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Figure 1. Duplication of results from Riley of the theoretical model prediction of P vs the 
observations. (Further analysis in the comments of the code) 
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Figure 2. Sensitivity analysis: P over the course of a year, changing the photosynthesis 
amplifying parameter p 10% and 20%. The Red curve indicates the original parameter choices. 
(further analysis in comments of code) 
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Figure 3. Sensitivity analysis: P over the course of a year, changing the temperature-

dependent amplifying parameter R_0 10% and 20%. The yellow curve indicates the original 
parameter choices. Note that the deviations from the control parameter P in R_0 are relatively 
small compared to those in p, suggesting that P is very sensitive to choices of p but not as 
sensitive to R_0. (further analysis in comments of code) 
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Figure 4. Sensitivity analysis: P over the course of a year, changing the temperature-

dependent exponential parameter r_0 10% and 20%. The yellow curve indicates the original 
parameter choices. Note that the deviations from the control parameter P in R_0 are relatively 
small compared to those in p (even closer to the control case than deviations in R_0), 
suggesting that P is very sensitive to choices of p but not as sensitive to r. (further analysis in 
comments of code) 
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Figure 5. Sensitivity analysis: P over the course of a year, changing the grazing 
parameter g 10% and 20%. The yellow curve indicates the original parameter choices. Note that 
the deviations from the control parameter P in g are rather large compared to those in R_0 
(though not nearly as sensitive as p, the reason being that there is also a temperature-
dependent term which aids in the decay of P), suggesting that P is still quite sensitive to choices 
of g but not as sensitive to r. (further analysis in comments of code) 
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 Figure 6 (supplementary figure). Sensitivity analysis: P over the course of a year, 
increasing the nutrient depletion parameter 1-N by 20% for a given time interval (it is a 
redundant calculation to uniformly amplify or diminish 1-N by 10% or 20% in the sensitivity 
analysis). In other words, each curve corresponds to a time interval for which we increase the 
corresponding 1-N value there by 20%. Although a bit muddled in the steeper gradient sections 
of this plot, looking near the local peaks of P we can observe that the sensitive P values deviate 
from their standard values by about 5 (first peak) or 10 (secondary peak) (further analysis in 
comments of code). This is suggestive of the sensitivity of P on 1-N, though the obvious 
conclusion is reached upon uniformly enhancing 1-N, which has the same degree of sensitivity 
of p. 

 

Commented [11]: The problem was intended to be the 
uniform increase / decrease to 1-N which you correctly 
identified as identical to the earlier sensitivity of p.   
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Figure 7. approximate grazing coefficient g= 0.007434768 to 
generate a periodic solution for P by equating endpoints of 
distribution. 

Commented [12]: Answer for g is correct but you did not 
explain the first part—the conditions for g to be periodic. 
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Figure 8. 10-year plot of P for the standard values used in Riley, except that we now use the 
approximate grazing coefficient g= 0.007434768 to generate a periodic solution for P. This will 
be our base case with which we compare some of the P distributions in the presence of 
randomized predator forcing Z.  
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Figure 9. 10-year plot of P for the standard values used in Riley, except that we now use the 
approximate grazing coefficient g= 0.007434768 and randomized Z forcing. The bottom right 
diagram is the periodic non-randomized Z with the above grazing parameter to allow for 
periodic P solutions. The top left diagram shows the case where the random components on 
the whole act to diminish the zooplankton population enough that the P density is amplified 
and the signal becomes sharper. The bottom left demonstrates a similar phenomenon in the 
sense that there becomes an aperiodic intermittent signal averaging the original non-
randomized P plot, but diverges from the top left in that P eventually is eaten down and the P 
population signal diminishes. The top right demonstrates an even steeper zooplankton forcing 
where it starts weak so P can increase significantly, then Z becomes stronger so that P decays 
midway through year 4. 
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Code for generating the above figures/sensitivity analysis: (green paragraphs indicate responses 
to questions) 
 
clear all; close all; fclose all; 
cd('/Users/michaeldotzel/Desktop/12823'); 

  
load('Riley_dat.mat'); 
%In Riley (1946), we consider a simple plankton model P_t=P*(P_h-R-G), 
%where P_h denotes the rate of photosynthesis (given as aan exponentially 
%decaying function of depth, along with a vertical motion and nutrient  
%depletion factors), R the effect of temperature, and G the grazing rate. 
%Riley takes the grazing rate to be directly proportional to the predator 
%density, and R exponential in temperature. Combining these somewhat 

empirically 
%motivated assumptions gives the final form  
% 
%dP/dt = P[(p*I_0/(k*z_1))*(1-exp(-k*z_1))*(1-N)*(1-V)-R_0*exp(r*T)-g*Z]. 
% 
%Integrating this equation in time (for a series of relatively shorter, 15 

day 
%time intervals) yields the expression 
% 
%ln[P(t+15)/P(t)]=15*[P_h(t)-R(t)-G(t)], 
% 
%where here we assume that rates of growth on these small time intervals 
%are (roughly) constant (hence our multiplication by t_f-t_i = 15).  
% 
%Out parameter values are  
% 
p=2.5;  
R_0=0.0175; 
r=0.069; 
g=0.0075; 
% 
%In addition, we have initial condition that  
% 
P=NaN(25,1); 
P(1)=3.4; 

  
for i=1:length(T) 
P(i+1)=P(i)*exp(15*[(p*I(i)/(k(i)*z1(i)))*(1-exp(-

k(i)*z1(i)))*OneMinusN(i)*OneMinusV(i)-R_0*exp(r*T(i))-g*Z(i)]); 
end 

  
%P=P(1:15:end); 
t=1:15:361; 
plot(t,P,'-x'); %plots the theoretical P with t 

  

%here we shifted our initial points forward 1 day so that P_initial = P(1) 
%instead of P(0) (so that indices jive with matlab). 

  
%overlay with plot of observed P w/ resp to observed t (shift forward one 
%day in the same vein as above theoretical estimate) 
Obs_time=1+Obs_time; %since we are taking P(initial)=P(1) instead of P(0) 
hold on; plot(Obs_time,Obs_P,'o','Color','r'); 
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xlabel('t(days)');ylabel('amt of phytoplankton (g/m^2)'); 
title('yearly phytoplankton density vs t (year theory and obs comparison)'); 

  
%We observe that the distribution obtained from this plot for the most part 
%appears to duplicate that of Riley, with some small differences: the 
%observational and theoretical primary peaks appear to not quite coincide 
%as they seem to in his diagram, and while one might assume this is due to 
%some kind of shifting error in the code, applying a shift of 10 days 
%(which would position the observational peak point over the theoretical 
%peak) is not enough to bring the remaining observations to coincide exactly 

with 
%the theoretical curve in the way depicted in Riley. 
%%% Now we perform sensitivity analysis on each parameter 
% 
%For each parameter as listed above, we are interested in how dependent the 
%phytoplankton are to changes to their growth dynamics. First we determine 
%the sensitivity of P to the rate of photosynthesis amplifying parameter p: 
p_vary=[2 2.25 2.5 2.75 3]; 
R_0=0.0175; 
r=0.069; 
g=0.0075; 
P=NaN(25,5); 
    P(1,:)=3.4; 
for j=1:length(p_vary) 
for i=1:length(T) 
P(i+1,j)=P(i,j)*exp(15*[(p_vary(j)*I(i)/(k(i)*z1(i)))*(1-exp(-

k(i)*z1(i)))*OneMinusN(i)*OneMinusV(i)-R_0*exp(r*T(i))-g*Z(i)]); 
end 

  
%P=P(1:15:end); 
t=1:15:361; 
figure(1) 
 if j==3 
 plot(t,P(:,j),'-x','LineWidth',2); %plots the theoretical P with t 
 else 
   plot(t,P(:,j),'-x','LineWidth',1); %plots the theoretical P with t 
hold on 
end 
end 
hold on; plot(Obs_time,Obs_P,'o','Color','r'); 
xlabel('t(days)');ylabel('amt of phytoplankton (g/m^2)'); 
title('phytoplankton density vs t: vary p'); 
legend('p=2.25',... 
    ['p=2.5 (original value)'],['p=2'],['p=2.75'],['p=3']); 
% 
% 
%We first observe that at 20% enhancement of p, the solution for P becomes 
%very large, with values more than 5x larger at the first local maximum in 
%P than the p=2.5 Riley case, and nearly 60x larger at the 2nd local 
%maximum than the original. It is also worth noting that the second local 
%maximum which was smaller than the first in the original p case, becomes 
%more recessive with smaller p while increasing to overtake the value of P 
%at the first local maximum for larger p. This could be attributed to the 
%enhancement of light intensity in the northern hemisphere (e.g. the Georges 

Bank region)  
%during the summer and the corresponding emphasis on light exposure with 
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%increasing p. For smaller p, temperature-dependent reduction in growth 
%rate becomes more important for the higher temperatures in summer than in 
%spring. As I am sure will be important for the second part of the 
%assignment, it is as well interesting to see that for p even 10% larger, 
%P does not oscillate seasonally - instead, there is an annual net 
%increase.  
% 
%Now we determine the sensitivity of P to the temperature-dependent growth 

amplifying parameter R_0: 
p=2.5; 
R_0vary=[0.014 0.01575 0.0175 0.01925 0.021]; 
r=0.069; 
g=0.0075; 
P=NaN(25,5); 
    P(1,:)=3.4; 

  
for j=1:length(R_0vary) 

  
for i=1:length(T) 
P(i+1,j)=P(i,j)*exp(15*[(p*I(i)/(k(i)*z1(i)))*(1-exp(-

k(i)*z1(i)))*OneMinusN(i)*OneMinusV(i)-R_0vary(j)*exp(r*T(i))-g*Z(i)]); 
end 

  
%P=P(1:15:end); 
t=1:15:361; 
figure(1) 
 if j==3 
 plot(t,P(:,j),'-x','LineWidth',3); %plots the theoretical P with t 
 else 
   plot(t,P(:,j),'-x','LineWidth',1); %plots the theoretical P with t 
hold on 
end 
end 
hold on; plot(Obs_time,Obs_P,'o','Color','r'); 
xlabel('t(days)');ylabel('amt of phytoplankton (g/m^2)'); 
title('phytoplankton density vs t: vary R_0'); 
legend('R_0=0.014',... 
    ['R_0=0.01575'],['R_0=0.0175 (original 

value)'],['R=0.01925'],['R_0=0.021']); 
% 
% 
%Our phytoplankton model is less sensitive to the effects of changing the  
%amplitude of the temperature-dependent term than changing p  
%(though indeed still sensitive). I say this for two reasons: the general 
%qualitative features of a sharper local maximum followed by a smaller 
%secondary local maximum are preserved, and the end-of-year deviation from 
%the initial P density is much smaller in magnitude than that observed when 
%varying p. The original value of R_0 (in yellow) in fact provides an 
%close-to-periodic-oscillation of P, with P(end)=2.925 for 
%P(initial)=3.4. When decreasing R_0 10% our P distribution no longer 
%promises anything in the vicinity of periodicity, with P(final) being 3 
%times larger than P(initial), and decreasing 20% P(final) becomes 10x 
%larger than P(initial). However, this suggests that (because computed  
%values of P are continuous with respect to a continuous parameter change)  
%there is a value of R_0 which is slightly smaller than 0.0175 (original) 
%which does provide oscillation of P for fixed other parameters. When R_0 
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%increases there is further dissipation of P, with P(final) becoming much 
%smaller than P(initial). These features are all consistent with the 
%temperature-dependent term interpretation of Riley's model: chiefly a 
%decay term, for smaller R_0 there is less decay due to temperature, hence 
%a relative increase in the amplitude of the second peak. For larger R_0 
%however, in the warmer summer months temperature plays a much more 
%enhanced role in depressing P growth, hence the much smaller secondary 
%peak and in the end a net negative yearly effect on P.  
% 
%Now we determine the sensitivity of P to the exponential temperature rate of 

increase r: 
p=2.5; 
R_0=0.0175; 
r_vary=[0.0552 0.0621 0.069 0.0759 0.0828]; 
g=0.0075; 
P=NaN(25,1); 
P(1)=3.4; 

  
for j=1:length(r_vary) 
for i=1:length(T) 
P(i+1)=P(i)*exp(15*[(p*I(i)/(k(i)*z1(i)))*(1-exp(-

k(i)*z1(i)))*OneMinusN(i)*OneMinusV(i)-R_0*exp(r_vary(j)*T(i))-g*Z(i)]); 
end 

  
%P=P(1:15:end); 
t=1:15:361; 
figure(1) 
 if j==3 
 plot(t,P,'-x','LineWidth',3); %plots the theoretical P with t 
 else 
   plot(t,P,'-x','LineWidth',1); %plots the theoretical P with t 
hold on 
end 
end 
hold on; plot(Obs_time,Obs_P,'o','Color','r'); 
xlabel('t(days)');ylabel('amt of phytoplankton (g/m^2)'); 
title('phytoplankton density vs t: vary r'); 
legend('r=0.0552',... 
    ['r=0.0621'],['r=0.069 (original value)'],['r=0.0759'],['r=0.0828']); 
% 
% 
%Our phytoplankton model is even less sensitive to the effects of changing 

the  
%exponent of the temperature-dependent term than changing R  
%(though indeed still sensitive). I say this again for two reasons: the 

general 
%qualitative features of a sharper local maximum followed by a smaller 
%secondary local maximum are preserved (as in the case of varying R), and  
%the end-of-year deviation from 
%the initial P density is even smaller in magnitude than that observed when 
%varying R or P. When decreasing r 10% our P distribution also still fails to  
%be periodic, however P(final) is still closer to P(initial) than that found  
%for the corresponding value of R_0. Decreasing 20% P(final) becomes ~5x 
%larger than P(initial). However, this suggests that (because computed  
%values of P are continuous with respect to a continuous parameter change)  
%there is a value of r which is slightly smaller than 0.069 (original) 
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%which does provide oscillation of P for fixed other parameters. When r 
%increases there is further dissipation of P, with P(final) becoming much 
%smaller than P(initial). These features are all again consistent with the 
%temperature-dependent term interpretation of Riley's model: chiefly a 
%decay term, for smaller r there is exponential decrease of this term due to 

temperature, hence 
%a relative increase in the amplitude of the second peak. For larger r 
%in the warmer summer months temperature plays a much more 
%enhanced role in depressing P growth, hence the much smaller secondary 
%peak and in the end a net negative yearly effect on P.  
% 
%Now we determine the sensitivity of P to grazing coefficient g: 
p=2.5; 
R_0=0.0175; 
r=0.069; 
g_vary=[0.006 0.00675 0.0075 0.00825 0.009]; 
P=NaN(25,1); 
    P(1)=3.4; 
for j=1:length(g_vary) 
for i=1:length(T) 
P(i+1)=P(i)*exp(15*[(p*I(i)/(k(i)*z1(i)))*(1-exp(-

k(i)*z1(i)))*OneMinusN(i)*OneMinusV(i)-R_0*exp(r*T(i))-g_vary(j)*Z(i)]); 
end 

  
%P=P(1:15:end); 
t=1:15:361; 
figure(1) 
 if j==3 
 plot(t,P,'-x','LineWidth',3); %plots the theoretical P with t 
 else 
   plot(t,P,'-x','LineWidth',1); %plots the theoretical P with t 
hold on 
end 
end 
hold on; plot(Obs_time,Obs_P,'o','Color','r'); 
xlabel('t(days)');ylabel('amt of phytoplankton (g/m^2)'); 
title('phytoplankton density vs t: vary g'); 
legend('g=0.006',... 
    ['g=0.00675'],['g=0.0075 (original value)'],['g=0.00825'],['g=0.009']); 
% 
%Our phytoplankton model is quite sensitive to the effects of changing the  
%grazing coefficient. The reason is because qualitatively, the secondary 
% local maximum in P (just the opposite of the varying p case) becomes even 
% larger than the first local maximum when decreasing g more than 10% of the 

original grazing 
%coefficient value, whereas originally the first peak is more pronounced 
%than the second (this property still holds when g is increased). However, 
%the value of P at the secondary peak when decreasing g by 20% is close to 
%20x that of the original P at this peak. This suggests that grazing  
%(along with light uptake term governed by p) is a principal factor in the 
%model governing the growth of P, in contrast to temperature effects. 
%For smaller g value, less grazing of P by Z allows P to multiply faster 
%than the predators can regulate them, so a net increase in P over the year 
%follows, in addition to a larger spike in the summer months due to 
%increased sunlight/larger rate of P growth relative to grazing. For 
%g 10% less than the one originally used by Riley, already the peaks seem 
%about even with one another in the spring as the summer, though still 
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%coming out with a net positive annual increase in P despite Z's best 

efforts.  
%Of course if g is too large then P just plummets from overeating, which is 
%what can be observed from the smaller g values than the original. 
% 
% 
%Now we determine the sensitivity of P to the nutrient depletion rate 
%factor 1-N. It is redundant to consider cases where these values are 

uniformly increased or uniformly decreased by 10% 
%or 20%, since this effect would be equivalent to changing p by that 
%amount which was already analyzed. Therefore, in this case P is equally 

sensitive to 1-N as p. We can instead think about performing sensitivity 
%analysis for one 15 day period (i.e. for one time interval in which 1-N is 
%constant). It is unlikely that such an analysis will yield anything striking 

about the sensitivity of the forcing function 
%itself - since we are leaving the parameters for all other times 
%invariant, the qualitative difference between distributions will not 
%differ appreciably. We've confirmed this below, in which we have increased 
%1-N at each time interval separately by 20% to see how sensitive P is to 
%1-N for one interval parameter change: 
% 

  
p=2.5; 
R_0=0.0175; 
r=0.069; 
g=0.0075; 
for j=1:24 
    if j==1 
        OMN(j,:)=[1.2*OneMinusN(1),OneMinusN(2:24)']; 
    else 
OMN(j,:)=[OneMinusN(1:j-1)',1.2*OneMinusN(j),OneMinusN(j+1:end)']; 
    end 
end 
P=NaN(25,1); 
    P(1)=3.4; 
for j=1:size(OMN,1) 
for i=1:length(T) 
P(i+1)=P(i)*exp(15*[(p*I(i)/(k(i)*z1(i)))*(1-exp(-

k(i)*z1(i)))*OMN(j,i)*OneMinusV(i)-R_0*exp(r*T(i))-g*Z(i)]); 
end 

  
%P=P(1:15:end); 
t=1:15:361; 
figure(1) 
   plot(t,P,'-x','LineWidth',1); %plots the theoretical P with t 
hold on 
end 
hold on; plot(Obs_time,Obs_P,'o','Color','r'); 
xlabel('t(days)');ylabel('amt of phytoplankton (g/m^2)'); 
title('phytoplankton density vs t: vary nutrient depletion term 1-N for one 

time interval'); 
% 
% 
%Now we will fit the observed P to the predicted P for each of the 
%sensitivity studies performed above. We use a standard deviation method 

first to  
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%find the error for each theoretical sensitivity test relative to the 

observation.  
%We will also use an averaged relative error formula to fit the observations 

and corresponding theoretical 
%predictions. The reason I do so is twofold: 1) I did not catch that 
%average error referred to standard deviation in the paper until rather 
%late, and so then tried to resolve the ambiguity by another way; 2) though 

slightly 
%different, this average error method captures a similar local percent error 

between theory 
%and observation (in a somewhat weighted sense) as captured by the standard 
%deviation. 
% 
% 
%p_vary case (repeating part of code above) 
p_vary=[2 2.25 2.5 2.75 3]; 
R_0=0.0175; 
r=0.069; 
g=0.0075; 
P=NaN(25,5); 
    P(1,:)=3.4; 
for j=1:length(p_vary) 
for i=1:length(T) 
P(i+1,j)=P(i,j)*exp(15*[(p_vary(j)*I(i)/(k(i)*z1(i)))*(1-exp(-

k(i)*z1(i)))*OneMinusN(i)*OneMinusV(i)-R_0*exp(r*T(i))-g*Z(i)]); 
end 

  
%P=P(1:15:end); 
t=1:15:361; 
figure(1) 
 if j==3 
 plot(t,P(:,j),'-x','LineWidth',2); %plots the theoretical P with t 
 else 
   plot(t,P(:,j),'-x','LineWidth',1); %plots the theoretical P with t 
hold on 
end 
end 
hold on; plot(Obs_time,Obs_P,'o','Color','r'); 
xlabel('t(days)');ylabel('amt of phytoplankton (g/m^2)'); 
title('phytoplankton density vs t: vary p'); 
legend('p=2',... 
    ['p=2.25'],['p=2.5 (original value)'],['p=2.75'],['p=3']); 

  
%now find corresponding value at observed times 
a=1:1:24; 
m=NaN(length(Obs_time),length(p_vary)); 
Pre_P=NaN(length(Obs_time),length(p_vary)); 
for i=1:length(Obs_time) 
    F=find(Obs_time(i)>=t(a) & Obs_time(i)<=t(a+1)); %finds 15 day interval 

in which observation is located 
    if length(F)>1 
        Pre_P(i,:)=P(F(2),:); 
    else 
        for j=1:size(P,2) 
    m(i,j)=(P(F+1,j)-P(F,j))./(t(F+1)-t(F)); 
    Pre_P(i,j)=P(F,j)+(Obs_time(i)-t(F)).*m(i,j); 



Pset1 Michael Dotzel 03/15 

        end 
    end 
end 
%METHOD 1: standard deviation 
ObsP=repmat(Obs_P',1,5); 
Err=ObsP-Pre_P; %relative errors 
SD=NaN(5,1); 
for i=1:5 
SD(i)=std(Err(:,i)); %for each sensitivity test, over all time points 
end 
SS=SD'./mean(Pre_P,1); %yields percent deviation of P from the predicted 

value (Incorrect - not paper value) 

  
%I do not obtain the right percentage error in this computation compared to 
%that of Riley. I would at some point like to clear this up with you 
%sometime, if alright - I somehow misinterpret the standard deviation 
%method. I use an alternate method below, but cannot be nicely compared to 
%that of Riley. 

  
%METHOD 2: find relative error (%error=(obs-exp)/exp) 
ObsP=repmat(Obs_P',1,5); 
err=ObsP-Pre_P; 
N=NaN(5,1); 
N(1,1)=norm(err(:,1))/norm(Obs_P); 
N(2,1)=norm(err(:,2))/norm(Obs_P); 
N(3,1)=norm(err(:,3))/norm(Obs_P); 
N(4,1)=norm(err(:,4))/norm(Obs_P); 
N(5,1)=norm(err(:,5))/norm(Obs_P); 
%N = 

  

%    0.8500 
%    0.6829 
%    0.4613 
%    2.2820 
%   21.0114 

  
%Note that of these relative errors for each varied value of p in our 
%sensitivity analysis, the smallest in magnitude is that which corresponds 
%to the initial choice of parameters, and which gives 46.13% averaged 

relative error 
%between the theoretical prediction and the observations. 

  
%2. R_0 case 
p=2.5; 
R_0vary=[0.014 0.01575 0.0175 0.01925 0.021]; 
r=0.069; 
g=0.0075; 
P=NaN(25,5); 
    P(1,:)=3.4; 
for j=1:length(R_0vary) 

  
for i=1:length(T) 
P(i+1,j)=P(i,j)*exp(15*[(p*I(i)/(k(i)*z1(i)))*(1-exp(-

k(i)*z1(i)))*OneMinusN(i)*OneMinusV(i)-R_0vary(j)*exp(r*T(i))-g*Z(i)]); 
end 
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%P=P(1:15:end); 
t=1:15:361; 
figure(1) 
 if j==3 
 plot(t,P(:,j),'-x','LineWidth',3); %plots the theoretical P with t 
 else 
   plot(t,P(:,j),'-x','LineWidth',1); %plots the theoretical P with t 
hold on 
end 
end 
hold on; plot(Obs_time,Obs_P,'o','Color','r'); 
xlabel('t(days)');ylabel('amt of phytoplankton (g/m^2)'); 
title('phytoplankton density vs t: vary R_0'); 
legend('R_0=0.014',... 
    ['R_0=0.01575'],['R_0=0.0175 (original 

value)'],['R=0.01925'],['R_0=0.021']); 

  
%now find corresponding value at observed times 
a=1:1:24; 
m=NaN(length(Obs_time),length(R_0vary)); 
Pre_P=NaN(length(Obs_time),length(R_0vary)); 
for i=1:length(Obs_time) 
    F=find(Obs_time(i)>=t(a) & Obs_time(i)<=t(a+1)); %finds 15 day interval 

in which observation is located 
    if length(F)>1 
        Pre_P(i,:)=P(F(2),:); 
    else 
        for j=1:size(P,2) 
    m(i,j)=(P(F+1,j)-P(F,j))./(t(F+1)-t(F)); 
    Pre_P(i,j)=P(F,j)+(Obs_time(i)-t(F)).*m(i,j); 
        end 
    end 
end 

  

%METHOD 2: take relative error (%error=(obs-exp)/exp) 
ObsP=repmat(Obs_P',1,5); 
err=ObsP-Pre_P; 
N=NaN(5,1); 
N(1,1)=norm(err(:,1))/norm(Obs_P); 
N(2,1)=norm(err(:,2))/norm(Obs_P); 
N(3,1)=norm(err(:,3))/norm(Obs_P); 
N(4,1)=norm(err(:,4))/norm(Obs_P); 
N(5,1)=norm(err(:,5))/norm(Obs_P); 

  

%N = 

  
%    1.0526 
%    0.5837 
%    0.4613 
%    0.5075 
%    0.5927 

  
%Again note that of these relative errors for each varied value of p in our 
%sensitivity analysis, the smallest in magnitude is that which corresponds 
%to the initial choice of parameters, and which gives 46.13% relative error 
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%between the theoretical prediction and the observations. An increase to 110% 

of the  
%original R_0 value produces a somewhat closer relative error estimate of 

50.75%. 

  

  
%3. Vary exponential temperature rate of increase r 
p=2.5; 
R_0=0.0175; 
r_vary=[0.0552 0.0621 0.069 0.0759 0.0828]; 
g=0.0075; 
P=NaN(25,5); 
P(1,:)=3.4; 

  
for j=1:length(r_vary) 
for i=1:length(T) 
P(i+1,j)=P(i,j)*exp(15*[(p*I(i)/(k(i)*z1(i)))*(1-exp(-

k(i)*z1(i)))*OneMinusN(i)*OneMinusV(i)-R_0*exp(r_vary(j)*T(i))-g*Z(i)]); 
end 

  
%P=P(1:15:end); 
t=1:15:361; 
figure(1) 
 if j==3 
 plot(t,P(:,j),'-x','LineWidth',3); %plots the theoretical P with t 
 else 
   plot(t,P(:,j),'-x','LineWidth',1); %plots the theoretical P with t 
hold on 
end 
end 
hold on; plot(Obs_time,Obs_P,'o','Color','r'); 
xlabel('t(days)');ylabel('amt of phytoplankton (g/m^2)'); 
title('phytoplankton density vs t: vary r'); 
legend('r=0.0552',... 
    ['r=0.0621'],['r=0.069 (original value)'],['r=0.0759'],['r=0.0828']); 

  
% 
a=1:1:24; 
m=NaN(length(Obs_time),length(R_0vary)); 
Pre_P=NaN(length(Obs_time),length(R_0vary)); 
for i=1:length(Obs_time) 
    F=find(Obs_time(i)>=t(a) & Obs_time(i)<=t(a+1)); %finds 15 day interval 

in which observation is located 
    if length(F)>1 
        Pre_P(i,:)=P(F(2),:); 
    else 
        for j=1:size(P,2) 
    m(i,j)=(P(F+1,j)-P(F,j))./(t(F+1)-t(F)); 
    Pre_P(i,j)=P(F,j)+(Obs_time(i)-t(F)).*m(i,j); 
        end 
    end 
end 

  
%take relative error (%error=norm(obs-exp)/norm(exp)) 
ObsP=repmat(Obs_P',1,5); 
err=ObsP-Pre_P; 
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N=NaN(5,1); 
N(1,1)=norm(err(:,1))/norm(Obs_P); 
N(2,1)=norm(err(:,2))/norm(Obs_P); 
N(3,1)=norm(err(:,3))/norm(Obs_P); 
N(4,1)=norm(err(:,4))/norm(Obs_P); 
N(5,1)=norm(err(:,5))/norm(Obs_P); 
%N = 

  
%    0.5469 
%    0.4759 
%    0.4613 
%    0.4711 
%    0.4883 

  
%Here we observe that just as in the other sensitivity analyses, of each case 

the 
%original conditions produce the smallest average relative error at 46.13%. 
% 
% 
%4. vary grazing constant g 
p=2.5; 
R_0=0.0175; 
r=0.069; 
g_vary=[0.006 0.00675 0.0075 0.00825 0.009]; 
P=NaN(25,5); 
    P(1,:)=3.4; 
for j=1:length(g_vary) 
for i=1:length(T) 
P(i+1,j)=P(i,j)*exp(15*[(p*I(i)/(k(i)*z1(i)))*(1-exp(-

k(i)*z1(i)))*OneMinusN(i)*OneMinusV(i)-R_0*exp(r*T(i))-g_vary(j)*Z(i)]); 
end 

  
%P=P(1:15:end); 
t=1:15:361; 
figure(1) 
 if j==3 
 plot(t,P(:,j),'-x','LineWidth',3); %plots the theoretical P with t 
 else 
   plot(t,P(:,j),'-x','LineWidth',1); %plots the theoretical P with t 
hold on 
end 
end 
hold on; plot(Obs_time,Obs_P,'o','Color','r'); 
xlabel('t(days)');ylabel('amt of phytoplankton (g/m^2)'); 
title('phytoplankton density vs t: vary g'); 
legend('g=0.006',... 
    ['g=0.00675'],['g=0.0075 (original value)'],['g=0.00825'],['g=0.009']); 
% 
a=1:1:24; 
m=NaN(length(Obs_time),length(g_vary)); 
Pre_P=NaN(length(Obs_time),length(g_vary)); 
for i=1:length(Obs_time) 
    F=find(Obs_time(i)>=t(a) & Obs_time(i)<=t(a+1)); %finds 15 day interval 

in which observation is located 
    if length(F)>1 
        Pre_P(i,:)=P(F(2),:); 
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    else 
        for j=1:size(P,2) 
    m(i,j)=(P(F+1,j)-P(F,j))./(t(F+1)-t(F)); 
    Pre_P(i,j)=P(F,j)+(Obs_time(i)-t(F)).*m(i,j); 
        end 
    end 
end 

  
%take relative error (%error=(obs-exp)/exp) 
ObsP=repmat(Obs_P',1,5); 
err=ObsP-Pre_P; 
N=NaN(5,1); 
N(1,1)=norm(err(:,1))/norm(Obs_P); 
N(2,1)=norm(err(:,2))/norm(Obs_P); 
N(3,1)=norm(err(:,3))/norm(Obs_P); 
N(4,1)=norm(err(:,4))/norm(Obs_P); 
N(5,1)=norm(err(:,5))/norm(Obs_P); 

  
%N = 

  
%    3.7451 
%    0.9746 
%    0.4613 
%    0.5362 
%    0.6558 

  
%Here we observe that just as in the other sensitivity analyses, of each case 

the 
%original conditions produce the smallest relative error at 46.13%. 
%Increasing g to 110% of the original value yields P which is relatively 

close to  
%that of the original parameter values, with relative error 53.62%. 
% 
%In summary, the relative error method gives a relative measure of how 
%important parameters are to the P solution by considering how different 
%the errors are between the original parameter value-determining P and the 
%plus/minus 10% or 20% the value of the respective parameter on P. 
%In this way, one can observe that P is extremely sensitive to p, 
%moderately sensitive to both g and R_0, and not as sensitive to r. 
% 

  

  
%We now turn our attention to the case where P is periodic, i.e. if there 
%is annual cycling of P. In order for this to happen, we must have 
%P(end)=P(initial)=3.4. We observed that in all our sensitivity and 
%original analyses, we have come close to periodic oscillation in P but not 
%quite. We will then change the grazing parameter and keep the other 
%parameters constant to see what value of g yields this assumption 
%(assuming of course that other parameter values are also the same constant 
%values for their corresponding time interval of the year): 

  
p=2.5; 
R_0=0.0175; 
r=0.069; 
g_vary=[0.0074 0.00745 0.0075 0.00755 0.0076]; 
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P=NaN(25,5); 
    P(1,:)=3.4; 
for j=1:length(g_vary) 
for i=1:length(T) 
P(i+1,j)=P(i,j)*exp(15*[(p*I(i)/(k(i)*z1(i)))*(1-exp(-

k(i)*z1(i)))*OneMinusN(i)*OneMinusV(i)-R_0*exp(r*T(i))-g_vary(j)*Z(i)]); 
end 

  
%P=P(1:15:end); 
t=1:15:361; 
figure(1) 
 if j==3 
 plot(t,P(:,j),'-x','LineWidth',3); %plots the theoretical P with t 
 else 
   plot(t,P(:,j),'-x','LineWidth',1); %plots the theoretical P with t 
hold on 
end 
end 
hold on; plot(Obs_time,Obs_P,'o','Color','r'); 
xlabel('t(days)');ylabel('amt of phytoplankton (g/m^2)'); 
title('phytoplankton density vs t: vary g'); 
legend('g=0.0074',... 
    ['g=0.00745'],['g=0.0075 (original)'],['g=0.00755'],['g=0.0076']); 

  
%As we can observe in the corresponding figure, there is periodic P 
%behavior for the grazing parameter approximate value g=0.0074348, which is 

less than 1% from 
%the original g=0.0075 value used by Riley. Now of course, if one were to 
%increase p or decrease R_0 or r, one would expect the necessary value of g 
%would increase to compensate. This is demonstrated below, for increasing p 
%to 110% of its original value: 

  
p=2.75; 
R_0=0.0175; 
r=0.069; 
g_vary=[0.008 0.00825 0.0085 0.00875 0.009]; 
P=NaN(25,5); 
    P(1,:)=3.4; 
for j=1:length(g_vary) 
for i=1:length(T) 
P(i+1,j)=P(i,j)*exp(15*[(p*I(i)/(k(i)*z1(i)))*(1-exp(-

k(i)*z1(i)))*OneMinusN(i)*OneMinusV(i)-R_0*exp(r*T(i))-g_vary(j)*Z(i)]); 
end 

  
%P=P(1:15:end); 
t=1:15:361; 
figure(1) 
 if j==3 
 plot(t,P(:,j),'-x','LineWidth',3); %plots the theoretical P with t 
 else 
   plot(t,P(:,j),'-x','LineWidth',1); %plots the theoretical P with t 
hold on 
end 
end 
hold on; plot(Obs_time,Obs_P,'o','Color','r'); 
xlabel('t(days)');ylabel('amt of phytoplankton (g/m^2)'); 
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title('phytoplankton density vs t: vary g'); 
legend('g=0.008',... 
    ['g=0.00825'],['g=0.0085'],['g=0.00875'],['g=0.009']); 

  
%As can be observe in this figure, the g value that would yield a periodic 
%solution of P is closer to g=0.0087. This is consistent with what we would 

expect: 
%as we are changing g in response to other parameters, p increasing would 
%have the same effect as decreasing either r or R_0 and would boost the P 
%density, which must then be depressed by an increase in g for yearly 
%oscillation of P to occur. 

  

% 
p=2.5; 
R_0=0.0175; 
r=0.069; 
g_vary=0.007434768; 
P=NaN(25,5); 
    P(1,:)=3.4; 
for j=1:length(g_vary) 
for i=1:length(T) 
P(i+1,j)=P(i,j)*exp(15*[(p*I(i)/(k(i)*z1(i)))*(1-exp(-

k(i)*z1(i)))*OneMinusN(i)*OneMinusV(i)-R_0*exp(r*T(i))-g_vary(j)*Z(i)]); 
end 

  
%P=P(1:15:end); 
t=1:15:361; 
figure(1) 
 if j==3 
 plot(t,P(:,j),'-x','LineWidth',3); %plots the theoretical P with t 
 else 
   plot(t,P(:,j),'-x','LineWidth',1); %plots the theoretical P with t 
hold on 
end 
end 
hold on; plot(Obs_time,Obs_P,'o','Color','r'); 
% 
% 
%Now we vary the predator population by introducing a random component to 
%the Z observations. For a 10 year timeseries, we assume that Z without the 
%random component is  
Zrand=NaN(10*length(Z),1); 
for i=1:length(Zrand) 
    Zrand(i)=rand; 
end 
ZZ=repmat(Z,10,1); 
Zr=ZZ.*(0.8+0.4*Zrand); %defines new Z population 

  
TT=repmat(T,10,1); 
OMV1=repmat(OneMinusV,10,1); 
OMN1=repmat(OneMinusN,10,1); 
II=repmat(I,10,1);  
Z1=repmat(z1,10,1); 
KK=repmat(k,10,1); 

  
p=2.5; 
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t1=1:15:1+15*length(ZZ); 
R_0=0.0175; 
r=0.069; 
g_vary=0.007434768; 
P=NaN(1+length(ZZ),1); 
    P(1)=3.4; 
for i=1:length(TT) 
P(i+1)=P(i)*exp(15*[(p*II(i)/(KK(i)*Z1(i)))*(1-exp(-

KK(i)*Z1(i)))*OMN1(i)*OMV1(i)-R_0*exp(r*TT(i))-g_vary*ZZ(i)]); 
end 
%P=P(1:15:end); 
t=1:15:361; 
figure(1) 
   plot(t1,P,'-x','LineWidth',1); %plots the theoretical P with t 
ylim([0 60]); 
xlabel('t(days)');ylabel('amt of phytoplankton (g/m^2)'); 
title('phytoplankton density vs t (10 yrs): g_{periodic} w/o random Z'); 

%plotting non-random Z 

  
%Now for randomized Z: 

  
Zrand=NaN(10*length(Z),1); 
for i=1:length(Zrand) 
    Zrand(i)=rand; 
end 
ZZ=repmat(Z,10,1); 
Zr=ZZ.*(0.8+0.4*Zrand); %define random Z component 
for i=1:length(TT) 
P(i+1)=P(i)*exp(15*[(p*II(i)/(KK(i)*Z1(i)))*(1-exp(-

KK(i)*Z1(i)))*OMN1(i)*OMV1(i)-R_0*exp(r*TT(i))-g_vary*Zr(i)]); 
end 

  
%t=1:15:361; 
figure(1) 
   plot(t1,P,'-x','LineWidth',1); %plots the theoretical P with t 
ylim([0 60]); 
xlabel('t(days)');ylabel('amt of phytoplankton (g/m^2)'); 
title('phytoplankton density vs t (10 yrs): g_{periodic} w/ random Z'); 

%plotting non-random Z 
hold on; 

  
%It is easy to see that in the attached figures, the random aspect of the 

zooplankton  
%term can induce a lot of variability in P - in one case, the periodic 
%signature simply seems to diminish in magnitude and dissipate over the 10 
%years, while another displays quasi-periodic, intermittent pulsing of 
%phytoplankton before dissipating, while yet the third plot shows an 
%on-average weaker grazing component which manifests as a consistently 
%larger and steeper P density plot. 

 

 


