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Part 1: Reproduce Figure 21  

Code to generate this figure is attached.  

 

Part 2: Sensitivity Analysis  

Each plot shows simulation results for the two 20% perturbations to parameters as well as the original 

curve above. I measure the fit of each simulation by calculating the difference between the simulated 

values and the observed values across the six samples as a percentage of the observed values. For each 

parameter, I report the mean value of this percent error for both the 20% increase and decrease 

scenarios, rounded to the nearest percent. The code for this and the plots is attached.  

 

Mean P Error, decreased p = 81%;  Mean P Error, increased p = 2,246% 



 

Mean P Error, decreased R0 = 127%;  Mean P Error, increased R0 = 54% 

 

Mean P Error, decreased r = 65%;  Mean P Error, increased r =  52% 



 

Mean P Error, decreased g = 465% ;  Mean P Error, increased g = 66% 

 

Mean P Error, decreased (1-N) = 81%;  Mean P Error, increased (1-N) = 2,246% 

 

From these simulations, it appears that the model is most sensitive to changes in p and (1-N).  

Particularly, increasing these values leads to populations of phytoplankton that grow wildly. This makes 

sense since p is a photosynthetic constant and N is the reduction in photosynthetic rate due to nutrient 

depletion, so increasing 1-N increases the ability of plankton to grow in low nutrient environments.  

(Some values of 1-N are now greater than 1, which is all the more unreasonable). The model is also quite 

sensitive to changes in g. Because g is a grazing rate, changes in g have an inverse effect on the 

simulated phytoplankton stock.  Relative to these parameters, the model is reasonably insensitive to 



changes in r and R0, which describe the temperature effect on Respiration. Increasing the effect of 

temperature on respiration leads to decreases in phytoplankton, since more production is lost to 

respiration, especially at high temperatures. We see that although the model can be well fit to the data, 

as Riley suggests, a relatively small error in parameter estimation could lead to dramatic errors in 

predicted Phytoplankton stock – especially for values of p and (1-N).  

 

Part 3: Periodicity 

 

For P to be periodic we need dP/dt to average to 0 over the course of a year, so that the stock returns to 
its original value. We can generate the periodic solution above by keeping the initial parameters, making 
g = 0.007435 /day and making the annual inputs periodic (OneMinusN, OneMinusV, k, T, I, Z, z1). 
Changing the other parameters obviously changes the value of g that makes the solution periodic. As we 
saw in the sensitivity tests, increasing some parameters has positive effects on phytoplankton growth 
and increasing others, like g, results in negative effects. So for example, increasing p to 2.6 /day requires 
us to increase g to 0.0079465 to obtain a periodic solution, because p has a positive effect which must 
be balanced by a greater negative effect from grazing.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



If we add the stochasticity to the Z input as indicated in the assignment we get the following, which is no 
longer periodic:  

 
Of course, because we have incorporated stochasticity, this result will be different every time. Here are 
a few more simulations using the same code:   

 
Again, we see the sensitivity of the model to relatively small perturbations. Changing the Zooplankton 
stock by <20% leads to quite different dynamics, even when environmental conditions are forced to be 
exactly periodic (which they almost certainly wouldn’t be in reality). We also see that by construction 
the potential for large anomolies is greater in the positive direction, since phytoplankton stock is 
necessarily bounded below by 0. If the zooplankton stock and consequently grazing rates were allowed 
to increase in response to P, rather than randomly, we might expect to see fewer simulations where 
phytoplankton stock attains these superhigh values.  
 

 

 

 



Code for this Problem Set  

 

%% define simulation function for Riley model 

  

  

function [Pvec] = Riley(numsteps, p, R0, r, g, P, I, k, 

OneMinusN, OneMinusV, T, Z, z1) 

  

%time step variables 

tstep = 15; 

  

%save output vector for P time series  

Pvec = P;  

  

for s = 1:numsteps  

    %use equation 8 from the paper 

    dPdt = P*((p*I(s)/(k(s)*z1(s)))*(1-exp(-

k(s)*z1(s)))*OneMinusN(s)*OneMinusV(s) - R0*exp(r*T(s)) - 

g*Z(s));  

     

    %adjust P accordingly 

    P = exp(15*dPdt / P) * P; 

    

    %save P to output 

    Pvec = [Pvec P];  

end 

 

%% Part 1: Run model just like Riley's  

clear all 

  

load('Riley_dat.mat') 

%I, k, OneMinusN, OneMinusV, T, Z, z1 

numsteps = 24; %run for 1 "year" 

  

%initial condition 

P = 3.4; %gCm^(-2) 

  

%params 

p = 2.5; %/day 

R0 = 0.0175; %/day 

r = 0.069;  %/degC 

g = 0.0075; %/day 

  

[Pvec] = Riley(numsteps, p, R0, r, g, P, I, k, OneMinusN, 

OneMinusV, T, Z, z1);  



  

%generate ~figure 21 

plot([1:15:370], Pvec, 'linewidth', 2) 

axis([0 360 0 40]) 

xticks([1:30:370]) 

xticklabels({'J'; 'F'; 'M'; 'A'; 'M'; 'J'; 'J'; 'A'; 'S'; 'O'; 

'N'; 'D'}) 

ylabel('Phytoplankton (g carbon per m^{2})') 

hold on  

scatter((Obs_time+1), Obs_P, 'black', 'filled') 

legend('Theoretical Curve', 'Observed Population') 

  

clear P 

  

  

  

%% Part 2: Sensitivity Analysis  

%change these for each parameter test  

titleval = 'Sensitivity to p' 

p1 = .8.*p; % 20% decrease 

p2 = 1.2 .*p; % 20% increase 

  

%params 

p = 2.5; %/day 

R0 = 0.0175; %/day 

r = 0.069;  %/degC 

g = 0.0075; %/day 

  

  

p = p1 %Change this 

P = 3.4; %gCm^(-2) 

  

[Pvec1] = Riley(numsteps, p, R0, r, g, P, I, k, OneMinusN, 

OneMinusV, T, Z, z1);  

  

hold on  

%add simulation to graph  

plot([1:15:370], Pvec1, '-.', 'color', [.8 .2 0], 'linewidth', 

2) 

  

clear P;  

% --- simulate again with new param---  

  

p = p2; %Change this  

P = 3.4; %gCm^(-2) 

  



[Pvec2] = Riley(numsteps, p, R0, r, g, P, I, k, OneMinusN, 

OneMinusV, T, Z, z1);  

  

hold on  

%add simulation to graph  

plot([1:15:370], Pvec2,'--', 'color', [0 .55 .2], 'linewidth', 

2) 

title(titleval) 

legend('Theoretical Curve', 'Observed Population', '20% 

decrease', '20% increase') 

axis('auto') 

  

%% Part 3: Calculate Error 

  

%first interpolate simulation so we have points at same time as 

data 

  

X1 = interp1([1:15:370], Pvec1, (Obs_time+1), 'linear');  

pErr = abs(X1 - Obs_P) ./ Obs_P * 100;  

X2 = interp1([1:15:370], Pvec2, (Obs_time+1), 'linear');  

pErr2 = abs(X2 - Obs_P) ./ Obs_P * 100;  

  

meanpErr1 = mean(pErr) 

meanpErr2 = mean(pErr2) 

 

 

%% Part 4: When it is periodic 

clear all 

  

load('Riley_dat.mat') 

%I, k, OneMinusN, OneMinusV, T, Z, z1 

  

%change inputs so they are long enough for 10 year simulation?  

OneMinusN = repmat(OneMinusN, 10);  

OneMinusN = OneMinusN(:,1);  

OneMinusV = repmat(OneMinusV, 10);  

OneMinusV = OneMinusV(:,1);   

T = repmat(T, 10);  

T = T(:,1);   

Z = repmat(Z, 10);  

Z = Z(:,1);   

z1 = repmat(z1, 10);  

z1 = z1(:,1);   

k = repmat(k, 10);  

k = k(:,1);   

I = repmat(I, 10);  



I = I(:,1);   

  

%now add randomness to Z  

for i = 1:length(Z) 

    Z(i) = Z(i)*(.8 + 0.4*rand);  

end 

  

  

numsteps = 240;  

%initial condition 

P = 3.4; %gCm^(-2) 

%params 

p = 2.5; %/day 

R0 = 0.0175; %/day 

r = 0.069;  %/degC 

g = 0.007435; %/day 

  

[Pvec] = Riley(numsteps, p, R0, r, g, P, I, k, OneMinusN, 

OneMinusV, T, Z, z1);  

  

hold on  

%generate ~figure 21 

plot([1:15:3614], Pvec, 'linewidth', 2) 

axis('auto') 

ylabel('Phytoplankton (g carbon per m^{2})') 

hold on  

xticks([1:360:3600]) 

xticklabels([1:10]) 

xlabel('Year') 

clear P Pvec 

  

 

 


