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0 yearly phytoplankton density vs t (year theory and obs comparison)
T — : T T T T

30 |

n
w
T

_.
[#,]
T
o]
¢
%

of \ T

amt of phytoplankton (g/mz)
n
o

-
o
T
e

0
150 200 250 300 350 400

0 50 100
t(days)

Figure 1. Duplication of results from Riley of the theoretical model prediction of P vs the
observations. (Further analysis in the comments of the code)
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phytoplankton density vs t: vary p
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Figure 2. Sensitivity analysis: P over the course of a year, changing the photosynthesis
amplifying parameter p 10% and 20%. The Red curve indicates the original parameter choices.
(further analysis in comments of code)
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phytoplankton density vs t: vary R0
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Figure 3. Sensitivity analysis: P over the course of a year, changing the temperature-
dependent amplifying parameter R_0 10% and 20%. The yellow curve indicates the original
parameter choices. Note that the deviations from the control parameter P in R_O are relatively
small compared to those in p, suggesting that P is very sensitive to choices of p but not as
sensitive to R_0. (further analysis in comments of code)
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phytoplankton density vs t: vary r
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Figure 4. Sensitivity analysis: P over the course of a year, changing the temperature-
dependent exponential parameter r_0 10% and 20%. The yellow curve indicates the original
parameter choices. Note that the deviations from the control parameter P in R_0 are relatively
small compared to those in p (even closer to the control case than deviations in R_0),
suggesting that P is very sensitive to choices of p but not as sensitive to r. (further analysis in
comments of code)
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phytoplankton density vs t: vary g
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Figure 5. Sensitivity analysis: P over the course of a year, changing the grazing
parameter g 10% and 20%. The yellow curve indicates the original parameter choices. Note that
the deviations from the control parameter P in g are rather large compared to those in R_0
(though not nearly as sensitive as p, the reason being that there is also a temperature-
dependent term which aids in the decay of P), suggesting that P is still quite sensitive to choices
of g but not as sensitive to r. (further analysis in comments of code)
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phytoplankton density vs t vary nutrient depletion term 1-N for one time interval
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Figure 6 (supplementary figure). Sensitivity analysis: P over the course of a year,
increasing the nutrient depletion parameter 1-N by 20% for a given time interval (it is a
redundant calculation to uniformly amplify or diminish 1-N by 10% or 20% in the sensitivity
analysis). \In other words, each curve corresponds to a time interval for which we increase the

corresponding 1-N value there by 20%\. Although a bit muddled in the steeper gradient sections Commented [11]: The problem was intended to be the
of this plot, looking near the local peaks of P we can observe that the sensitive P values deviate }L"‘fOT?;"CFE_ZSQ(dﬁC'ea:e to 1|jN which you C?"eCt'V
from their standard values by about 5 (first peak) or 10 (secondary peak) (further analysis in eI G e A eV ey O

comments of code). This is suggestive of the sensitivity of P on 1-N, though the obvious
conclusion is reached upon uniformly enhancing 1-N, which has the same degree of sensitivity
of p.
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generate a periodic solution for P by equating endpoints of

distribution.
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Commented [12]: Answer for g is correct but you did not
explain the first part—the conditions for g to be periodic.
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Figure 8. 10-year plot of P for the standard values used in Riley, except that we now use the
approximate grazing coefficient g= 0.007434768 to generate a periodic solution for P. This will
be our base case with which we compare some of the P distributions in the presence of

randomized predator forcing Z.
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Figure 9. 10-year plot of P for the standard values used in Riley, except that we now use the
approximate grazing coefficient g= 0.007434768 and randomized Z forcing. The bottom right
diagram is the periodic non-randomized Z with the above grazing parameter to allow for
periodic P solutions. The top left diagram shows the case where the random components on
the whole act to diminish the zooplankton population enough that the P density is amplified
and the signal becomes sharper. The bottom left demonstrates a similar phenomenon in the
sense that there becomes an aperiodic intermittent signal averaging the original non-
randomized P plot, but diverges from the top left in that P eventually is eaten down and the P
population signal diminishes. The top right demonstrates an even steeper zooplankton forcing
where it starts weak so P can increase significantly, then Z becomes stronger so that P decays
midway through year 4.
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Code for generating the above figures/sensitivity analysis: (green paragraphs indicate responses
to questions)

clear all; close all; fclose all;
cd('/Users/michaeldotzel/Desktop/12823");

load('Riley dat.mat');

%In Riley (1946), we consider a simple plankton model P t=P* (P h-R-G),
$where P_h denotes the rate of photosynthesis (given as aan exponentially
%decaying function of depth, along with a vertical motion and nutrient
%depletion factors), R the effect of temperature, and G the grazing rate.
%Riley takes the grazing rate to be directly proportional to the predator
%density, and R exponential in temperature. Combining these somewhat
empirically

$motivated assumptions gives the final form

o°

o

dP/dt = P[(p*I_0/(k*z_1))*(l-exp(-k*z_ 1))*(1-N)*(1-V)-R O*exp(r*T)-g*Z].

o

$Integrating this equation in time (for a series of relatively shorter, 15
day
%time intervals) yields the expression

o

o

In[P(t+15)/P(t)]=15*[P_h(t)-R(t)-G(t)],

o°

oo

where here we assume that rates of growth on these small time intervals
are (roughly) constant (hence our multiplication by t f-t i = 15).

o oe

e

Out parameter values are

o
Il
Il
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o
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075;

In addition, we have initial condition that

oM oo d0 0Q K 0T
Il

for i=1:1length(T)

P(i+1)=P (i) *exp (15* [ (p*I(1)/(k(1)*z1(1)))* (l-exp (-

k(i) *z1(i)))*OneMinusN (i) *OneMinusV (i)-R_O0*exp (r*T(i))-g*Z2(i)]);
end

%$P=P(1:15:end);
t=1:15:361;
plot(t,P,'-x"'); %plots the theoretical P with t

%here we shifted our initial points forward 1 day so that P_initial = P(1)
%$instead of P(0) (so that indices jive with matlab).

%overlay with plot of observed P w/ resp to observed t (shift forward one
%day in the same vein as above theoretical estimate)

Obs_time=1+0Obs_time; %since we are taking P(initial)=P (1) instead of P(0)
hold on; plot(Obs time,Obs P,'o','Color','r');
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xlabel ('t (days) ") ;ylabel ('amt of phytoplankton (g/m”~2)");
title('yearly phytoplankton density vs t (year theory and obs comparison)');

%We observe that the distribution obtained from this plot for the most part
%appears to duplicate that of Riley, with some small differences: the
%observational and theoretical primary peaks appear to not quite coincide
%as they seem to in his diagram, and while one might assume this is due to
$some kind of shifting error in the code, applying a shift of 10 days

% (which would position the observational peak point over the theoretical
%peak) is not enough to bring the remaining observations to coincide exactly
with

%the theoretical curve in the way depicted in Riley.

%% Now we perform sensitivity analysis on each parameter

o o

o

*For each parameter as listed above, we are interested in how dependent the
$phytoplankton are to changes to their growth dynamics. First we determine
%the sensitivity of P to the rate of photosynthesis amplifying parameter p:
p_vary=[2 2.25 2.5 2.75 3];
R_0=0.0175;
r=0.069;
g=0.0075;
P=NaN (25, 5) ;
P(l,:)=3.4;
for j=1l:length(p_vary)
for i=1:length(T)
P(i+1,3)=P(i,3)*exp (15*[ (p _vary(3)*I(1)/(k(i)*z1(i)))* (1-exp (-
k(i) *z1(i)))*OneMinusN (i) *OneMinusV (i)-R O*exp (r*T(i))-g*Z(i)]);
end

%P=P(1:15:end);

t=1:15:361;

figure (1)

if j==

plot(t,P(:,3),"'-x"', 'LineWidth',2); %plots the theoretical P with t
else

plot(t,P(:,j),"'-x", 'LineWidth',1); %plots the theoretical P with t

hold on
end
end
hold on; plot(Obs time,Obs P,'o','Color','r');
xlabel ('t (days) ') ;ylabel ('amt of phytoplankton (g/m"2)");

title ('phytoplankton density vs t: vary p');

legend ('p=2.25",...

['p=2.5 (original wvalue)'l,['p=2']1,['p=2.75"1,["'"p=3"'1);

oe de

o°

We first observe that at 20% enhancement of p, the solution for P becomes
very large, with values more than 5x larger at the first local maximum in

P than the p=2.5 Riley case, and nearly 60x larger at the 2nd local

maximum than the original. It is also worth noting that the second local
maximum which was smaller than the first in the original p case, becomes
tmore recessive with smaller p while increasing to overtake the value of P
%at the first local maximum for larger p. This could be attributed to the
%enhancement of light intensity in the northern hemisphere (e.g. the Georges
Bank region)

%during the summer and the corresponding emphasis on light exposure with

ol 0o de oe

o
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%increasing p. For smaller p, temperature-dependent reduction in growth
%rate becomes more important for the higher temperatures in summer than in
$spring. As I am sure will be important for the second part of the
%assignment, it is as well interesting to see that for p even 10% larger,
%P does not oscillate seasonally - instead, there is an annual net
%increase.

[
S

%Now we determine the sensitivity of P to the temperature-dependent growth

amplifying parameter R 0:

p=2.5;

R Ovary=[0.014 0.01575 0.0175 0.01925 0.0211];

r=0.069;

g=0.0075;

P=NaN (25, 5) ;
P(l,:)=3.4;

for j=1l:length (R _Ovary)

for i=1:1length(T)

P(i+1,3)=P(i,3) *exp (15* [(p*I(1)/(k(i)*z1(i)))* (l-exp (-

k(i) *z1(i)))*OneMinusN (i) *OneMinusV (i)-R Ovary(j)*exp(r*T(i))-g*Z(i)]);
end

%$P=P(1l:15:end);

t=1:15:361;

figure (1)

if j==

plot(t,P(:,3),"'-x", 'LineWidth',3); %plots the theoretical P with t
else

plot(t,P(:,3),"'-x", 'LineWidth',1); %plots the theoretical P with t

hold on

end

end

hold on; plot(Obs_time,Obs_P,'o','Color','r");

xlabel ('t (days) ') ;ylabel ('amt of phytoplankton (g/m"2)");
title('phytoplankton density vs t: vary R 0');
legend ('R 0=0.014", ...

['"R_0=0.01575"],['R_0=0.0175 (original

value) '], ['R=0.01925"],['R_0=0.021"]);

ol oe

o

Our phytoplankton model is less sensitive to the effects of changing the
amplitude of the temperature-dependent term than changing p

(though indeed still sensitive). I say this for two reasons: the general
qualitative features of a sharper local maximum followed by a smaller
secondary local maximum are preserved, and the end-of-year deviation from
%the initial P density is much smaller in magnitude than that observed when
%varying p. The original value of R 0 (in yellow) in fact provides an
$close-to-periodic-oscillation of P, with P(end)=2.925 for

%P (initial)=3.4. When decreasing R 0 10% our P distribution no longer
$promises anything in the vicinity of periodicity, with P(final) being 3
%$times larger than P(initial), and decreasing 20% P(final) becomes 10x
$larger than P(initial). However, this suggests that (because computed
$values of P are continuous with respect to a continuous parameter change)
$there is a value of R 0 which is slightly smaller than 0.0175 (original)
$which does provide oscillation of P for fixed other parameters. When R 0

o° o o

o
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%increases there is further dissipation of P, with P(final) becoming much
$smaller than P(initial). These features are all consistent with the
$temperature-dependent term interpretation of Riley's model: chiefly a
$decay term, for smaller R 0 there is less decay due to temperature, hence
%a relative increase in the amplitude of the second peak. For larger R 0O
$however, in the warmer summer months temperature plays a much more
%enhanced role in depressing P growth, hence the much smaller secondary
%peak and in the end a net negative yearly effect on P.

o

ol

%Now we determine the sensitivity of P to the exponential temperature rate of
increase r:

p=2.5;

R_0=0.0175;

r vary=[0.0552 0.0621 0.069 0.0759 0.0828];

g=0.0075;

P=NaN (25,1);

P(1)=3.4;

for j=1l:length(r_vary)

for i=1:length(T)

P(i+1)=P (i) *exp (15*[(p*I(i)/(k(i)*z1(i)))* (l-exp (-

k(i) *z1(i)))*OneMinusN (i) *OneMinusV (i)-R O*exp (r_vary(j)*T(i))-g*Z(i)]);
end

%P=P(1:15:end);

t=1:15:361;

figure (1)

if j==3

plot (t,P,"'-x', 'LineWidth',3); %plots the theoretical P with t
else

plot (t,P,'-x"', 'LineWidth',1); S%plots the theoretical P with t

hold on
end
end
hold on; plot(Obs time,Obs P,'o','Color','r');
xlabel ('t (days) ') ;ylabel ('amt of phytoplankton (g/m"2)");

title ('phytoplankton density vs t: vary r');

legend ('r=0.0552",...

['r=0.0621"]1,['r=0.069 (original value)'],['r=0.0759'],['r=0.0828"']);

oe de

o©

Our phytoplankton model is even less sensitive to the effects of changing

the

%exponent of the temperature-dependent term than changing R

% (though indeed still sensitive). I say this again for two reasons: the
general

%qualitative features of a sharper local maximum followed by a smaller
%secondary local maximum are preserved (as in the case of varying R), and
$the end-of-year deviation from

%the initial P density is even smaller in magnitude than that observed when
%varying R or P. When decreasing r 10% our P distribution also still fails to
%be periodic, however P(final) is still closer to P(initial) than that found
$for the corresponding value of R 0. Decreasing 20% P(final) becomes ~5x
%$larger than P(initial). However, this suggests that (because computed
%values of P are continuous with respect to a continuous parameter change)
%there is a value of r which is slightly smaller than 0.069 (original)
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%which does provide oscillation of P for fixed other parameters. When r
%increases there is further dissipation of P, with P(final) becoming much
%smaller than P(initial). These features are all again consistent with the
$temperature-dependent term interpretation of Riley's model: chiefly a
%decay term, for smaller r there is exponential decrease of this term due to
temperature, hence

%a relative increase in the amplitude of the second peak. For larger r

%in the warmer summer months temperature plays a much more

%enhanced role in depressing P growth, hence the much smaller secondary
%peak and in the end a net negative yearly effect on P.

o
2.5;
0=0.0175;
r=0.069;
g _vary=[0.006 0.00675 0.0075 0.00825 0.009];
P=NaN (25,1);
P(1)=3.4;
for j=l:length(g vary)
for i=1l:length(T)
P(i+1)=P (i) *exp (15* [ (p*I(1)/(k(i)*z1(1)))* (l-exp (-
k(i) *z1(i))) *OneMinusN (i) *OneMinusV (i)-R_O*exp (r*T(i))-g_vary(j)*Z(i)]1);
end

$P=P(1l:15:end) ;

t=1:15:361;

figure (1)

if j==

plot (t,P,"'-x', 'LineWidth',3); %plots the theoretical P with t
else

plot (t,P,'-x', 'LineWidth',1); %plots the theoretical P with t

hold on

end

end

hold on; plot(Obs_time,Obs_P,'o",'Color','r");

xlabel ('t (days) ') ;ylabel ('amt of phytoplankton (g/m"2)"');

title ('phytoplankton density vs t: vary g');
legend('g=0.006",...
['g=0.00675"],['g=0.0075 (original value)'], ['g=0.00825"']1,['g=0.009"']);

o

o

Our phytoplankton model is quite sensitive to the effects of changing the

grazing coefficient. The reason is because qualitatively, the secondary
local maximum in P (just the opposite of the varying p case) becomes even
larger than the first local maximum when decreasing g more than 10% of the

original grazing

%coefficient value, whereas originally the first peak is more pronounced

%than the second (this property still holds when g is increased). However,

%the value of P at the secondary peak when decreasing g by 20% is close to
%20x that of the original P at this peak. This suggests that grazing

% (along with light uptake term governed by p) is a principal factor in the
$model governing the growth of P, in contrast to temperature effects.

%For smaller g value, less grazing of P by Z allows P to multiply faster

%than the predators can regulate them, so a net increase in P over the year
%$follows, in addition to a larger spike in the summer months due to
%increased sunlight/larger rate of P growth relative to grazing. For

%g 10% less than the one originally used by Riley, already the peaks seem

%about even with one another in the spring as the summer, though still

o oe

o



Psetl Michael Dotzel 03/15

%coming out with a net positive annual increase in P despite Z's best
efforts.

%0f course if g is too large then P just plummets from overeating, which is
$what can be observed from the smaller g values than the original.

o° oe

o

Now we determine the sensitivity of P to the nutrient depletion rate
$factor 1-N. It is redundant to consider cases where these values are
uniformly increased or uniformly decreased by 10%

%or 20%, since this effect would be equivalent to changing p by that
%amount which was already analyzed. Therefore, in this case P is equally
sensitive to 1-N as p. We can instead think about performing sensitivity
%analysis for one 15 day period (i.e. for one time interval in which 1-N is

%constant). It is unlikely that such an analysis will yield anything striking
about the sensitivity of the forcing function
%itself - since we are leaving the parameters for all other times

%invariant, the qualitative difference between distributions will not
%differ appreciably. We've confirmed this below, in which we have increased
%$1-N at each time interval separately by 20% to see how sensitive P is to
%$1-N for one interval parameter change:

c)

©

OMN (j, :)=[1.2*0OneMinusN (1) ,OneMinusN(2:24)"'];

OMN (j, :)=[OneMinusN(l:j-1)',1.2*0OneMinusN(j),OneMinusN (j+1l:end)'];
end

end

P=NaN (25,1) ;
P(1)=3.4;

for j=l:size (OMN, 1)

for i=1:1length(T)

P(i+1)=P (i) *exp (15* [ (p*I(1)/(k(1)*z1(1)))* (l-exp (-

k(i) *z1(i)))*OMN (], 1) *OneMinusV (i)-R_O*exp(r*T(i))-g*Z(i)]1);

end

%P=P(1:15:end);
t=1:15:361;
figure (1)
plot (t,P,'-x"', 'LineWidth',1); S%plots the theoretical P with t
hold on
end
hold on; plot(Obs time,Obs P,'o','Color','r");
xlabel ('t (days) ') ;ylabel ('amt of phytoplankton (g/m"2)");
title ('phytoplankton density vs t: vary nutrient depletion term 1-N for one
time interval');

o° o°

o

Now we will fit the observed P to the predicted P for each of the
%sensitivity studies performed above. We use a standard deviation method
first to
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$find the error for each theoretical sensitivity test relative to the
observation.

%We will also use an averaged relative error formula to fit the observations
and corresponding theoretical

$predictions. The reason I do so is twofold: 1) I did not catch that
%average error referred to standard deviation in the paper until rather
%late, and so then tried to resolve the ambiguity by another way; 2) though
slightly

$different, this average error method captures a similar local percent error
between theory

%and observation (in a somewhat weighted sense) as captured by the standard
%deviation.

o° o

ol®

p vary case (repeating part of code above)
p_vary=[2 2.25 2.5 2.75 3];
R_0=0.0175;
r=0.069;
g=0.0075;
P=NaN (25, 5) ;
P(1l,:)=3.4;
for j=1:length(p_vary)
for i=1:length(T)
P(i+1,3)=P(i,7) *exp (15*[(p vary(j)*I(i)/(k(i)*zl(i)))* (l-exp (-
k(i) *z1(i))) *OneMinusN (i) *OneMinusV (i)-R O*exp (r*T(i))-g*Z(i)]);
end

%$P=P(1:15:end);

t=1:15:361;

figure (1)

if j==

plot(t,P(:,3),"'-x"', 'LineWidth',2); %plots the theoretical P with t
else

plot(t,P(:,3),"'-x", 'LineWidth',1); %plots the theoretical P with t

hold on

end

end

hold on; plot(Obs_time,Obs_P,'o','Color','r");

xlabel ('t (days) ') ;ylabel ('amt of phytoplankton (g/m"2)");

title ('phytoplankton density vs t: vary p');

legend('p=2",...

['p=2.25"]1,['p=2.5 (original value)'],['p=2.75"1,['"p=3"'1);

%now find corresponding value at observed times
a=1:1:24;
m=NaN (length (Obs time), length(p vary));
Pre P=NaN(length (Obs_time), length(p_vary));
for i=1:length (Obs_time)
F=find (Obs_time (i) >=t(a) & Obs_time (i)<=t(a+l)); %finds 15 day interval
in which observation is located
if length(F)>1
Pre P(i,:)=P(F(2),:);
else
for j=l:size(P,2)
m(i,3)=(P(F+1,3)-P(F,3)) ./ (Lt (F+1) -t (F));
Pre P(i,3)=P(F,J)+(Obs time(i)-t(F)).*m(i,3);
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end
end
end
$METHOD 1: standard deviation
ObsP=repmat (Obs_P',1,5);
Err=0ObsP-Pre P; S%relative errors
SD=NaN (5,1) ;
for i=1:5
SD(i)=std(Err(:,1)); %for each sensitivity test, over all time points
end
55=SD'./mean (Pre P,1); %yields percent deviation of P from the predicted
value (Incorrect - not paper value)

%I do not obtain the right percentage error in this computation compared to
%$that of Riley. I would at some point like to clear this up with you
$sometime, if alright - I somehow misinterpret the standard deviation
$method. I use an alternate method below, but cannot be nicely compared to
%$that of Riley.

$METHOD 2: find relative error (%error=(obs-exp)/exp)
ObsP=repmat (Obs P',1,5);

err=0ObsP-Pre P;

N=NaN (5, 1) ;

N(1,1)=norm(err(:,1))/norm(Obs_P);
N(2,1)=norm(err(:,2))/norm(Obs_P);
N(3,1)=norm(err(:,3))/norm(Obs_P);
N(4,1)=norm(err(:,4))/norm(Obs_P);
N(5,1)=norm(err(:,5))/norm(Obs_P);
SN =

% 0.8500

% 0.6829

% 0.4613

% 2.2820

% 21.0114

%Note that of these relative errors for each varied value of p in our
%sensitivity analysis, the smallest in magnitude is that which corresponds
%$to the initial choice of parameters, and which gives 46.13% averaged
relative error

%between the theoretical prediction and the observations.

P(l,:)=3.4;
for j=1:length (R _Ovary)

for i=1:1length(T)
P(i+1,3)=P(i,3) *exp (15* [(p*I(1)/(k(i)*z1(i)))* (l-exp (-

k(i) *z1(i)))*OneMinusN (i) *OneMinusV (i)-R _Ovary(j) *exp (r*T(i))-g*Z(i)]);
end
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%$P=P(1:15:end);
t=1:15:361;

figure (1)

if j==3

plot(t,P(:,3),"'-x"', 'LineWidth',3); %plots the theoretical P with t
else

plot(t,P(:,3),"'-x"', 'LineWidth',1); %plots the theoretical P with t
hold on
end
end
hold on; plot(Obs_time,Obs_P,'o','Color','r");
xlabel ('t (days) ') ;ylabel ('amt of phytoplankton (g/m"2)");
title('phytoplankton density vs t: vary R 0');
legend ('R 0=0.014", ...
['R _0=0.01575"],['R _0=0.0175 (original

value) '], ['R=0.01925"], ['R_0=0.021"]1);

%now find corresponding value at observed times
a=1:1:24;
m=NaN (length (Obs time), length(R Ovary));
Pre P=NaN(length (Obs_time),length(R_Ovary));
for i=1:length (Obs_time)
F=find (Obs_time (i) >=t(a) & Obs_time (i)<=t(a+l)); %finds 15 day interval
in which observation is located
if length(F)>1
Pre P(i,:)=P(F(2),:);
else
for j=l:size(P,2)
m(i,3)=(P(F+1,3)-P(F,3)) ./ (£t (F+1) -t (F));
Pre P(i,J)=P(F,j)+(Obs_time(i)-t(F)).*m(i,]J);
end
end
end

$METHOD 2: take relative error (%error=(obs-exp)/exp)
ObsP=repmat (Obs_P',1,5);

err=0ObsP-Pre P;
N=NaN (5,1) ;

: norm(Obs_P
norm ;

) ( (:,1))/ ( )
) ( (:,2))/ ( _P)
)=norm(err(:,3))/norm(Obs_P);
) ( (:,4))/ ( )
) ( (:,5))/ ( )

i

;

norm (Obs_P
norm (Obs_P

;

.0526
.5837
.4613
.5075
.5927

ae
[eNeNeNeN S

%Again note that of these relative errors for each varied value of p in our
%$sensitivity analysis, the smallest in magnitude is that which corresponds
%to the initial choice of parameters, and which gives 46.13% relative error
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$between the theoretical prediction and the observations. An increase to 110%
of the

%original R_0 value produces a somewhat closer relative error estimate of
50.75%.

for j=1l:length(r_vary)

for i=1:length(T)

P(i+1,3)=P(i,7J) *exp (15* [ (p*I (1) /(k(i)*2z1(i)))* (l-exp (-

k(i) *z1(i)))*OneMinusN (i) *OneMinusV (i)-R O*exp (r vary(j)*T(i))-g*Z(i)]1);
end

$P=P(l:15:end);

t=1:15:361;

figure (1)

if j==3

plot(t,P(:,3),"'-x"', 'LineWidth',3); %plots the theoretical P with t
else

plot(t,P(:,3),"'-x"', 'LineWidth',1); %plots the theoretical P with t

hold on
end
end
hold on; plot(Obs_time,Obs_P,'o','Color','r");
xlabel ('t (days) ') ;ylabel ('amt of phytoplankton (g/m"2)");

title ('phytoplankton density vs t: vary r');

legend('r=0.0552", ...

['r=0.0621"],['r=0.069 (original value)'],['r=0.0759'],['r=0.0828"']);

o°

a=1:1:24;
m=NaN (length (Obs time), length(R Ovary));
Pre_ P=NaN(length (Obs_time),length (R _Ovary));
for i=1:length (Obs_time)
F=find (Obs_time (i) >=t(a) & Obs_time (i)<=t(a+l)); %finds 15 day interval
in which observation is located
if length(F)>1
Pre P(i,:)=P(F(2),:);
else
for j=l:size(P,2)
m(i,3)=(P(F+1,3)-P(F,3)) ./ (£t (F+1) -t (F));
Pre P(i,j)=P(F,J)+(Obs_time (i)-t(F)).*m(i,]);
end
end
end

i

$take relative error (%error=norm(obs-exp)/norm(exp))
ObsP=repmat (Obs_P',1,5)
err=0bsP-Pre_ P;
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N=NaN (5,1) ;

N(1,1)=norm(err(:,1))/norm(Obs_P);
N(2,1)=norm(err(:,2))/norm(Obs_P);
N(3,1)=norm(err(:,3))/norm(Obs P);
N(4,1)=norm(err(:,4))/norm(Obs P);
N(5,1)=norm(err(:,5))/norm(Obs_P);
SN =

% 0.5469

% 0.4759

% 0.4613

% 0.4711

% 0.4883

%Here we observe that just as in the other sensitivity analyses,

the

03/15

of each case

%original conditions produce the smallest average relative error at 46.13%.

%4. vary grazing constant g
=2.5;

=0.0175;

.069;

=NaN (25, 5) ;
P(l,:)=3.4;

for j=1:length(g_vary)

for i=1:length(T)

P(i+1,3)=P(i,]) *exp (15*[(p*I(1)/ (k(4

vary=[0.006 0.00675 0.0075 0.00825 0.009];

) *z1(1)))* (l-exp (=

k(i) *z1(i)))*OneMinusN (i) *OneMinusV (i)-R O*exp (r*T(i))-g vary(j)*Z(i)]);

end

%P=P(1:15:end) ;
t=1:15:361;
figure (1)

if j==3

plot (t,P(:,3),"'-x"', 'LineWidth', 3);

else

plot (t,P(:,3), '-x', 'LineWidth',1);

hold on
end
end

hold on; plot(Obs_time,Obs_P,'o','Color','r");
xlabel ('t (days) ') ;ylabel ('amt of phytoplankton

title ('phytoplankton density vs t:
legend('g=0.006",...

$plots the theoretical P with t

$plots the theoretical P with t

['g=0.00675"],['g=0.0075 (original value)'],['g=0.00825"],['g=0.009"]);

oe

a=1:1:24;

m=NaN (length (Obs_time),length(g_vary));
Pre_P=NaN(length (Obs_time),length(g_vary));

for i=1:length (Obs time)

F=find (Obs_time (i)>=t(a) & Obs_time (i)<=t(a+l));

in which observation is located
if length(F)>1
Pre P(i,:)=P(F(2),:);

%$finds 15 day interval
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else
for j=l:size(P,2)
m(i,3)=(P(F+1,3)-P(F,3)) ./ (L (F+1)-t(F));
Pre P(i,j)=P(F,j)+(Obs_time(i)-t(F)).*m(i,]J);
end
end
end

$take relative error (%error=(obs-exp)/exp)
ObsP=repmat (Obs_P',1,5);

err=ObsP-Pre P;

N=NaN (5,1) ;

N(1,1)=norm(err(:,1))/norm(Obs_P);
N(2,1)=norm(err(:,2))/norm(Obs_P);
N(3,1)=norm(err(:,3))/norm(Obs_P);
N(4,1)=norm(err(:,4))/norm(Obs P);
N(5,1)=norm(err(:,5))/norm(Obs_P);
SN =

% 3.7451

% 0.9746

% 0.4613

% 0.5362

% 0.6558

%Here we observe that just as in the other sensitivity analyses, of each case
the

%original conditions produce the smallest relative error at 46.13%.
$Increasing g to 110% of the original value yields P which is relatively
close to

%$that of the original parameter values, with relative error 53.62%.

o°

%In summary, the relative error method gives a relative measure of how
$important parameters are to the P solution by considering how different
%the errors are between the original parameter value-determining P and the
$plus/minus 10% or 20% the value of the respective parameter on P.

%In this way, one can observe that P is extremely sensitive to p,
$moderately sensitive to both g and R 0, and not as sensitive to r.

o

%We now turn our attention to the case where P is periodic, i.e. if there
%is annual cycling of P. In order for this to happen, we must have

%P (end)=P(initial)=3.4. We observed that in all our sensitivity and
$original analyses, we have come close to periodic oscillation in P but not
%quite. We will then change the grazing parameter and keep the other
%parameters constant to see what value of g yields this assumption

% (assuming of course that other parameter values are also the same constant
$values for their corresponding time interval of the year):

2.5;
0=0.0175;
0

vary=[0.0074 0.00745 0.0075 0.00755 0.007¢6];
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P=NaN (25, 5) ;
P(1l,:)=3.4;
for j=1:length(g_vary)
for i=1l:length(T)
P(i+1,3)=P(i,3) *exp (15* [(p*I(1)/(k(1)*z1l(i)))* (l-exp (-
k(i) *z1(i)))*OneMinusN (i) *OneMinusV (i)-R O*exp (r*T(i))-g vary(j)*Z(i)1);
end

$P=P(1l:15:end) ;
t=1:15:361;
figure (1)
if j==
plot(t,P(:,3),"'-x"', 'LineWidth',3); %plots the theoretical P with t
else
plot (t,P(:,3),'-x"', 'LineWidth',1); %plots the theoretical P with t
hold on
end
end
hold on; plot(Obs_time,Obs_P,'o"','Color','r");
xlabel ('t (days) ') ;ylabel ('amt of phytoplankton (g/m"2)");
title ('phytoplankton density vs t: vary g');
legend('g=0.0074", ...
['g=0.00745"]1,['g=0.0075 (original)'], ['g=0.00755"'1,['g=0.0076"'1);

%As we can observe in the corresponding figure, there is periodic P
%behavior for the grazing parameter approximate value g=0.0074348, which is
less than 1% from

%the original g=0.0075 value used by Riley. Now of course, if one were to
%increase p or decrease R 0 or r, one would expect the necessary value of g
$would increase to compensate. This is demonstrated below, for increasing p
%to 110% of its original value:

.069;
_vary=[0.008 0.00825 0.0085 0.00875 0.009];
=NaN (25, 5) ;

P(1l,:)=3.4;

for j=1:length(g_vary)
for i=1:length(T)
P(i+1,3)=P(i,3) *exp (15* [(p*I(1)/ (k(1)*z1l(1)))* (l-exp (-
k(i) *z1(i)))*OneMinusN (i) *OneMinusV (i)-R O*exp (r*T(i))-g vary(j)*Z(i)]1);
end

$P=P(1l:15:end);
t=1:15:361;
figure (1)
if j==
plot(t,P(:,3),'-x"', 'LineWidth',3); %plots the theoretical P with t
else
plot(t,P(:,3),"'-x"', 'LineWidth',1); %plots the theoretical P with t
hold on
end
end
hold on; plot(Obs_time,Obs_P,'o','Color','r");
xlabel ('t (days) ') ;ylabel ('amt of phytoplankton (g/m"2)");
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title(
legend
[

'phytoplankton density vs t: vary g');
('g=0.008",...
g=0.00825"],['g=0.0085"],['g=0.00875"],['g=0.009"1);

%As can be observe in this figure, the g value that would yield a periodic
%$solution of P is closer to g=0.0087. This is consistent with what we would
expect:

%as we are changing g in response to other parameters, p increasing would
%have the same effect as decreasing either r or R 0 and would boost the P
%density, which must then be depressed by an increase in g for yearly
%oscillation of P to occur.

r
g vary=0.007434768;
P=NaN (25, 5);

P(l,:)=3.4;
for j=l:length(g vary)
for i=1:length(T)
P(i+1,3)=P(i,]J) *exp (15* [ (p*I (1) / (k(1i)*zl(1i)))* (l-exp (-
k(i) *z1(i)))*OneMinusN (i) *OneMinusV (i)-R O*exp (r*T(i))-g vary(j)*Z(i)]1);
end

$P=P(1l:15:end) ;

t=1:15:361;

figure (1)

if j==

plot(t,P(:,3),"'-x", 'LineWidth',3); %plots the theoretical P with t
else

plot(t,P(:,3),"'-x"', 'LineWidth',1); %plots the theoretical P with t

hold on
end
end
hold on; plot(Obs_time,Obs_P,'o','Color','r");

o

o

$Now we vary the predator population by introducing a random component to
%the Z observations. For a 10 year timeseries, we assume that Z without the
%random component is
Zrand=NaN (10*length(Z),1);
for i=1:length(Zrand)
Zrand (i)=rand;
end
ZZ=repmat (Z,10,1);
Zr=27Z.*(0.8+0.4*Zrand); %defines new Z population

TT=repmat (T,10,1);
OMV1=repmat (OneMinusVv,10,1);
OMNl=repmat (OneMinusN,10,1);
II=repmat(I,10,1);

Zl=repmat (z1,10,1);
KK=repmat (k,10,1);

p=2.5;
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t1=1:15:1+15*1ength (22) ;
R_0=0.0175;
r=0.069;
g vary=0.007434768;
P=NaN (1l+length(ZZ),1);

P(1)=3.4;
for i=1:length (TT)
P(i+1)=P (1) *exp (15* [ (p*II (i) /(KK (1)*2Z1(1)))*(l-exp (-
KK (i) *Z1(i)))*OMNI (i) *OMV1 (i)-R O*exp (r*TT (i))-g vary*zz(i)]);
end
%P=P(1:15:end);
t=1:15:361;
figure (1)

plot (tl,P,'-x', 'LineWidth',1); %plots the theoretical P with t

ylim ([0 607]);
xlabel ("t (days) ') ;ylabel ('amt of phytoplankton (g/m"2)");
title ('phytoplankton density vs t (10 yrs): g {periodic} w/o random Z');
$plotting non-random Z

%Now for randomized Z:

Zrand=NaN (10*length(Z),1);
for i=1:length(Zrand)
Zrand (i)=rand;
end
ZZ=repmat (Z,10,1) ;
Zr=77.* (0.8+0.4*Zrand); %define random Z component
for i=1:length(TT)
P(i+1)=P (i) *exp (15* [ (p*II (i) /(KK(1)*Z21(1)))* (1l-exp (-
KK (i) *Z1(i)))*OMNI (i) *OMV1 (i)-R O*exp (r*TT (i))-g vary*zr(i)]);
end

$t=1:15:361;
figure (1)
plot (tl,P,'-x"', 'LineWidth',1); %plots the theoretical P with t
ylim ([0 60]);
xlabel ('t (days) ') ;ylabel ('amt of phytoplankton (g/m"2)"');
title('phytoplankton density vs t (10 yrs): g {periodic} w/ random Z');
$plotting non-random Z
hold on;

%It is easy to see that in the attached figures, the random aspect of the
zooplankton

%$term can induce a lot of variability in P - in one case, the periodic
%signature simply seems to diminish in magnitude and dissipate over the 10
%years, while another displays quasi-periodic, intermittent pulsing of
$phytoplankton before dissipating, while yet the third plot shows an
%$on-average weaker grazing component which manifests as a consistently
%$larger and steeper P density plot.



