5.1, it was assumed that the unknown apple juice came from one of the
sources A, B or C. However it might have come from none of these sources but we
would have still (incorrectly) allocated it to one of them. A different approach is
needed if this sort of error is to be avoided. Instead of having a rule which discrimin-
ates between classes, we need a rule which allows us to discriminate between
membership and non-membership of a given class. This is done by making a separ-
ate model for each class and using the model in order to test whether the unknown
object could be a member of the class. This is called disjoint class modelling. For
example, if the number of variables is small, each class might be modelled by a mul-
tivariate normal distribution. With more variables, some data reduction needs to be
carried out first. One such method, called SIMCA (Soft Independent Modelling
of Class Analogy), makes a model of each class in terms of the first few principal
components for that class.

8.8 Regression methods

We turn now to the situation in which the variables for each sample can be divided
into two groups: response variables and predictor variables. Such a situation arises
in multivariate calibration: an example is the determination of the concentration of
constituents in a mixture of analytes by spectral analysis. Here the concentrations
of the analytes are the predictor variables, and the absorbances at the different wave-
lengths are the response variables. Multivariate analysis is appropriate when the
spectra of the constituents overlap so that their concentrations cannot be deter-
mined without previous chemical separation. In order to calibrate the system a
number of specimens containing different mixtures of the analytes are taken and
the spectrum is measured for each specimen. Table 8.4 gives an illustrative data set.
It shows the UV absorbance (×100) at six different wavelengths for 10 calibration
specimens containing different concentrations of three constituents of interest. (In
practice, of course, the absorbance would be recorded at hundreds of wavelengths.)
What we require is a relationship between these two groups of variables that allows
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Table 8.4 The UV absorbance (×100) recorded at six different wavelengths, A1, A2, etc., of 10 specimens
(1–10) and the measured concentrations (mM), c1, c2 and c3, of three constituents of interest

Specimen c1 c2 c3 A1 A2 A3 A4 A5 A6

A 0.89 0.02 0.01 18.7 26.8 42.1 56.6 70.0 83.2
B 0.46 0.09 0.24 31.3 33.4 45.7 49.3 53.8 55.3
C 0.45 0.16 0.23 30.0 35.1 48.3 53.5 59.2 57.7
D 0.56 0.09 0.09 20.0 25.7 39.3 46.6 56.5 57.8
E 0.41 0.02 0.28 31.5 34.8 46.5 46.7 48.5 51.1
F 0.44 0.17 0.14 22.0 28.0 38.5 46.7 54.1 53.6
G 0.34 0.23 0.20 25.7 31.4 41.1 50.6 53.5 49.3
H 0.74 0.11 0.01 18.7 26.8 37.8 50.6 65.0 72.3
I 0.75 0.01 0.15 27.3 34.6 47.8 55.9 67.9 75.2
J 0.48 0.15 0.06 18.3 22.8 32.8 43.4 49.6 51.1

the concentrations of the analytes in a new specimen to be predicted from the spec-
trum of the new specimen.

In the classical approach to this problem, the intensities would be treated as the
dependent variables and the concentrations as the independent variables. The tech-
niques of linear regression, which were described in Chapter 5, can be used to find
a set of regression equations relating the absorbance Ai at each wavelength to the
concentrations of the analytes. Assuming that absorbance at each wavelength is the
sum of the absorbances of the individual constituents, the regression equations take
the form Ai = b0i + b1ic1 + b2ic2 + b3ic3, where the coefficients for each constituent are
dependent on wavelength.

In practice this simple additive model may not describe the situation completely.
There are two reasons for this. The first is that the substances of interest may inter-
fere with each other chemically in a way that affects their spectra. The second is that
the specimens from ‘real-life’ sources may well contain substances other than those
of interest, which make a contribution to the absorbance. In these cases it is better
to use inverse calibration and calibrate with ‘real-life’ specimens. The term ‘inverse
calibration’ means that the analyte concentration is modelled as a function of the
spectrum (i.e. the reverse of the classical method). For the data in Table 8.4 the
regression equations take the form ci = b0i + b1iA1 + b2iA2 + . . . + b6iA6. Inverse
calibration is appropriate because the concentrations can no longer be considered as
controlled variables.

The following sections describe a number of methods for predicting one set of
variables from another set of variables. In each case the inverse calibration method
is illustrated using the data in Table 8.4.

8.9 Multiple linear regression (MLR)

Multiple linear regression (MLR) involves finding regression equations in the form
ci = b0i + b1iA1 + b2iA2 + . . . + b6iA6. In order to carry out MLR the number of calibra-
tion specimens must be greater than the number of predictors. This is true for the
data in Table 8.4 where there are 10 specimens and six predictors.
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Example 8.9.1

Find the regression equations for predicting c1, c2 and c3 from A1, A2, etc., for
the data in Table 8.4.

The printout below was obtained using Minitab.

Regression Analysis: c1 versus A1, A2, A3, A4, A5, A6

The regression equation is
c1 = 0.0501 + 0.00252A1 − 0.00939A2 + 0.00375A3 − 0.00920A4 − 0.00106A5

+ 0.0179A6

Predictor Coef SE Coef T P
Constant 0.05010 0.08945 0.56 0.615
A1 0.002525 0.008376 0.30 0.783
A2 −0.009387 0.008811 −1.07 0.365
A3 0.003754 0.005852 0.64 0.567
A4 −0.009197 0.005140 −1.79 0.172
A5 −0.001056 0.005373 −0.20 0.857
A6 0.017881 0.002249 7.95 0.004

S = 0.0188690 R-Sq = 99.6% R-Sq(adj) = 98.9%

PRESS = 0.0274584 R-Sq(pred) = 90.55%

This printout gives the regression equation for predicting c1 from A1, A2, etc., as

c1 = 0.0501 + 0.00252A1 − 0.00939A2 + 0.00375A3 − 0.00920A4 − 0.00106A5

+ 0.0179A6

A similar analysis can be carried out in order to find the equations for predicting
c2 and c3. These are

c2 = 0.027 + 0.0067A1 − 0.0007A2 − 0.0184A3 + 0.0141A4 + 0.0160A5 − 0.0152A6

c3 = −0.0776 + 0.00168A1 + 0.00754A2 + 0.00668A3 + 0.00221A4 − 0.00510A5

− 0.00237A6

As with univariate regression, an analysis of the residuals is important in
evaluating the model. The residuals should be randomly and normally dis-
tributed. Figure 8.11 shows a plot of the residuals against the fitted values for
c1: the residuals do not show any particular pattern. Figure 8.12 plots the pre-
dicted values against the measured values. The points are reasonably close to a
straight line with no obvious outliers.

The prediction performance can be validated by using a cross-validation
(‘leave-one-out’) method. The values for the first specimen (specimen A) are
omitted from the data set and the values for the remaining specimens (B–J) are
used to find the regression equation of, e.g., c1 on A1, A2, etc. Then this new
equation is used to obtain a predicted value of c1 for the first specimen. This
procedure is repeated, leaving each specimen out in turn. Then for each speci-
men the difference between the actual and predicted value is calculated. The
sum of the squares of these differences is called the predicted residual error
sum of squares or PRESS for short: the closer the value of the PRESS statistic
to zero, the better the predictive power of the model. It is particularly useful
for comparing the predictive powers of different models. For the model fitted
here Minitab gives the value of PRESS as 0.0274584.
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Minitab also gives values of t (called ‘T ’ in the Minitab printout) and associated p
(called ‘P’) values for each of the coefficients in the regression equation. This tests the
null hypothesis that each coefficient is zero, given that all the other variables are present
in the model. Inspection of these suggests that any one of A1 to A5 could be left out of
the model without reducing its effectiveness. We could, if we wished, try all possible
combinations of predictor variables and find the model that predicts most success-
fully with the minimum number of predictor variables, using the PRESS statistic to
compare the models. This might seem to be the course that we would have to follow
when we are dealing with a spectrum containing measurements at hundreds of wave-
lengths, because in this case the number of predictor variables far exceeds the num-
ber of specimens. In order to form a regression equation we would have to select the
absorbances at only a small proportion of the wavelengths. However, this is not the
best way to proceed because it means that a large amount of information is discarded.
The next section describes a method that makes better use of the data.

.

Figure 8.11 A plot of the residuals against the fitted values for Example 8.9.1.
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Figure 8.12 A plot of the predicted values of c1 against the measured values for
Example 8.9.1.
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8.10 Principal components regression (PCR)

The basis of principal components regression (PCR) is to reduce the number of pre-
dictor variables by using their first few principal components rather than the origi-
nal variables. The method works well when there is a considerable degree of
correlation between the predictor variables. This is usually the case in inverse cali-
bration: it is true for the data in Table 8.4, as can be seen from the correlation matrix
in Table 8.5. In this case only a few of the principal components are needed to
describe most of the variation in the data. These principal components are uncorre-
lated (see Section 8.3).

Table 8.5 Correlation matrix for the data in Table 8.4

c1 c2 c3 A1 A2 A3 A4 A5

c2 -0.637
c3 -0.717 0.088
A1 -0.482 -0.116 0.947
A2 -0.260 -0.194 0.832 0.941
A3 -0.001 -0.413 0.677 0.841 0.936
A4 0.625 -0.355 -0.096 0.148 0.422 0.598
A5 0.899 -0.434 -0.541 -0.293 -0.002 0.227 0.857
A6 0.977 -0.608 -0.603 -0.346 -0.089 0.161 0.771 0.960

Example 8.10.1

Carry out a principal component regression (PCR) of the data in Table 8.4 in
order to obtain an equation for predicting c1 from the spectrum.

(The reader needs to be familiar with the material in Section 8.3 before read-
ing the solution to this example.)

This can be done using a variety of computer packages (for example, The
Unscrambler). In Minitab it is necessary to first carry out a principal compon-
ents analysis (PCA) and then to perform the regression.

The printout below was obtained from Minitab and shows the results of a
PCA of the absorbances in Table 8.4.

PCR is also a useful technique when the predictor variables are very highly corre-
lated: this can cause mathematical complications with MLR, resulting in unreliable
predictions.

The following example shows the steps involved in carrying out PCR using the
data in Table 8.4. Obviously there is no need for PCR when there are so few predic-
tor variables: the purpose of the example is to illustrate the method.
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Principal Component Analysis: A1, A2, A3, A4, A5, A6

Eigenanalysis of the Covariance Matrix

Eigenvalue 210.01 73.86 4.62 0.93 0.79 0.28
Proportion 0.723 0.254 0.016 0.003 0.003 0.001
Cumulative 0.723 0.977 0.993 0.996 0.999 1.000

Variable PC1 PC2 PC3 PC4 PC5 PC6
A1 −0.124 −0.592 −0.253 −0.048 0.340 0.672
A2 −0.017 −0.513 0.048 0.196 0.493 −0.673
A3 0.066 −0.571 −0.102 0.128 −0.793 −0.118
A4 0.244 −0.239 0.575 −0.743 −0.002 −0.002
A5 0.510 −0.042 0.545 0.602 0.059 0.276
A6 0.813 0.043 −0.544 −0.168 0.091 −0.075

This shows that between them the first three principal components account
for over 99% of the variation in the absorbances and so the regression will be
carried out on these three components.

The scores (see Example 8.3.1) for these three principal components can be
calculated using Minitab and are given below.

Specimen Z1 Z2 Z3

A 117.1 −61.7 17.7
B 83.0 −73.4 16.6
C 89.0 −76.1 20.8
D 86.8 −58.4 18.3
E 76.2 −74.0 14.5
F 81.9 −60.5 19.0
G 78.7 −67.0 22.3
H 104.0 −58.1 17.9
I 108.6 −74.1 18.1
J 76.9 −51.5 17.3

Then the regression equation of c1 on Z1, Z2 and Z3 is found (using Minitab):

Regression Analysis: c1 versus z1, z2, z3

The regression equation is
c1 = 0.0685 + 0.0119Z1 + 0.00419Z2 − 0.0171Z3

Predictor Coef SE Coef T P
Constant 0.06849 0.06571 1.04 0.337
Z1 0.0118502 0.0003480 34.05 0.000
Z2 0.0041884 0.0005868 7.14 0.000
Z3 −0.017058 0.002345 −7.27 0.000

S = 0.0151299 R-Sq = 99.5% R-Sq(adj) = 99.3%

PRESS = 0.00301908 R-Sq(pred) = 98.96%
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As has already been stated, this example serves to illustrate the method. However,
even with a spectrum containing absorbances at several hundred wavelengths, we
would expect to find that only a few principal components are needed to describe
most of the variation, provided that the absorbances at the different wavelengths are
correlated.

PCR utilizes only the correlations between the predictor variables. If we look at
Table 8.5 we see that there is also considerable correlation between the predictor and
the response variables. The following section describes a regression method that
makes use of both types of correlation.

8.11 Partial least squares (PLS) regression

Like PCR, partial least squares regression (PLS regression) uses linear combinations
of the predictor variables rather than the original variables. However, the way in
which these linear combinations is chosen is different. In PCR the principal com-
ponents are chosen so that they describe as much of the variation in the predictors
as possible, irrespective of the strength of the relationships between the predictor
and the response variables. In PLS, variables that show a high correlation with the
response variables are given extra weight because they will be more effective at pre-
diction. In this way linear combinations of the predictor variables are chosen that
are highly correlated with the response variables and also explain the variation in
the predictor variables. As with PCR, it is hoped that only a few of the linear com-
binations of the predictor variables will be required to describe most of the variation.

As for MLR, an analysis of the residuals should be carried out. The PRESS statis-
tic is 0.00301908, lower than it was for the MLR. Here the T values indicate
that all the coefficients other than the constant term are significantly different
from zero. (At this stage the possibility of fitting a model with zero intercept
could be explored.)

The regression equation is

c1 = 0.0685 – 0.0119Z1 + 0.00419Z2 − 0.171Z3

If required, an expression for c1 in terms of the absorbances can be obtained by
substituting expressions for Z1, Z2 and Z3 in terms of A1, A2, etc. For example,
referring back to the PCA gives

Z1 = −0.124A1 − 0.017A2 + 0.066A3 + 0.244A4 + 0.510A5 + 0.813A6

and similarly for Z2 and Z3. This leads to the equation

c1 = 0.06849 + 0.00037A1 − 0.00317A2 + 0.00014A3 − 0.00792A4 − 0.00343A5

+ 0.01909A6

A similar analysis can be carried out to obtain equations for c2 and c3.

SCA_C08.qxd  3/29/05  4:03 PM  Page 234



Partial least squares (PLS) regression 235

..

Example 8.11.1

Carry out PLS regression on the data in Table 8.4 in order to obtain an equa-
tion for predicting c1.

PLS can be carried out using a number of computer packages (for example,
Minitab and The Unscrambler). The following printout was obtained from
Minitab.

PLS Regression: c1 versus A1, A2, A3, A4, A5, A6

Number of components selected by cross-validation: 4
Number of observations left out per group: 1
Number of components cross-validated: 6

Analysis of Variance for c1

Source DF SS MS F P
Regression 4 0.289476 0.0723690 333.84 0.000
Residual Error 5 0.001084 0.0002168
Total 9 0.290560

Model Selection and Validation for c1

Components X Variance Error SS R-Sq PRESS R-Sq (pred)
1 0.457325 0.0287984 0.900887 0.0469069 0.838564
2 0.957200 0.0255230 0.912159 0.0511899 0.823823
3 0.988793 0.0021123 0.992730 0.0078758 0.972894
4 0.992990 0.0010839 0.996270 0.0052733 0.981851
5 0.0010724 0.996309 0.0186933 0.935664
6 0.0010681 0.996324 0.0274584 0.905498

c1 c1 standardized
Constant 0.0426293 0.00000
A1 0.0039542 0.11981
A2 −0.0111737 −0.27695
A3 0.0038227 0.10753
A4 −0.0092380 −0.22261
A5 −0.0003408 −0.01425
A6 0.0176165 1.16114

The results have been evaluated using the ‘leave-one-out’ method (see
Example 8.9.1). The first block in the printout shows that using this method
of cross-validation the number of components required to model c1 is four. The
third block in the table gives the reason for this choice: it shows that value of
the PRESS is lowest for a four-component model, taking the value 0.0052733.
(This, incidentally, is higher than it was for the PCR model.) Note that the pre-
dictive value of the model, as measured by the PRESS value, decreases if more
components are added. The first column of the last block in the table gives the
coefficients in the equation for this model. So the regression equation is

c1 = 0.0426 + 0.0040A1 − 0.0112A2 + 0.0038A3 − 0.0092A4 − 0.0003A5 + 0.0176A6

Again an analysis of the residuals should be carried out.
Equations for predicting c2 and c3 can be found in a similar way.
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It is interesting to compare the equations for c1 obtained by MLR, PCR and PLS.
These are

MLR: c1 = 0.0501 + 0.00252A1 − 0.00939A2 + 0.00375A3 − 0.00920A4 − 0.00106A5

+ 0.0179A6

PCR: c1 = 0.06849 + 0.00037A1 − 0.00317A2 + 0.00014A3 − 0.00792A4 − 0.00343A5

+ 0.01909A6

PLS: c1 = 0.0426 + 0.0040A1 − 0.0112A2 + 0.0038A3 − 0.0092A4 − 0.0003A5 + 0.0176A6

Although the coefficients differ from one equation to another, they have the same
sign in each equation and in all three equations the term in A6 dominates.

In Example 8.11.1, each response variable has been treated separately. This is
known as PLS1. The response variables can also be treated collectively. This is known
as PLS2. It is usually only used when the response variables are correlated with each
other. There is often little to choose between the two methods in terms of predic-
tive ability.

Sections 8.9 to 8.11 have given a brief description of methods for making a regres-
sion model for multivariate calibration. To summarize, MLR would rarely be used
because it cannot be carried out when the number of predictor variables is greater
than the number of specimens. Rather than select a few of the predictor variables, it
is better to reduce their number to just a few by using PCR or PLS. These methods
give satisfactory results when there is correlation between the predictor variables.
The preferred method in a given situation will depend on the precise nature of the
data: an analysis can be carried out by each method and the results evaluated in
order to find which method performs better. For example, for the data in Table 8.4
PCR performed better than PLS as measured by the PRESS statistic.

Many recent applications of PCR and PLS have arisen in molecular spec-
troscopy, where strongly overlapping absorption and emission spectra often arise,
even in simple mixtures. For example, a pesticide and its metabolites have been
successfully analysed using Fourier transform infra-red spectroscopy and a mix-
ture of very similar phenols was resolved by means of their fluorescence excita-
tion spectra.

8.12 Artificial neural networks

No chapter on modern chemometric methods would be complete without a men-
tion of artificial neural networks (ANN). In a simple form these attempt to imitate
the operation of neurons in the brain. Such networks have a number of linked lay-
ers of artificial neurons, including an input and an output layer (see Figure 8.13).
The measured variables are presented to the input layer and are processed, by one or
more intermediate (‘hidden’) layers, to produce one or more outputs. For example,
in inverse calibration, the inputs could be the absorbances at a number of wave-
lengths and the output could be the concentration of an analyte. The network is
‘trained’ by an interactive procedure using a training set. Considering the example
above, for each member of the training set the neural network predicts the concen-
tration of the analyte. The discrepancy between the observed and predicted values
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is used to adjust internal parameters in the neural network. These two steps, predic-
tion and adjustment, are repeated until the desired degree of accuracy is achieved.
The performance of the network can be evaluated using a test set. It is important not
to overfit the training set: if too high a degree of accuracy is achieved with the train-
ing set, the network will perform much less well with the test set.

Unlike MLR, PCR and PLS, the neural network does not start by assuming a parti-
cular type of mathematical relationship between the input and output variables. For
this reason, it is particularly useful when the underlying mathematical model is
unknown or uncertain. For example, it is appropriate in multivariate calibration
when the analytes interfere with each other strongly. Neural networks find applica-
tion in many other areas, for example classification, pattern recognition and process
control.

Neural networks are versatile and flexible tools for modelling complex relation-
ships between variables. However, there are some drawbacks to their use, which are
related to the fact that they make no assumptions about the underlying model. This
means that a larger training set is required than for the other techniques described
in this chapter. Also there is no direct way to extract information about a suitable
mathematical model for the relationship between the variables or to estimate confi-
dence intervals mathematically.

8.13 Conclusions

The aim of this chapter has been to give an introduction to the methods of mul-
tivariate analysis which are most commonly used in analytical chemistry. In most
cases there is a choice of several different multivariate methods which could be

.

Input layer

Hidden layer

Output layer

Figure 8.13 An example of a neural network.
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applied to the same set of data. For example, in cluster analysis there is a choice
between a hierarchical and a non-hierarchical approach, and each of these
approaches offers a choice of several different methods. In multivariate calibration
there is a choice between MLR, PCR and PLS regression. In addition, several
approaches might be tried in the initial analysis. For example, cluster analysis
and principal components analysis might be used prior to linear discriminant
analysis, in order to see whether the objects being analysed fall naturally into
groups.

There are many other methods than those described. Finally we should
remember that multivariate analysis is a rapidly developing field, with new meth-
ods always becoming available as the power and speed of desktop computers
grow.
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Exercises

1 For the data in Example 8.5.1 carry out a linear discriminant analysis working
with the standardized variables. Hence identify the two variables which are most
effective at discriminating between the two groups. Repeat the discriminant ana-
lysis with these two variables. Use the cross-classification success rate to compare
the performance using two variables with that using all four variables.

2 The data below give the concentration (in mg kg−1) of four elements found in
samples of rice. The rice was one of two types: polished (P) or unpolished (U), was
of one of two varieties (A or B) and was grown in either the wet season (W) or the
dry season (D).

Variety Type Season P K Ni Mo

A U D 3555 2581 0.328 0.535
A U D 3535 2421 0.425 0.538
A U D 3294 2274 0.263 0.509
A P D 1682 1017 0.859 0.494
A P D 1593 1032 1.560 0.498
A P D 1554 984 1.013 0.478
B U D 3593 2791 0.301 0.771
B U D 3467 2833 0.384 0.407
B P D 2003 1690 0.216 0.728
B P D 1323 1327 0.924 0.393
A U W 3066 1961 0.256 0.481
A P W 1478 813 0.974 0.486
B U W 3629 2846 1.131 0.357
B U W 3256 2431 0.390 0.644
B P W 2041 1796 0.803 0.321
B P W 1745 1383 0.324 0.619

(Adapted from Phuong, T. D., Choung, P. V., Khiem, D. T. and Kokot, S. 1999.
Analyst 124: 553)

(a) Carry out a cluster analysis. Do the samples appear to fall into groups? What
characteristic is important in determining group membership?

(b) Calculate the correlation matrix. Which pairs of variables are strongly corre-
lated? Which variable(s) show little correlation with the other variables?

(c) Carry out a principal components analysis and obtain a score plot. Does it
confirm your analysis in (a)?

(d) Is it possible to identify the variety of a sample of rice by measuring the con-
centration of these four elements? Answer this question by carrying out a linear
discriminant analysis. Investigate whether it is necessary to measure the con-
centration of all four elements in order to achieve satisfactory discrimination.

3 The table below shows the fluorescence intensity (arbitrary units) recorded at 10
different wavelengths, I1, I2, I3, etc., for nine specimens containing measured con-
centrations (nM), c1 and c2, of two analytes.

.
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c1 c2 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

0.38 0.10 33 31 28 26 24 21 19 17 14 12
0.60 0.90 62 64 62 69 72 74 77 79 82 84
0.88 0.96 89 89 83 91 91 92 92 93 94 94
0.01 0.41 5 8 11 14 18 21 24 28 31 34
0.86 0.14 74 68 61 56 50 44 38 32 26 20
0.25 0.05 21 19 17 16 14 13 11 9 8 6
0.03 0.16 4 5 6 7 9 10 11 12 13 14
0.22 0.02 18 17 15 13 12 10 8 7 5 3
0.29 0.34 27 28 28 29 29 30 30 31 31 32

(a) Why is it not possible to use MLR to carry out an inverse calibration for c1 or
c2 for these data if the fluorescence intensities at all the different wavelengths
are used?

(b) Carry out a PCA of the fluorescence intensities and hence obtain a regression
equation for predicting c1 from the first two principal components of the flu-
orescence intensities. Check that the residuals are approximately randomly
and normally distributed.

(c) Use PLS1 to obtain a regression equation for predicting c1 from the fluores-
cence intensities. Check that the residuals are approximately randomly and
normally distributed.

(d) Compare the predictive power of the models obtained by PCR and PLS1 using
the PRESS statistic.

(e) The fluorescence intensities, I1, I2, I3, etc., for a new specimen (measured in
the same units and in the same conditions) are 51, 49, 46, 46, 44, 43, 41, 39,
38 and 36. Use the equations obtained in (b) and (c) to calculate the value of
c1 for this specimen.
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(NB. Outline solutions are provided here: fuller solutions with commentaries are
included in the Instructors’ Manual.)

Chapter 1

1 Mean results (g l−1) for laboratories A–E are: 41.9, 41.9, 43.2, 39.1, 41.5. Hence
A – precise, little bias, mean accurate; B – poor precision, little bias, mean accu-
rate but not very reliable; C – precise but biased to high values, poor accuracy;
D – poor precision, biased to low values, poor accuracy; E – similar to A, but the
last result might be an ‘outlier’.

2 Laboratory A still shows little bias, but precision is poorer, reflecting repro-
ducibility (i.e. between-day precision) rather than repeatability (within-day
precision).

3 Number of binding sites must be an integer, clearly 2 here, so results are precise,
but biased to low values. The bias does not matter much, as two binding sites can
be deduced.

4 (i) Blood lactate levels vary a lot in healthy patients, so great precision and accur-
acy are not needed. (ii) Unbiased results could be crucial because of the great eco-
nomic importance of U. (iii) Speed of analysis is crucial here, so precision and
accuracy are less important. (iv) The aim is to detect even small changes over
time, so precision is most important.

5 (i) Sample might not be representative, and/or reduction of Fe(III) to Fe(II) might
be incomplete, giving biased results in each case. Completeness of reduction
could be tested using a standard material. Random errors in each stage, including
titrimetry, where they should be small. (ii) Sampling problem as in (i), and also
incomplete extraction, leading to bias (checked with standard). Random errors in
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spectrometry, which again should be relatively small. (iii) Random errors in
gravimetry should be very small: more significant will be chemical problems such
as co-precipitation, giving biased results.

Chapter 2

1 Mean = 0.077 µg ml−1, s.d. = 0.007 µg ml−1, RSD = 9%.

2 (i) 5.163 ± 0.025; (ii) 5.163 ± 0.038.

3 Mean = 22.3 ng ml−1, s.d. = 1.4 ng ml−1, RSD = 6.2%, 99% C.I. = 22.3 ± 1.4 ng ml−1.
Mean = 12.83 ng ml−1, s.d. = 0.95 ng ml−1, RSD = 7.4%, 99% C.I. = 12.8 ± 1.6 ng ml−1.

4 10.12 ± 0.18 ng ml−1. Approximately 160.

5 49.5 ± 1.1 ng ml−1. Yes.

6 10.18 ± 0.23 ml. No evidence for systematic error.

7 For weight of reagent: s.d. = 0.14 mg, RSD = 0.028% (0.029%).
For volume of solvent: RSD = 0.02%.
For molarity: RSD = 0.034% (0.020%).
Values for reagent with formula weight 392 are given in brackets.

8 s.d. = 0.44 × 10−6 M.

Chapter 3

1 The points lie approximately on a straight line, indicating that the data are
drawn from a normal distribution.

2 t = 1.54, 1.60, 1.18, 1.60. None of means differs significantly from certified value.

3 (a) Q = 0.565 or G = 1.97. Not significant at P = 0.05. (b) F = 34. Significant
at P = 0.05.

4 (a) F = 1.70. Not significant at P = 0.05. (b) t = ±1.28. Not significant at P = 0.05.

5 Between-sample mean square = 2121.9, within-sample mean square = 8.1. F =
262. Highly significant difference between depths. All pairs, except deepest pair,
differ significantly from each other.

6 t = ±1.20. Sexes do not differ significantly.

7 χ2 = 16.8. No evidence that some digits are preferred to others.

8 Pine: t = ±2.27, not significant. Beech: t = ±5.27, significant at P = 0.01. Aquatic:
t = ±3.73, significant at P = 0.01.

9 (a) χ2 = 5.95. The first worker differs significantly from the other three.
(b) χ2 = 2.81. The last three workers do not differ significantly from each other.

10 t = ±1.02. Methods do not differ significantly.
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11 Between-samples mean square = 0.1144, within-samples mean square = 0.0445.
F = 2.57. Just significant at P = 0.05. Least significant difference (0.25) indicates
that A differs from B, D and E.

12 t = ±2.2. Men and women differ significantly.

13 t = ±3.4. Methods differ significantly.

14 Minimum size is 12.

15 The estimated mean and standard deviation from the data are 1.08 and 0.41
respectively. When the z-values (0.54, 1.02, etc.) are plotted the maximum
difference is only 0.11 at z = 0.54. The critical value is 0.262 so the null hypo-
thesis can be retained: the data fit this normal distribution very well.

Chapter 4

1 For scheme 1, σ 2 = (4/2) + (10/5) = 4. For scheme 2, σ2 = 4/(2 × 3) + 10/3 = 4. If S
is the cost of sampling and A the cost of the analysis, then (cost of scheme 1/cost
of scheme 2) = (5S + 2A)/(3S + 6A). This ratio is >1 if S/A > 2.

2 ANOVA calculations show that the mean squares for the between-days and
within-days variations are 111 and 3.25 respectively. Hence F = 111/3.25 = 34.
The critical value of F3,8 is 4.066 (P = 0.05), so the mean concentrations differ sig-
nificantly. The sampling variance is given by (111 − 3.25)/3 = 35.9.

3 The mean squares for the between-sample and within-sample variations are
8.31 × 10−4 and 1.75 × 10−4 respectively, so F = 8.31/1.75 = 4.746. The critical
value of F3,8 is 4.066 (P = 0.05), so the between-sample mean square cannot be
explained by measurement variation only. The latter variation, , is estimated as
1.75 × 10−4. The estimate of the sampling variance, , is [(8.31 − 1.75) × 10−4]/3 =
2.19 × 10−4. Hence the variance of the mean for scheme 1 is 0.000175/4 +
0.000219/6 = 0.00008025, and the variance of the mean for scheme 2 is
[0.000175/(2 × 3)] + 0.000219/3 = 0.0001022.

4 The six samples give six estimates of σ2, which have an average of 2.795. So σ = 1.67.
Hence the action and warning lines are at 50 ± (2 × 1.67)/ and 50 ± (3 × 1.67)/
respectively, i.e. at 50 ± 1.67 and 50 ± 2.50 respectively.

5 Samples A and B give mean values of 7.01 and 7.75 ppm respectively. Using a
table of D and T values (e.g. for laboratory 1 these are −1.2 and 18.8 respectively),
we find that = 11.027 and = 0.793. So F = 11.027/0.793 = 13.905, far higher
than the critical F14,14 value of ca. 2.48 (P = 0.05), obtained from the table by inter-
polation. Systematic errors are thus significant, and is found to be 5.117.

6 For the Shewhart chart for the mean, the values of W and A are found from tables
(n = 5) to be 0.3768 and 0.5942 respectively. Hence the warning lines are at 120 ±
(7 × 0.3768) = 120 ± 2.64, and the action lines are at 120 ± (7 × 0.5942) = 120 ± 4.16.
For the range chart, the tables give w1, w2, a1 and a2 as 0.3653, 1.8045, 0.1580 and
2.3577 respectively so the lower warning line is at 7 × 0.3653 = 2.56, the upper
warning line is at 12.63, and the lower and upper action lines are at 1.11 and 16.50
respectively.

s2
i

s2
rs2

R

√4√4

σ 2
1

σ 2
0

.

SCA_D01.qxd  3/29/05  4:04 PM  Page 243



.

244 Solutions to exercises

.

7 Since σ = 0.6 and n = 4, the warning and action lines for the Shewhart chart for
the mean are at 80 ± 0.6 and 80 ± 0.9 respectively. On this chart, the points for
days 14–16 fall between the warning and action lines and point 17 is below the
lower action line. So the chart suggests that the analytical process has gone out
of control at about day 14. The cusum chart shows a steady negative trend from
day 9 onwards, suggesting that the method was going out of control a good deal
earlier.

Chapter 5

1 Here r = −0.8569. This suggests a strong correlation; equation (5.3) gives t = 3.33,
well above the critical value (P = 0.05) of 2.78. But (a) a non-linear relationship is
more likely, and (b) correlation is not causation – the Hg contamination may
arise elsewhere.

2 In this case r = 0.99982. But the increase in the value of y (absorbance) with x is
by a slightly decreasing amount at each point, i.e. this is really a curve, though
little harm would come from treating it as a straight line.

3 The usual equations give a = 0.0021, b = 0.0252 and sy/x = 0.00703. We then
obtain sa = 0.00479 and sb = 0.000266. To convert the two latter values into 95%
confidence intervals we multiply by t = 2.57, giving intervals for the intercept and
slope of 0.0021 ± 0.0123 and 0.0252 ± 0.0007 respectively.

4 (a) A y-value of 0.456 corresponds to a concentration of 18.04 ng ml−1. The value
is 0.300 so the confidence limits are 18.04 ± (2.57 × 0.300) = 18.04 ± 0.77 ng ml−1.
(b) The Q-test shows that the absorbance reading of 0.347 can be rejected as an out-
lier, the mean of the remaining three readings being 0.311, i.e. a concentration of
12.28 ng ml−1. With m = 3 in this case, = 0.195, giving confidence limits of 12.28
± 0.50 ng ml−1.

5 The absorbance at the limit of detection is given by a + 3sy/x = 0.0021 + (3 ×
0.00703) = 0.0232. This corresponds to an x-value of 0.84 ng ml−1, which is the
limit of detection.

6 Here a = 0.2569 and b = 0.005349, so the Au concentration is 0.2569/0.005349 =
48.0 ng ml−1. The value of sy/x is 0.003693, so is 0.9179. In this case t = 2.45,
so the 95% confidence limits for the concentration are 48.0 ± (2.45 × 0.9179) =
48.0 ± 2.2 ng ml−1.

7 The unweighted regression line has b = 1.982 and a = 2.924 respectively. Intensity
values of 15 and 90 correspond to 6.09 and 43.9 ng ml−1 respectively. Then sy/x =
2.991 and = 1.767. So the confidence limits for the two concentrations are
6.09 ± 4.9 and 43.9 ± 4.9 ng ml−1. The weighted line is found from the s values for
each point, in increasing order 0.71, 0.84, 0.89, 1.64, 2.24, 3.03. The correspond-
ing weights are 2.23, 1.59, 1.42, 0.42, 0.22 and 0.12 (totalling 6 as expected). The
weighted line then has b = 1.964 and a = 3.483, so the intensity values of 15 and
90 correspond to concentrations of 5.87 and 44.1 ng ml−1 respectively. Estimated
weights for these two points are 1.8 and 0.18 respectively, giving values of
0.906 and 2.716, and confidence limits of 5.9 ± 2.5 and 44.1 ± 7.6 ng ml−1.

sx0w

sxE

sxE

sx0

sx0
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8 If the ISE results are plotted as y and the gravimetric data are plotted as x
the resulting line has a = 4.48 and b = 0.963. The r-value is 0.970. The confi-
dence limits for a are 4.5 ± 20.1, which includes zero, and the limits for b are
0.96 ± 0.20, which includes 1, so there is no evidence of bias between the two
methods.

9 Inspection suggests that the plot is linear up to A = 0.7–0.8. The line through
all six points gives r = 0.9936, and residuals of −0.07, −0.02, +0.02, +0.06, +0.07,
and −0.07. The trend suggests a curve. The SS for these values is 0.0191. If the
last value is omitted, we find r = 0.9972, the residuals are −0.04, 0, +0.02, +0.04
and −0.02 (SS = 0.0040). Similar calculations show that the fifth point can be
omitted also, at some cost in the range of the experiment.

10 The two straight line graphs are y = 0.0014 + 0.0384x, and y = 0.1058 − 0.012x.
These intersect at an x-value of (0.1058 − 0.0014)/(0.0384 − [−0.012]) =
(0.1044/0.0504) = 2.07, suggesting the formation of a 2 : 1 DPA : europium
complex.

11 The best quadratic fit is y = 0.0165 + 0.600x − 0.113x2. This gives R2 = 0.9991
and R′2 = 0.9981. The cubic fit is y = −0.00552 + 0.764x − 0.383x2 + 0.117x3. This
gives R2 = 0.9999 and R′2 = 0.9997, so is a rather better fit.

12 For a straight line, a quadratic fit and a cubic fit, the R2 values are 0.9238, 0.9786
and 0.9786 respectively, suggesting that a quadratic fit will be excellent. This is
confirmed by the R′2 values, which are 0.9085, 0.9679 and 0.9573 respectively,
the quadratic fit giving the highest value.

Chapter 6

1 Mean = 9.96 ml, median = 9.90 ml. Q-test shows that the 10.20 value cannot
quite be omitted (P = 0.05). If it is omitted, mean = 9.88, median = 9.89. The
median is insensitive to outliers.

2 Sign test: compared with the median, the values give signs of − + 0 + − + + + +.
So eight signs, of which six are positive. Probability of this is 0.29, i.e. >0.05, so
null hypothesis is retained: median sulphur content could be 0.10%. In the
signed rank test the zero is neglected, and the ranked differences are −0.01, 0.01,
0.01, −0.02, 0.02, 0.02, 0.04, 0.07. So signed ranks are −2, 2, 2, −5, 5, 5, 6, 7.
Negative ranks total (−)7, but at P = 0.05, critical region is ≤3. So the null
hypothesis is again retained.

3 (RID–EID) results give signs of + − + + + + + + 0 +. So nine results, eight positive.
P = 0.04 for this outcome, so the null hypothesis (that the methods give indis-
tinguishable results) can be rejected. In the signed rank test, the negative ranks
total (−)2.5, well below the critical level of 5, so again the null hypothesis can
be rejected.

4 Arranging the results in order, the median is 23.5. So individual values have signs
+ + + − − − − − + +. This sequence has three runs, but for M = N = 3, the critical
value is 3, so the null hypothesis of a random sequence must be retained.
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5 Mann–Whitney U-test: ‘beer’ values are expected to be larger than ‘lager’ values.
Number of lager values greater than the individual values = 4.5 (one tie). Critical
value for a one-sided test is 5, so we can just reject the null hypothesis (P = 0.05).
Tukey’s Quick Test: count is 5.5, just below the critical value of 6. So tests dis-
agree: more data needed.

6 For instruments A–G student rankings are 3, 1, 5, 4, 7, 6, 2, and staff rankings are
5, 3, 6, 2, 4, 7, 1. So the d-values are −2, −2, −1, 2, 3, −1, 1, and the d2 values are
4, 4, 1, 4, 9, 1, 1, totalling 24. Hence rs = 1 − [(6 × 24)/(7 × 48)] = 0.571. For n = 7
the critical value at P = 0.05 is 0.786: no evidence of correlation between student
and staff opinions.

7 If the x-values are the distances and the y-values the mercury levels, Theil’s method
gives a = 2.575, b = −0.125. (The least squares method gives a = 2.573, b = −0.122.)

8 If the nickel levels are replaced by ranks (one tie occurs) the sums of the ranks
for the three samples are 39, 52.5, and 79.5. (These add up to 171, as expected for
18 values, as 1/2 × 18 × 19 = 171.) The corresponding value of χ2 = 4.97, below
the critical value of 5.99 (P = 0.05, 2 degrees of freedom) so the null hypothesis
of no significant difference in the nickel levels in the oils must be retained.

Chapter 7

1 This is two-way ANOVA without replication. The between-row (i.e. between-
solution) mean square is 0.00370 (3 d.f.); the between-column (i.e. between-
method) mean square is 0.00601 (2 d.f.); and the residual mean square is
0.00470 (6 d.f.). The between-solution mean square is less than the residual one,
so is not significant. Comparison of the between-method and residual mean
squares gives F = 0.00601/0.00470 = 1.28. The critical value of F2,6 (P = 0.05) is
5.14, so the between-method variation is not significant.

2 Again, a two-way ANOVA experiment without replication. The between-soil,
between-day and residual mean squares are respectively 4.67 (4 d.f.), 144.8 (2 d.f.)
and 26.47 (8 d.f.). The between-soil mean square is less than the residual mean
square, so there are no significant differences between soils. Comparing the
between-day and residual mean squares gives F = 144.8/26.47 = 5.47. The critical
value of F2,8 is 4.46, so this source of variation is significant at P = 0.05. The actual
probability (Excel) is 0.0318.

3 Another two-way ANOVA experiment without replication. (Replication would be
needed to study possible interaction effects.) The between-compound, between-
molar ratio and residual mean squares are respectively 4204 (3 d.f.), 584 (2 d.f.) and
706 (6 d.f.). Thus molar ratios have no significant effect. Comparing the between-
compound and residual mean squares gives F = 4204/706 = 5.95. The critical value
of F3,6 is 4.76 (P = 0.05), so this variation is significant. (P is given by Excel as 0.0313.)
Common sense should be applied to these and all other data – diphenylamine
seems to behave differently from the other three compounds.

4 The single factor effects are A: −0.0215, C: 0.0005, T: −0.0265. The two-factor effects
are AC: −0.0005, CT: 0.0025, AT: −0.0065. The three factor effect ACT is −0.0005.
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5 This is a two-way ANOVA experiment with replication. The mean squares for
between-row, between-column, interaction, and residual variations are respectively
2.53 (2 d.f.), 0.0939 (2 d.f.), 0.0256 (4 d.f.), and 0.0406 (9 d.f.). The interaction
mean square is less than the residual mean square, so sample–laboratory interac-
tions are not significant. Comparing the between-column (i.e. between-laboratory)
and the residual mean squares gives F = 0.0939/0.0406 = 2.31. The critical value of
F2,9 is 4.256 (P = 0.05), so the between-laboratory variation is not significant.

6 (a) Using the Fibonacci approach to achieve a 40-fold reduction in the opti-
mum range, we use the terms F7 and F9 (as F9 is the first Fibonacci term above
40) to give the ratio 21/55. The starting pHs are then 5 + ([21 × 4]/55) = 6.53
and 9 − ([21 × 4]/55) = 7.47. (b) When six experiments are to be performed the
Fibonacci method uses F6 and F4 to form the fraction 5/13, so the starting pHs
are 5 + (20/13) and 9 − (20/13), i.e. 6.54 and 7.46 (similar values again). The
degree of optimization is 1/F6, i.e. 1/13, so the optimum pH range will be
defined within an envelope of 4/13 = 0.31 pH units.

7 Vertex 1 should be rejected. The new vertex 8 should have coordinates 5.8, 9.4, 18.1,
9.2, 8.8 for factors A–E respectively, all values being given to one decimal place.

Chapter 8

1 The printout below was obtained using Minitab.

Linear Discriminant Function for Group
A B C

Constant −14.538 −2.439 −8.782
Sucrose 15.039 −3.697 −11.342
Glucose −1.829 2.931 −1.102
Fructose −9.612 0.363 9.249
Sorbitol −2.191 −0.229 2.421

This suggests that sucrose and fructose may be the variables which are most effec-
tive at discriminating between varieties.

The cross-classification success rate with just these two variables is:

Summary of Classification with Cross-validation

Put into . . . . True Group . . . .
Group A B C
A 5 0 0
B 0 5 1
C 0 0 4
Total N 5 5 5
N Correct 5 5 4
Proportion 1.000 1.000 0.800

N = 15 N Correct = 14 Proportion Correct = 0.933

.
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2 (a) A dendrogram shows two clear groups with group membership depending on
whether the rice is polished or not.

(b)

P K Ni
K 0.954
Ni −0.531 −0.528
Mo 0.150 0.117 −0.527

Strong positive correlation between P and K. Little correlation between Mo
and K and between Mo and P.

(c) Carrying out PCA on the standardized values gives:

Eigenanalysis of the Correlation Matrix

Eigenvalue 2.4884 1.1201 0.3464 0.0451
Proportion 0.622 0.280 0.087 0.011
Cumulative 0.622 0.902 0.989 1.000

Variable PC1 PC2
P 0.577 0.340
K 0.572 0.366
Ni −0.509 0.357
Mo 0.283 −0.789

A score plot shows two fairly well-defined groups: one for polished and the
other for unpolished samples.

(d) The results of LDA using the standardized values are:

Summary of Classification with Cross-validation

Put into . . . .True Group . . . .
Group A B
A 7 1
B 1 7
Total N 8 8
N Correct 7 7
Proportion 0.875 0.875

N = 16 N Correct = 14 Proportion Correct = 0.875

Linear Discriminant Function for Group

A B
Constant −2.608 −2.608
P 18.016 −18.016
K −19.319 19.319
Ni −0.051 0.051
Mo −1.198 1.198
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The discrimination between varieties is good (87.5% success). Results suggest
that P and K are most effective at discriminating between varieties. Using just
these two elements, a cross-classification rate of 15/16 is achieved.

3 (a) MLR cannot be used, as the number of specimens is not greater than the num-
ber of predictors.

(b) The printout below was obtained from Minitab. Between them the first two
eigenvectors account for virtually all the variance.

Principal Component Analysis: I1, I2, I3, I4, I5, I6, I7, I8, I9, I10

Eigenanalysis of the Covariance Matrix

Eigenvalue 8537.3 659.1 0.5 0.2 0.1 0.1 0.0 0.0 −0.0
Proportion 0.928 0.072 0.000 0.000 0.000 0.000 0.000 0.000 −0.000
Cumulative 0.928 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Eigenvalue −0.0
Proportion −0.000
Cumulative 1.000

Variable PC1 PC2
I1 −0.302 0.502
I2 −0.303 0.398
I3 −0.283 0.301
I4 −0.314 0.181
I5 −0.315 0.065
I6 −0.320 −0.043
I7 −0.324 −0.151
I8 −0.327 −0.263
I9 −0.334 −0.373
I10 −0.336 −0.479

The scores for the first two eigenvectors are

Z1 Z2

−70.155 24.3663
−230.122 −14.0245
−287.257 5.0160

−62.560 −27.0383
−145.815 60.5942

−41.701 16.5704
−29.195 −9.1504
−33.454 16.6590
−93.381 −0.6222

The regression equation of c1 on Z1 and Z2 can be obtained from Minitab. It is

c1 = 0.0116 − 0.00294 Z1 + 0.00686 Z2

The residuals show no patterns and are approximately normally distributed.

.

SCA_D01.qxd  3/29/05  4:04 PM  Page 249



250 Solutions to exercises

.

(c) The following printout was obtained from Minitab.

PLS Regression: c1 versus I1, I2, I3, I4, I5, I6, I7, I8, I9, I10

Number of components selected by cross-validation: 3
Number of observations left out per group: 1
Number of components cross-validated: 7

Model Selection and Validation for c1

Components X Variance Error SS R-Sq PRESS R-Sq (pred)
1 0.929412 0.198592 0.76293 0.310446 0.629402
2 0.999900 0.000299 0.99964 0.001029 0.998772
3 0.999957 0.000137 0.99984 0.000906 0.998919
4 0.000053 0.99994 0.001248 0.998510
5 0.000030 0.99996 0.001756 0.997904
6 0.000006 0.99999 0.001987 0.997628
7 0.000000 1.00000 0.001976 0.997641

Regression Coefficients

c1 c1 standardized
Constant 0.0048163 0.000000
I1 0.0025364 0.240705
I2 0.0024281 0.223514
I3 0.0097208 0.818996
I4 0.0009896 0.089914
I5 −0.0005505 −0.049677
I6 −0.0002864 −0.026187
I7 0.0007365 0.068765
I8 −0.0022379 −0.214303
I9 −0.0016805 −0.167711
I10 −0.0009030 −0.093197

The regression equation is

c1 = 0.0048163 + 0.0025364I1 + 0.0024281I2 + 0.0097208I3 + 0.0009896I4

− 0.0005505I5 − 0.0002864I6 + 0.0007365I7 − 0.0022379I8

− 0.0016805I9 − 0.0009030I10

The residuals show no patterns and are approximately normally distributed.

(d) The PRESS statistic is 0.00111959 for the model in (b) and 0.000906 for the
model in (c) so PLS1 performs better than PCR by this measure.

(e) PCR: The scores calculated for the new specimen are Z1 = −136.172 and Z2 =
20.3898. Substituting these values in the regression equation gives c1 = 0.552.
PLS: Substitution in the regression equation gives c1 = 0.556.

(Minitab also gives confidence intervals: for PCR (0.544, 0.558), for PLS
(0.549, 0.563).)

SCA_D01.qxd  3/29/05  4:04 PM  Page 250



.

Appendix 1: Commonly used
statistical significance tests

Problem Tests available See Comments
Section

Testing for outliers 1 Dixon’s test 3.7
2 Grubbs’ tests 3.7 ISO recommended

Comparison of mean/ 3 t-test 3.2
median with standard 4 Sign test 6.3 Non-parametric
value 5 Wilcoxon signed 6.5 Non-parametric

rank test

Comparison of spreads of 6 F-test 3.6 Precedes test 8
two data sets 7 Siegel–Tukey test 6.6 Non-parametric

Comparison of means or 8 t-test 3.3
medians of two samples 9 Mann–Whitney 6.6 Non-parametric

U-test
10 Tukey’s quick test 6.6 Non-parametric

Comparison of two sets of 11 Paired t-test 3.4 Small range of 
paired data values

12 Sign test 6.3 Non-parametric
13 Wilcoxon signed 6.5 Non-parametric

rank test
14 x−y plot 5.9 Large range of 

values

Comparison of means/ 15 ANOVA 3.9 See index
medians of >2 samples 16 Kruskal–Wallis test 6.7 Non-parametric

Comparison of >2 17 Friedman’s test 6.7 Non-parametric
matched data sets

Testing for occurrence of 18 Chi-squared test 3.11
a particular distribution 19 Kolmogorov– 3.12 Small samples

Smirnov tests
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The flow chart

The flow chart is designed for use in conjunction with the table to aid the choice of
appropriate significance test. It is intended only as a guide, and should not be used
blindly. That is, once the chart has indicated which test or tests are most suitable to
a given experimental situation, the analyst must become familiar with the principles
of the selected test, the reasons for its selection, any limitations on its validity and
so on. Only in this way will the results of the test be applied properly in all cases.
For example, most non-parametric tests are not so powerful as parametric ones in
conditions where the latter are appropriate, but may be more reliable where serious
deviations from the normal distribution are known or suspected.

In the chart ‘cf.’ is used as an abbreviation for ‘comparison of’. The test num-
bers refer to the table. Robust methods have not been included in either the table
or the chart. Despite their growing importance they are still applied more usually
by researchers and expert statisticians than by many laboratory workers, and the
basic software packages referred to in Chapter 1 do not give a very comprehensive
treatment of such methods. It is important to notice that ANOVA is a very widely
used method, the exact form used depending on the problem to be solved: only
the first reference to one-way ANOVA has been given in the table. The Cochran
test (Section 4.12) and the least significant difference method (Section 3.9) used in
conjunction with ANOVA, and the Wald–Wolfowitz test for runs (Section 6.4)
have also been omitted for simplicity. The broken line linking Tests 6 and 8 is a
reminder that, strictly speaking, the F-test should be applied to check whether the
variances of the two samples under study are similar, before the t-test is applied.
Some of the tests listed under ‘Comparing means’ actually compare medians; this
has also been omitted in places in the interests of clarity.

Finally it is important to note that there are many tests in everyday use in add-
ition to the ones listed above, as noted in the reference below.

Bibliography

Kanji, G. K. 1999. 100 Statistical Tests, 2nd edn. Sage Publications, London.
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Appendix 2: Statistical tables

The following tables are presented for the convenience of the reader, and for use with
the simple statistical tests, examples and exercises in this book. They are presented in
a format that is compatible with the needs of analytical chemists: the significance
level P = 0.05 has been used in most cases, and it has been assumed that the number
of measurements available is fairly small. Most of these abbreviated tables have been
taken, with permission, from Elementary Statistics Tables by Henry R. Neave, pub-
lished by Routledge (Tables A.2–A.4, A.7, A.8, A.11–A.14). The reader requiring sta-
tistical data corresponding to significance levels and/or numbers of measurements
not covered in the tables is referred to these sources.

Table A.1 F (z), the standard normal cumulative distribution function

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−3.4 0.0003 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005
−3.3 0.0005 0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007
−3.2 0.0007 0.0007 0.0007 0.0008 0.0008 0.0008 0.0008 0.0009 0.0009 0.0009
−3.1 0.0010 0.0010 0.0010 0.0011 0.0011 0.0011 0.0012 0.0012 0.0013 0.0013
−3.0 0.0013 0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018

−2.9 0.0019 0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025
−2.8 0.0026 0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034
−2.7 0.0035 0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045
−2.6 0.0047 0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060
−2.5 0.0062 0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080

−2.4 0.0082 0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104
−2.3 0.0107 0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136
−2.2 0.0139 0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174
−2.1 0.0179 0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222
−2.0 0.0228 0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281

−1.9 0.0287 0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351
−1.8 0.0359 0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436
−1.7 0.0446 0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537
−1.6 0.0548 0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655
−1.5 0.0668 0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793
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Table A.1 Continued

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−1.4 0.0808 0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951
−1.3 0.0968 0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131
−1.2 0.1151 0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335
−1.1 0.1357 0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562
−1.0 0.1587 0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814

−0.9 0.1841 0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090
−0.8 0.2119 0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389
−0.7 0.2420 0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709
−0.6 0.2743 0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050
−0.5 0.3085 0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409

−0.4 0.3446 0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783
−0.3 0.3821 0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168
−0.2 0.4207 0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562
−0.1 0.4602 0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6579
0.5 0.6915 0.6950 0.6965 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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Table A.2 The t-distribution

Value of t for a confidence interval of 90% 95% 98% 99%
Critical value of |t| for P values of 0.10 0.05 0.02 0.01
number of degrees of freedom

1 6.31 12.71 31.82 63.66
2 2.92 4.30 6.96 9.92
3 2.35 3.18 4.54 5.84
4 2.13 2.78 3.75 4.60
5 2.02 2.57 3.36 4.03
6 1.94 2.45 3.14 3.71
7 1.89 2.36 3.00 3.50
8 1.86 2.31 2.90 3.36
9 1.83 2.26 2.82 3.25

10 1.81 2.23 2.76 3.17
12 1.78 2.18 2.68 3.05
14 1.76 2.14 2.62 2.98
16 1.75 2.12 2.58 2.92
18 1.73 2.10 2.55 2.88
20 1.72 2.09 2.53 2.85
30 1.70 2.04 2.46 2.75
50 1.68 2.01 2.40 2.68
∞ 1.64 1.96 2.33 2.58

The critical values of t are appropriate for a two-tailed test. For a one-tailed test the value is
taken from the column for twice the desired P-value, e.g. for a one-tailed test, P = 0.05, 5
degrees of freedom, the critical value is read from the P = 0.10 column and is equal to 2.02.

Table A.3 Critical values of F for a one-tailed test (P = 0.05)

v2 v1

1 2 3 4 5 6 7 8 9 10 12 15 20

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 245.9 248.0
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45
3 10.13 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812 8.786 8.745 8.703 8.660
4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964 5.912 5.858 5.803
5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772 4.735 4.678 4.619 4.558
6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060 4.000 3.938 3.874
7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637 3.575 3.511 3.445
8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388 3.347 3.284 3.218 3.150
9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137 3.073 3.006 2.936

10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978 2.913 2.845 2.774
11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854 2.788 2.719 2.646
12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753 2.687 2.617 2.544
13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671 2.604 2.533 2.459
14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602 2.534 2.463 2.388
15 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.588 2.544 2.475 2.403 2.328
16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494 2.425 2.352 2.276
17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494 2.450 2.381 2.308 2.230
18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2.412 2.342 2.269 2.191
19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2.378 2.308 2.234 2.155
20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348 2.278 2.203 2.124

v1 = number of degrees of freedom of the numerator; v2 = number of degrees of freedom of the denominator.
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Table A.4 Critical values of F for a two-tailed test (P = 0.05)

v2 v1

1 2 3 4 5 6 7 8 9 10 12 15 20

1 647.8 799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 976.7 984.9 993.1
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.43 39.45
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.34 14.25 14.17
4 12.22 10.65 9.979 9.605 9.364 9.197 9.074 8.980 8.905 8.844 8.751 8.657 8.560
5 10.01 8.434 7.764 7.388 7.146 6.978 6.853 6.757 6.681 6.619 6.525 6.428 6.329
6 8.813 7.260 6.599 6.227 5.988 5.820 5.695 5.600 5.523 5.461 5.366 5.269 5.168
7 8.073 6.542 5.890 5.523 5.285 5.119 4.995 4.899 4.823 4.761 4.666 4.568 4.467
8 7.571 6.059 5.416 5.053 4.817 4.652 4.529 4.433 4.357 4.295 4.200 4.101 3.999
9 7.209 5.715 5.078 4.718 4.484 4.320 4.197 4.102 4.026 3.964 3.868 3.769 3.667

10 6.937 5.456 4.826 4.468 4.236 4.072 3.950 3.855 3.779 3.717 3.621 3.522 3.419
11 6.724 5.256 4.630 4.275 4.044 3.881 3.759 3.664 3.588 3.526 3.430 3.330 3.226
12 6.554 5.096 4.474 4.121 3.891 3.728 3.607 3.512 3.436 3.374 3.277 3.177 3.073
13 6.414 4.965 4.347 3.996 3.767 3.604 3.483 3.388 3.312 3.250 3.153 3.053 2.948
14 6.298 4.857 4.242 3.892 3.663 3.501 3.380 3.285 3.209 3.147 3.050 2.949 2.844
15 6.200 4.765 4.153 3.804 3.576 3.415 3.293 3.199 3.123 3.060 2.963 2.862 2.756
16 6.115 4.687 4.077 3.729 3.502 3.341 3.219 3.125 3.049 2.986 2.889 2.788 2.681
17 6.042 4.619 4.011 3.665 3.438 3.277 3.156 3.061 2.985 2.922 2.825 2.723 2.616
18 5.978 4.560 3.954 3.608 3.382 3.221 3.100 3.005 2.929 2.866 2.769 2.667 2.559
19 5.922 4.508 3.903 3.559 3.333 3.172 3.051 2.956 2.880 2.817 2.720 2.617 2.509
20 5.871 4.461 3.859 3.515 3.289 3.128 3.007 2.913 2.837 2.774 2.676 2.573 2.464

v1 = number of degrees of freedom of the numerator; v2 = number of degrees of freedom of the denominator.

.

Table A.5 Critical values of G (P = 0.05)
for a two-sided test

Sample size Critical value

3 1.155
4 1.481
5 1.715
6 1.887
7 2.020
8 2.126
9 2.215

10 2.290

Taken from Barnett, V. and Lewis, T. 1984.
Outliers in Statistical Data, 2nd edn,
John Wiley & Sons Limited.
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Table A.6 Critical values of Q (P = 0.05)
for a two-sided test

Sample size Critical value

4 0.831
5 0.717
6 0.621
7 0.570

Taken from King, E. P. 1958. J. Am. Statist.
Assoc., 48: 531.

Table A.8 Random numbers

02484 88139 31788 35873 63259 99886 20644 41853 41915 02944
83680 56131 12238 68291 95093 07362 74354 13071 77901 63058
37336 63266 18632 79781 09184 83909 77232 57571 25413 82680
04060 46030 23751 61880 40119 88098 75956 85250 05015 99184
62040 01812 46847 79352 42478 71784 65864 84904 48901 17115
96417 63336 88491 73259 21086 51932 32304 45021 61697 73953
42293 29755 24119 62125 33717 20284 55606 33308 51007 68272
31378 35714 00941 53042 99174 30596 67769 59343 53193 19203
27098 38959 49721 69341 40475 55998 87510 55523 15549 32402
66527 73898 66912 76300 52782 29356 35332 52387 29194 21591
61621 52967 40644 91293 80576 67485 88715 45293 59454 76218
18798 99633 32948 49802 40261 35555 76229 00486 64236 74782
36864 66460 87303 13788 04806 31140 75253 79692 47618 20024
10346 28822 51891 04097 98009 58042 67833 23539 37668 16324
20582 49576 91822 63807 99450 18240 70002 75386 26035 21459
12023 82328 54810 64766 58954 76201 78456 98467 34166 84186
48255 20815 51322 04936 33413 43128 21643 90674 98858 26060
92956 09401 58892 59686 10899 89780 57080 82799 70178 40399
87300 04729 57966 95672 49036 24993 69827 67637 09472 63356
69101 21192 00256 81645 48500 73237 95420 98974 36036 21781
22084 03117 96937 86176 80102 48211 61149 71246 19993 79708
28000 44301 40028 88132 07083 50818 09104 92449 27860 90196
41662 20930 32856 91566 64917 18709 79884 44742 18010 11599
91398 16841 51399 82654 00857 21068 94121 39197 27752 67308
46560 00597 84561 42334 06695 26306 16832 63140 13762 15598

Table A.7 Critical values of χ2 (P = 0.05)

Number of degrees Critical value 
of freedom

1 3.84
2 5.99
3 7.81
4 9.49
5 11.07
6 12.59
7 14.07
8 15.51
9 16.92

10 18.31
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Table A.9 The sign test

n r = 0 1 2 3 4 5 6 7

4 0.063 0.313 0.688
5 0.031 0.188 0.500
6 0.016 0.109 0.344 0.656
7 0.008 0.063 0.227 0.500
8 0.004 0.035 0.144 0.363 0.637
9 0.002 0.020 0.090 0.254 0.500

10 0.001 0.011 0.055 0.172 0.377 0.623
11 0.001 0.006 0.033 0.113 0.274 0.500
12 0.000 0.003 0.019 0.073 0.194 0.387 0.613
13 0.000 0.002 0.011 0.046 0.133 0.290 0.500
14 0.000 0.001 0.006 0.029 0.090 0.212 0.395 0.605
15 0.000 0.000 0.004 0.018 0.059 0.151 0.304 0.500

The table uses the binomial distribution with P = 0.5 to give the probabilities of r or fewer
successes for n = 4–15. These values correspond to a one-tailed sign test and should be doubled
for a two-tailed test.

Table A.10 The Wald–Wolfowitz runs test

N M At P = 0.05, the nurnber of runs is significant if it is:

Less than Greater than

2 12–20 3 NA

3 6–14 3 NA
3 15–20 4 NA

4 5–6 3 8
4 7 3 NA
4 8–15 4 NA
4 16–20 5 NA

5 5 3 9
5 6 4 9
5 7–8 4 10
5 9–10 4 NA
5 11–17 5 NA

6 6 4 10
6 7–8 4 11
6 9–12 5 12
6 13–18 6 NA

7 7 4 12
7 8 5 12
7 9 5 13
7 10–12 6 13

8 8 5 13
8 9 6 13
8 10–11 6 14
8 12–15 7 15

Adapted from Swed, F. S. and Eisenhart, C. 1943. Ann. Math. Statist., 14: 66.

The test cannot be applied to data with N, M smaller than the given
numbers, or to cases marked NA.
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Table A.11 Wilcoxon signed rank test. Critical values
for the test statistic at P = 0.05

n One-tailed test Two-tailed test

5 0 NA
6 2 0
7 3 2
8 5 3
9 8 5

10 10 8
11 13 10
12 17 13
13 21 17
14 25 21
15 30 25

The null hypothesis can be rejected when the test
statistic is less than or equal to the tabulated value.
NA indicates that the test cannot be applied.

Table A.12 Mann–Whitney U-test. Critical values for
U or the lower of T1 and T2 at P = 0.05

n1 n2 One-tailed test Two-tailed test

3 3 0 NA
3 4 0 NA
3 5 1 0
3 6 2 1
4 4 1 0
4 5 2 1
4 6 3 2
4 7 4 3
5 5 4 2
5 6 5 3
5 7 6 5
6 6 7 5
6 7 8 6
7 7 11 8

The null hypothesis can be rejected when U or the
lower T value is less than or equal to the tabulated
value. NA indicates that the test cannot be applied.
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Table A.13 The Spearman rank correlation
coefficient. Critical values for ρ at P = 0.05

n One-tailed test Two-tailed test

5 0.900 1.000
6 0.829 0.886
7 0.714 0.786
8 0.643 0.738
9 0.600 0.700

10 0.564 0.649
11 0.536 0.618
12 0.504 0.587
13 0.483 0.560
14 0.464 0.538
15 0.446 0.521
16 0.429 0.503
17 0.414 0.488
18 0.401 0.472
19 0.391 0.460
20 0.380 0.447

Table A.14 The Kolmogorov test for normality.
Critical two-tailed values at P = 0.05

n Critical values

3 0.376
4 0.375
5 0.343
6 0.323
7 0.304
8 0.288
9 0.274

10 0.262
11 0.251
12 0.242
13 0.234
14 0.226
15 0.219
16 0.213
17 0.207
18 0.202
19 0.197
20 0.192

The appropriate value is compared with the
maximum difference between the hypothetical
and sample functions as described in the text.
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Table A.15 Critical values for C (P = 0.05) for n = 2

k Critical value

3 0.967
4 0.906
5 0.841
6 0.781
7 0.727
8 0.680
9 0.638

10 0.602
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absorbance, 11, 35, 170–1,
188–92, 228–9

acceptable quality level (AQL),
102–3

acceptance sampling, 102–3
accuracy, 4–5, 51, 108, 192
action lines, in control charts,

80–90
additive factors, in experimental

design, 183–6, 192
adjusted coefficient of 

determination, 137–8,
142–4

albumin, serum, determination,
1, 12, 24

alternating variable search,
200–2, 208, 209

alternative hypothesis, 67–9
American Society for Testing and

Materials (ASTM), 7
analysis of variance (ANOVA),

54–61, 95, 96, 128–30,
167, 175, 181, 183–6,
187–192, 251–3

arithmetic of calculations, 58–61
assumptions, 61
between-block variation in,

183–6
between-column variation in,

189–192
between-row variation in,

189–192
between-sample variation in,

55, 57–61 , 76–7
between-treatment variation in,

183–6
correction term, 189

for comparison of several
means, 55–58

in regression calculations,
136–8, 142–4

least significant difference 
in, 58

mean-squares in, 57
one-way, 55–61, 76–7, 

91, 95, 96
residual mean square in, 184–6,

190–1
significant differences in, 58
sums of squares in, 56–61,

184–5, 190–1
total variation in, 58–60
two-way, 97, 183–6, 187–192
within-sample variation in,

55–61, 77
antibiotics, 223
antibody concentrations in

serum, 24, 150
arithmetic mean, see mean
assigned value, 91
assumptions used in linear 

calibration calculations,
110, 130

astigmatism, 10
atomic-absorption spectrometry,

10, 11, 31, 124, 125, 138,
144, 162, 208

atomic weights, 99
automatic analysis, 108, 110,

208, 213
average run length, 86–90

background signal, see blank
between-run precision, 6, 177

between sample variation, 
57–8, 76

bias, 4–6, 10, 48, 93, 96–9
binomial distribution, 152
binomial theorem, 156–7
biweight, 176
blank, 9, 109–10, 118, 121, 122,

123, 127
blocking, 61, 182–3, 183–6
blood glucose, 91
blood serum, 1
bootstrap, 176–7
boron, 1
bottom-up method for 

uncertainty, 98–100
box-and-whisker plot, 153–4
breakdown point, 176
British Standards Institution

(BSI), 7, 15
bulk sampling, 75–6, 78, 91
buoyancy effects in weighing, 8, 9
burette, 7–10

calculators, 13–14, 15, 115, 
119, 169

calibration methods, 3, 10–11, 14,
107–46, 155, 158, 170–1

canonical variate analysis, 227
censoring of values in 

collaborative trials, 96
central limit theorem, 26, 150
centrifugal analysers, 208
centroid, of points in calibration

plots, 110, 114, 115, 120,
130–5

Certified Reference Materials
(CRMs), 11
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chemometrics, 13, 182
chi-squared test, 61–3, 165–7,

251–2, 258
chromium, serum, determination,

9–11
clinical analysis, 91, 107–8, 

155, 208
cluster, 213
cluster analysis, 220–3, 238

hierarchical, 220–2
Cochran’s test, 95, 253, 262
coefficient of determination,

137–8, 142–4
adjusted, 137–8, 142–4
robust, 176

coefficient of variation (CV), 
see relative standard 
deviation

collaborative trials, 12, 78, 93–8,
177

colorimetry, 13, 208
colour blindness, 10
comparison of analytical methods,

126–31
comparison of experimental

result with standard value,
2, 39–41, 51, 156–7,
159–60, 251, 252

of means of several sets of data,
55–58, 165–7

of means of two sets of data,
2–3, 41–5, 162–4, 251, 252

of paired data, 45–7, 160–1,
251, 252

of standard deviations of two
sets of data, 49–51, 251, 252

complete factorial design, 192
complexometric analysis, 

107, 161
concentration determination by

calibration methods,
108–10, 115, 118–21,
131–5

confidence interval of the mean,
27–9, 31–2, 98

confidence limits of the mean,
14, 27–9, 31–2, 75, 177

in linear calibration plots, 109,
117–21, 125, 127–30, 134,
136

confidence limits of the median,
152

confusion matrix, 224
consensus value, 91

contour diagrams, 200–8
control charts, 79–90, 120–1
controlled factor, 54–8, 76, 181,

185, 191
Cook’s distance, 146
correction term in ANOVA, 189
correlation, 13, 107
correlation coefficient, 

see product-moment 
correlation coefficient and
Spearman’s rank 
correlation coefficient

correlation matrix, 215
covariance, 111
covariance matrix, 217
coverage factor, 98
critical values in statistical tests,

40–1, 95, 162
cross-classified designs, 187
cross-validation, 225, 226, 230
cubic splines, 144
cumulative frequency, 64–7

curve, 63–5
curve-fitting, 136–7, 138–45, 158,

171
curvilinear regression, 

see regression, non-linear
cusum (cumulative sum) chart,

86–90

data vector, 213–4
databases, 14, 108
decision rule, 224
degrees of freedom, 29, 40–5, 46,

49, 57–8, 79–81, 116–7,
119, 120, 121, 130, 136,
142, 143, 166, 167, 184–5,
189–91

dendrogram, 220–2
derivative spectroscopy, 108
discriminant analysis, 223–6
disjoint class modelling, 228
distance function, 173, 175
distribution-free methods, 

see non-parametric 
methods

distribution of repeated 
measurements, 20–4

Dixon’s Q, 52–4, 172, 175, 251,
252, 258

dot plot, 4, 53–4, 56, 152–3
downweighting of data, 171–5
draftsman plot, 215
dummy factors, 197

eigenvalue, 217, 219
eigenvector, 217
electrochemical analysis methods,

107, 124
emission spectrometry, 107, 124
environmental analysis, 108, 155
enzymatic analysis, 13, 198–200,

202–5
error bars, 131–2
errors, see gross, random and 

systematic errors
errors in significance tests, 67–9
Euclidian distance, 220
Eurachem/CITAC, 99
Excel, see Microsoft Excel
expanded uncertainty, 98–102
expected frequency, in 

chi-squared test, 62–3
experimental design, 10, 12,13,

94, 181–209
exploratory data analysis (EDA),

see initial data analysis
(IDA)

exponential functions in curve-
fitting, 136

F-test, 49–51, 58–61, 69, 76, 98,
137, 164, 186, 190, 196,
251, 252, 253, 256–7

factorial designs, 192–7, 203–5,
208

factors affecting experimental
results, 13, 94, 181, 192–7,
205–8

fences, 154
Fibonacci, 199–200
Fisher, R. A., 183
fitted y-values, 116
five-number summary, 154
fixed-effect factors, see controlled

factors
fluorescence spectrometry, 34–5,

55, 107, 111, 138, 139,
141–2, 181–2, 214

forensic analysis, 1, 91
Fourier transform methods, 108
fractional factorial designs, 197
frequency, in chi-squared test,

62–3
frequency table, 20–1
Friedman’s test, 166–7, 251–2
functional relationship by 

maximum likelihood
method (FREML), 130–1
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gas-liquid chromatography, 107,
144, 166–7, 208, 213, 223

Gaussian distribution, see normal
distribution

general functions in error 
propagation, 35, 37

geometric mean, 24, 31–2
confidence interval of, 31–2

goodness-of-fit, 61–7, 251, 252
gravimetric analysis, 11, 107
gross errors, 3, 150, 171
Grubbs’ test, 51–4, 95–6, 172,

175, 251, 252, 257

heavy-tailed distributions, 93, 150,
171, 173

heteroscedasticity, 130, 131
hierarchical designs, 187
high-performance liquid 

chromatography, 107,
166–7, 194

histogram, 20–1, 155, 177, 178
hollow-cathode lamp, 138
homogeneity of samples in 

proficiency testing, 91, 100
homogeneity of variance, 61, 95
homoscedasticity, 130, 131
Horwitz trumpet, 92, 98
Huber’s robust estimation 

methods, 173–5

immunoassay, 12, 138, 140, 
144, 166–7

incomplete factorial design, 
94, 197

indicator errors, 8, 9, 100
influence function, 146
initial data analysis (IDA), 4, 14,

144, 151–6
inner-filter effects, in fluorimetry,

138, 141–2
intelligent instruments, 108
interactions between factors, 10,

13, 94, 167, 186, 187–92,
194–7

intercept, of linear calibration
graph, 109, 114–8, 124,
126, 127–30, 132–5,
139–40, 145, 169–71,
175–6

internal quality control (IQC)
standard, 78–9

interquartile range, 92, 
152–5, 173

International Organisation for
Standardization (ISO), 4, 51,
90, 91, 118, 120–1

International Union of Pure and
Applied Chemistry
(IUPAC) 25, 99

intersection of two straight lines,
135–6

inverse calibration, 229–36
iterative methods, 130, 141, 151,

172, 174–8
iterative univariate method, see

alternating variable search
iteratively weighted least squares,

176

Kendall, 169
k-means method, 222–3
K-nearest neighbour (KNN)

method, 227–8
knots, in spline functions, 144
Kolmogorov-Smirnov methods,

64–7, 251, 252
Kruskal-Wallis test, 165–6

laboratory information 
management systems
(LIMS), 15

Laboratory of the Government
Chemist (LGC), 11

latent variables, 219
Latin squares, 186–7
learning objects, 223
least median of squares (LMS), 176
least significant difference, in

ANOVA, 58
least-squares method, 15, 114,

122, 131, 142, 170–1,
175–6

‘leave-one-out method’, 
225, 235

levels of experimental factors,
94–5, 181, 193–7, 205–8

limit of decision, 122
limit of detection, 3, 109, 121–4
limit of determination, 122
limit of quantitation, 122
linear discriminant score, 225–6
line of regression of x on y, 115
line of regression of y on x,

114–8, 130
linear combinations,

of random errors, 32–5
of systematic errors, 35–6

linear discriminant analysis,
223–7

linear discriminant function,
223–7

logarithmic functions in 
curve-fitting, 136

logit transformation, 140
log-log transformation, 141
log-normal distribution, 

24, 31–2, 54, 150, 171
lower quartile, 152–4

Mann-Whitney U-test, 162–3,
178, 251, 252, 260

masking, in outlier tests, 54
mass spectrometry, 107
matched pairs, 96–8
matrix effects, 124–6
matrix matching, 124
mean, 13, 14, 18–24, 26–9, 75,

79–102, 150, 151, 156,
160, 164, 171–3, 176–7

trimmed, 171–4
mean square, in ANOVA, 57
mean squares, in non-linear

regression, 142–4
measurement variance, 76–8
measures of central

tendency/location, 151
median, 92, 151–65, 169–71,

172–5, 176, 251, 252
median absolute deviation

(MAD), 173–5
method performance 

studies, 94
Methyl Orange, indicator error

due to, 9
microbalance, 8
Microsoft Excel, 14, 15, 16, 23,

43, 44, 51, 60, 61, 76,
84–5, 127–30, 136–8, 188

Minitab, 14, 16, 23, 41, 44, 45,
51, 60, 61, 64, 65, 66,
85–6, 89, 118, 130, 138,
155, 175, 177, 188–9, 222,
224, 226, 230–1, 232–3,
235

modified simplex optimization
methods, 207–8

monochromators, systematic
errors due to, 10–12

multiple correlation coefficient,
see coefficient of 
determination

.
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multiplicative expressions,
in random error propagation,

33–4
in systematic error 

propagation, 36
multivariate calibration, 177,

228–36
multivariate methods, 14, 182,

213–238

National Institute for Science and
Technology (NIST), 11

National Physical Laboratory
(NPL), 11

natural computation, 209
nebulizers, 24
nested designs, 187
neural networks, 209, 236–7
non-parametric methods, 14, 54,

115, 145, 150–71, 175,
177, 178, 251, 252

normal distribution, 21–4, 26, 49,
54, 61, 63–7, 85, 93, 110,
123, 138, 150, 151, 157,
159, 171, 176, 177–8,
254–5

tests for, 63–7
normal probability paper, 63–5
null hypothesis, 39, 114, 156,

157, 158, 160, 161, 162,
163, 164, 166, 167, 168

number bias, 10

observed frequency, 62–3
one-at-a-time experimental

designs and optimization,
200–2

one-sided test, 44, 47–8, 160, 162
one-tailed test, see one-sided test
one-way analysis of variance

(ANOVA), see analysis of
variance

optimization, 13, 14, 108,
193–209

orthogonality, 216
outliers, 2, 51–4, 91, 95–6, 98,

150, 151, 152, 153, 172–3,
175, 178

in regression, 145–6, 170–1, 176

P values, 40–1
paired alternate ranking, 164
paired data, 45–7, 166

paired t-test, 45–7, 128, 157, 160,
251, 252, 256

partial least squares, 
see regression methods

particle size analysis, 1–2
pattern recognition, 223
periodicity,

effects in sampling, 75
of � and � signs, 159

personal computers, 13–15, 108,
115, 119, 135, 141, 145,
151, 169, 172, 176, 177,
178

pipette, 7–8
Plackett-Burman designs, 197
plasma spectrometry, 11, 107,

124, 208
polynomial equations in curve

fitting, 136–7, 141, 142
pooled estimate of standard 

deviation, 41–4, 69, 136
population measurements, 20,

22–3, 26, 75, 79
power of a statistical test, 68–9,

158, 178
precision, 4–6, 13, 30, 51, 93,

108, 119–20, 130, 192
predicted residual error sum of

squares (PRESS), 230
presentation of results, 29–30
principal component, 216
principal component analysis,

215–9, 227, 238
principal component regression,

see regression
process analysis, 108
process capability, 79–90
process mean, 79–90
product-moment correlation 

coefficient, 110–5, 126–30,
138, 139, 140, 143, 169,
215

proficiency testing schemes, 12,
78, 90–3, 100, 102

propagation of random errors,
32–5

propagation of systematic errors,
35–6

pseudo-values, 174

Q-test for outliers, see Dixon’s Q
quadratic discriminant 

analysis, 225

qualitative analysis, 1
qualitative factors, 181
quality, 74, 81, 82, 92
quality control, 14, 78–90, 102
quantitative analysis, 1–3, 74
quantitative factors, 181
quartiles, 92, 152–5

radiochemical analysis methods,
107

random-effect factors, 55, 76–7,
181, 185

random errors, 3–9, 12, 13, 14,
19, 26, 39, 96–8, 100

in regression calculations,
115–21, 126, 130, 134, 140

random number table, 75, 182,
209, 258

random sample, 75–6
randomization, 61, 182–3
randomized block design, 183
range, 18, 81–90
rank correlation, see Spearman’s

rank correlation coefficient
rank sums, 164
ranking methods, 160–71
regression methods, assumptions

used in, 109–10, 130
curvilinear, 14, 108, 112–3,

138–45
for comparing analytical 

methods, 126–31
linear, 13, 47, 107–37, 157,

158, 175–6
multiple, 229–31, 232
multivariate, 229–236
non-parametric, 155, 169–71
partial least squares, 234–6
principal component, 232–4
robust, 171, 175–6

relative errors, 20, 33–4, 36
relative standard deviation 

(RSD), 20, 33–4, 36, 92,
109–10

repeatability, 4–6, 81, 95
replicates, in experimental

design, 188
reproducibility, 4–6, 91, 95, 101
re-scaled sum of z-scores, 93
residual diagnostics, 145–6, 230
residuals, in regression 

calculations, 
see y-residuals,
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response surface
designs, 197
in optimization, 200–1

robust methods, 54, 92, 145, 151,
171–8, 253

rounding of results, 29–30, 118
ruggedness test, 94
runs of � and � signs, 138–9,

158–9, 253
Ryan-Joiner test for normality, 64

sample, 24
sampling, 10, 74, 77–78, 98, 

100, 101
sampling distribution of the

mean, 26, 57, 102
sampling variance, 75–7
sampling with replacement, 176–7
SAS, 217
scatter diagrams, 215
score plots, 218
seed points, 223
sensitivity, 124
sequences of � and � signs, 

see runs of � and � signs
sequential use of significance

tests, 68–9
Shewhart chart, 79–87, 89
Siegel-Tukey test, 154, 164, 251,

252, 260
sign test, 156–8, 160, 251, 252,

259
signed rank test, see Wilcoxon

signed rank test
significance levels, 39–41
significance tests, 14, 39–69, 153,

156–67, 178, 253
comparing two means, 41–7
comparing two variances 49–51
conclusions from, 67–9
on mean, 39–41
problems in sequential use, 68–9

significant figures, 29–30, 112, 118
SIMCA, 228
similarity in cluster analysis, 220
simplex optimization, 205–8
simulated annealing, 209
single linkage method, 220
single point calibration, 118
slope of linear calibration graph,

109, 114–8, 124, 125,
127–30, 132–5, 145,
169–71, 175–6

soil samples, 1–2
Spearman’s rank correlation 

coefficient, 167–9, 251,
252, 261

speciation problems, 126–7
specimen, 25
spline functions, 144
spreadsheets, 14, 118
standard additions method, 109,

124–6
standard deviation, 13, 14,

18–24, 33–5, 51, 79–81, 91,
92, 94, 102, 121, 123,
130–1, 133, 134, 136, 150,
156, 172–4, 176, 177

of slope and intercept of linear
calibration plot, 116–8,
122–3, 125

standard error of the mean
(s.e.m.), 26

standard flask, 7, 8
standard normal cumulative 

distribution function,
22–3, 66, 254–5

standard normal variable, 
22–3, 66

standard reference materials, 11,
74, 78–9, 91, 101, 107

standard uncertainty, 98–102
standardization, 219, 227
standardized interquartile range

(SIQR), 173
standardized mean absolute 

deviation (SMAD), 173
steel samples, 1
steepest ascent, optimization

method, 202–5
stem-and-leaf diagram, 155
sum of squared z-scores, 93
sums of squares, in non-linear

regression, 137, 142–3, 173
systematic errors, 3–13, 20, 26,

31, 35–6, 40, 48, 96–8, 99,
108, 126, 127, 161, 
182, 192

t-statistic, 28–9, 39–48, 77, 79,
117, 119–21, 125, 136

t-test, 39–48, 63, 0, 114, 135,
153, 156, 178, 251, 252,
253, 256

target value, in control charts,
79–90

temperature effects in volumetric
analysis, 8–9

test extract, 25
test increment, 75, 76, 78
test set, 225
test solution, 25
Theil’s method for regression

lines, 169–71, 176
thermal analysis methods, 107
tied ranks, 161, 163, 164, 

165–7, 169
titrimetric analysis, 3, 6–9, 30,

107, 135
tolerances, of glassware and

weights, 7
tolerance quality level (TQL),

102–3
top-down method for 

uncertainty, 100
training objects, 223
training set, 225
transformations, in regression,

135, 140–4
transmittance, 35
treatments, 182–3, 183–6
trend, significance test for, 157–8
triangular distribution, 99
trimmed mean, 172–4
Tukey’s quick test, 163, 

251, 252
two-sample plot, see Youden plot
two-sided test, 44, 47–8, 114,

121, 158, 160, 161
two-tailed test, see two-sided test
type I errors, in significance tests,

67–9, 122
type II errors, in significance

tests, 67–9, 122
type A uncertainties, 99, 100
type B uncertainties, 99

uncertainty, 6, 30, 36, 74, 92,
98–102

uncontrolled factor, see random
effect factor

uniform distribution, 99
univariate methods in 

optimization, 197–202
unweighted regression methods,

107–31, 133
upper quartile, 152–4
Unscrambler, The, 14, 217, 232,

235

.

SCA_D04.qxd  3/29/05  4:13 PM  Page 267



268 Index

.

V-mask, 87–90
Vamstat, 14
variance, 19, 33–5, 49–51, 

75, 78, 79, 95, 97, 
97–8, 131, 
171, 173

volumetric glassware, 7–11, 
99, 100

Wald-Wolfowitz runs tests,
158–9, 253, 259

warning lines, in control charts,
80–90

water analysis, 91

weighing, 7, 8, 9, 36
bottle, 7
buoyancy effects in, 8, 9
by difference, 7, 10–11, 36

weighted centroid, 132–5
weighted regression methods,

110, 131–5, 141, 146, 176
weights, of points in weighted

regression, 110, 131–5
Wilcoxon signed rank test,

159–62, 163, 251, 
252, 260

Winsorization, 172–5
within-run precision, 5

within-sample variation, 56–7,
76–7

word-processors, 14

y-residuals, in calibration plots,
114, 116, 118, 138–40,
143–6, 175, 176, 231

Yates, 63, 195
Yates’s correction, 63
Youden plot, 96–8

z-scores, 91–3
z-values, 22–3, 27, 79, 102–3
zone control charts, 89–90
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