Problem set 1 Grading

Aarons: A-

1. Verification of Riley's result (Fig. 21)	Not presented
Sensitivity for p, R0, r, g, 1-N, $\pm 20\%$	Full marks
Relative sensitivity of various parameters	A few minor issues in interpretation
Comparison to Riley's 27% error	Full marks

- **Full marks** 2. Conditions for P to be periodic Find a value of g that ensures periodicity **Full marks** How does the value vary as other parameters are changed? Full marks
- 3. Perturb the periodic model with 20% random variations in Z and discuss

Full marks. Note that in some cases P can show a long-term secular increase. The random term means that ln P(t+1yr) deviates from ln P(t) by a random number with zero mean. As a result, ln P(n*yr) undergoes a random walk and can reach very high or very low values. This points to the need for nonlinearity in the dynamics.

Abbott: A

 Verification of Riley's result (Fig. 21) Sensitivity for p, R0, r, g, 1-N, ±20% Relative sensitivity of various parameters Comparison to Riley's 27% error 	Full marks Full marks Full marks Full marks	
 Conditions for P to be periodic Find a value of g that ensures periodicity 		Full marks Full marks

3. Perturb the periodic model with 20% random variations in Z and discuss

How does the value vary as other parameters are changed? Full marks

Full marks. You solved a slightly different problem than was posed: random perturbations were added to both P and Z rather than just Z. In any case, you did a very thorough job. Your solution does not have a long term trend, whereas the perturbations to Z only can result in long term increases and decreases. The random term means that ln P(t+1yr) deviates from ln P(t) by a random number with zero mean. As a result, ln P(n*yr) undergoes a random walk and can reach very high or very low values. This points to the need for nonlinearity in the dynamics.

Dotzel: A-

1. Verification of Riley's result (Fig. 21) Sensitivity for p, R0, r, g, $1-N, \pm 20\%$ Relative sensitivity of various parameters Comparison to Riley's 27% error

Full marks **Full marks Full marks** Have you tried interpolating your model solution into the same time grid as the

observations prior to computing the error?

2. Conditions for P to be periodic	Did not answer
Find a value of g that ensures periodicity	Full marks
How does the value vary as other parameters are changed?	Did not answer

3. Perturb the periodic model with 20% random variations in Z and discuss

Full marks, excellent analysis. The random term means that $\ln P(t+1yr)$ deviates from $\ln P(t)$ by a random number with zero mean. As a result, $\ln P(n*yr)$ undergoes a random walk and can reach very high or very low values. This points to the need for nonlinearity in the dynamics.

Fachon: A

1. Verification of Riley's result (Fig. 21)	Full marks	
Sensitivity for p, R0, r, g, 1-N, $\pm 20\%$	Full marks	
Relative sensitivity of various parameters	Full marks	
Comparison to Riley's 27% error	Full marks	
2. Conditions for P to be periodic		Full marks

Find a value of g that ensures periodicity **Full marks** How does the value vary as other parameters are changed? **Did not answer**

3. Perturb the periodic model with 20% random variations in Z and discuss

Full marks, excellent analysis. The random term means that $\ln P(t+1yr)$ deviates from $\ln P(t)$ by a random number with zero mean. As a result, $\ln P(n*yr)$ undergoes a random walk and can reach very high or very low values. This points to the need for nonlinearity in the dynamics.

Honda: A-

1. Verification of Riley's result (Fig. 21)	Full marks
Sensitivity for p, R0, r, g, 1-N, $\pm 20\%$	A few minor issues in interpretation
Relative sensitivity of various parameters	Full marks
Comparison to Riley's 27% error	Full marks
2. Conditions for P to be periodic	Peaks approach does not ensure periodicity

Find a value of g that ensures periodicityFull marksHow does the value vary as other parameters are changed?Full marks

3. Perturb the periodic model with 20% random variations in Z and discuss

Full marks. Note that in some cases P can show a long-term secular increase. The random term means that $\ln P(t+1yr)$ deviates from $\ln P(t)$ by a random number with zero mean. As a result, $\ln P(n*yr)$ undergoes a random walk and can reach very high or very low values. This points to the need for nonlinearity in the dynamics.

Schrage: A

 Verification of Riley's result (Fig. 21) Sensitivity for p, R0, r, g, 1-N, ±20% Relative sensitivity of various parameters Comparison to Riley's 27% error
 Conditions for P to be periodic
 Full marks
 Full marks

	i un mans
Find a value of g that ensures periodicity	Full marks
How does the value vary as other parameters are changed?	Full marks

3. Perturb the periodic model with 20% random variations in Z and discuss

Full marks. Note that in some cases P can show a long-term secular increase. The random term means that $\ln P(t+1yr)$ deviates from $\ln P(t)$ by a random number with zero mean. As a result, $\ln P(n*yr)$ undergoes a random walk and can reach very high or very low values. This points to the need for nonlinearity in the dynamics.

Weinstock: A

 Verification of Riley's result (Fig. 21) Sensitivity for p, R0, r, g, 1-N, ±20% Relative sensitivity of various parameters Comparison to Riley's 27% error 	Full marks Full marks Full marks Have you tried interpolating your model solution into the same time grid as the observations prior to computing the error?
2. Conditions for P to be periodic	Did not answer

. Conditions for P to be periodic	Did not answer
Find a value of g that ensures periodicity	Full marks
How does the value vary as other parameters are changed?	Full marks

3. Perturb the periodic model with 20% random variations in Z and discuss

Full marks. Note that in some cases P can show a long-term secular increase. The random term means that $\ln P(t+1yr)$ deviates from $\ln P(t)$ by a random number with zero mean. As a result, $\ln P(n*yr)$ undergoes a random walk and can reach very high or very low values. This points to the need for nonlinearity in the dynamics.

Template

1. Verification of Riley's result (Fig. 21)Full marksSensitivity for p, R0, r, g, 1-N, ±20%Full marks

Relative sensitivity of various parameters	Full marks
Comparison to Riley's 27% error	Full marks

2. Conditions for P to be periodic	Full marks
Find a value of g that ensures periodicity	Full marks
How does the value vary as other parameters are changed?	Full marks

3. Perturb the periodic model with 20% random variations in ${\rm Z}$ and discuss