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March 16, 2021

Problem 1.

ln(
P (t + 15)

P (t)
) = 15[Ph(t) −R(t) −G(t)], with

Ph =
pI0
kz1

(1 − e−kz1)(1 −N)(1 − V ) R = R0e
rt G = gZ

0.1 Baseline model run

To simplify the calculations, P (t + 15) was rewritten as

P (t + 15) = P (t)e(15(Ph(t)−R(t)−G(t))

At each time step past t = 0, P (t+ 15) was calculated and then iteratively used in the next
time step. The baseline model run is plotted below, along with Riley’s observations.
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Figure 1: Baseline model run compared with observations.
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The percent error here (and elsewhere in the problem set) is calculated as

percent error = 100 × abs(

Nobs∑
i=1

Pmodel(t(i)) − Pobs(tobs(i))

Pobs(tobs(i))
)/Nobs

i.e., the average percent error between the modeled phytoplankton concentration and the
observed concentration. Because the model timestamps don’t always align with the observa-
tion timestamps, the model output was interpolated with a spline function and the percent
errors calculated from that interpolated data. The value of 29.7% calculated for the baseline
case is of the same order as Riley’s value of 27%, and the difference between the two may
be attributed to carrying of significant figures or improved computating power leading to
higher precision.

0.2 Sensitivity analysis

Figure 2: Sensitivity analysis on parameter p. The inset box shows the data plotted in log
space.

p is the photosynthetic constant, i.e. how much photosynthesis (and growth) occurs for a
given incident radiance I0. Unsurprisingly, the model results are very sensitive to the value
of this constant, with runaway growth for 1.2p = 3, as the grazing and loss terms don’t
balance out the growth term even at low light levels. Similarly, 0.8p = 2 leads to a damping
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out of the phytoplankton as early as April, with a small spring bloom before concentrations
start to drop asymptotically toward zero.
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Figure 3: Sensitivity analysis on parameter R0.

R0 is the respiratory rate of phytoplankton at 0◦C. It is less sensitive to a 20% increase
or decrease than p, but a 20% decrease in R0 does result in a second, almost equally large
fall bloom and baseline levels close to 40 g C/m2 at the end of the year. Again, it is
intuitively reasonable that a reduction in the respiratory rate would lead to phytoplankton
accumulation, as growth is dependent on the balance between photosynthesis and respiration.
The asymmetric nature of the response for 20% increase and decrease may be related to
exponential nature of the term it is multiplying.
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Sensitivity analysis for r-parameter

Percent error for 20% increase in r is 36.0%

Percent error for 20% decrease in r is 49.3%
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Figure 4: Sensitivity analysis on parameter r.

r relates the respiratory rate to the change in temperature. Interestingly, P is much
less sensitive to changes in r than changes in R0 or p. This might also be related to the
exponential nature of erT , although I would have expected the opposite relationship, that
the exponential term would amplify seasonal perturbations and lead to runaway growth or
decay.
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Figure 5: Sensitivity analysis on parameter g. The inset box shows the data plotted in log
space.

g is the grazing constant by zooplankton. An increase in grazing leads to a decay in
phytoplankton concentrations, unsurprisingly, and a decrease leads to elevated growth and
the loss of periodicity. While the model is sensitive to the choice of g, interestingly, it is
much more sensitive to p (see above). A choice of 0.8g doesn’t lead to runaway growth in
a 1-year time interval, suggesting that the fixed zooplankton concentrations (which are not
independent in this model) act to prevent exponential growth even with a decrease in g.
However, low enough g will eventually lead to runaway growth (plotted but not shown).
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Figure 6: Sensitivity analysis on parameter (1 −N). The inset box shows the data plotted
in log space.

The behavior on (1 − N) for the sensitivity is identical to the behavior for p. This is
unsurprising, because the formulation for Ph in Riley’s model is Ph = pI0

kz1
(1 − e−kz1)(1 −

N)(1−V ), so both sensitivity analyses are equivalent to multiplying Ph by 1.2 or 0.8. From
a more biological perspective, the (1 − N) term reflects nutrient limitation, and is only
”turned on” when nutrients are low enough that the same amount of incident radiation will
not lead to the same amount of growth. 1.2(1 − N) actually reflects some sort of nutrient
boost, where ample nutrients leads to a boost in growth.

Ultimately, the model is most sensitive to the p and (1−N) parameters, less sensitive to
g and less so to R0, and fairly insensitive to the choice of r.

Errors for each sensitivity analysis are printed on the plot itself. While Riley’s choice of
parameters is based on literature review/experimental data, as opposed to an effort to fit the
model to the data, they generally seem to yield a good fit — none of the sensitivity analyses
improved the error estimate. After observing that the error for the r-parameter is quite
close to my calculated error of 29.7% (which I am using instead of Riley’s 27 % estimate
— see above), I iterated through nearby values and found that r = 0.0635 yields an error
of 27.8%, which is slightly (although perhaps not meaningfully) lower, perhaps because the
lower respiration leads to a larger peak in the spring bloom and secondary fall bloom.
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Sensitivity analysis for r-parameter

Percent error for 8% decrease in r is 27.8% baseline
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Figure 7: Output from using 92% of r as adjusted parameter.

0.3 Periodicity of P

I interpret the periodicity of P to imply that in a year interval, the starting and ending value
are the same – i.e. P recurs over a period of 1 year. If we construct a longer time series,
keeping all observations periodic (repeating annually, or every 360 days in this case), there
is a grazing parameter g such that P (360) = P (0), and thus the following year will have an
identical pattern of P. The process of finding such a g is to figure out when P (0) = P (360).

Earlier, we rewrote

ln(
P (t + 15)

P (t)
) = 15[Ph(t) −R(t) −G(t)] as

P (t + 15) = P (t)e(15(Ph(t)−R(t)−G(t))

Observing that

P (t) = P (t− 15)e(15(Ph(t−15)−R(t−15)−G(t−15))

This becomes

P (t + 15) = P (t− 15)e(15(Ph(t−15)−R(t−15)−G(t−15))e(15(Ph(t)−R(t)−G(t))

= P (t− 15)e15(Ph(t)+Ph(t−15)+R(t)−(R(t)+R(t−15))+(G(t)+G(t−15)))

Using inductive reasoning, we can extend this back to t=0 by noting that P(t) is constructed
by summing the forcing values at each time step and taking the exponential, i.e.

P (t) = P (0) exp(
t−15∑
i=0

15[Ph(i) −R(i) −G(i)]), where i = 0, 15, 30, ..., t− 15
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This comes in handy when trying to find the value of g that makes P periodic (in that
P0 = P (end)). We know P0 and hence P (tend), so this equation becomes

P (tend)

P (0)
= exp(

t−15∑
i=0

15[Ph(i) −R(i) −G(i)])

1 = exp(
t−15∑
i=0

15[Ph(i) −R(i) −G(i)])

Taking the natural log of both sides,

ln(1) = 0 =
t−15∑
i=0

15[Ph(i) −R(i) − g ∗ Z(i)]

g =
t−15∑
i=0

[Ph(i) −R(i)]/
t−15∑
i=0

Z(i)]

When we plug in the actual data, we get a value of 0.00743 for g, which is extremely close
to the original value given for g.

This analysis was repeated for 20 % increases and decreases in all of the parameters used
for the sensitivity analysis — a table of the results is shown below. A plot of what these
periodic concentrations look like is also shown.

parameter 20% increase 20% decrease
p 0.01 0.0049
R 0 0.0064 0.0085
r 0.0065 0.0082
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Figure 8: Plots of periodic P, which is dependent on grazing parameter.

0.4 10-year time series

The time series is plotted below, with both (randomized) zooplankton concentrations and
phytoplankton concentrations.
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Figure 9: 10-year time-series of phytoplankton concentrations, along with randomized zoo-
plankton concentrations.

The 10-year time series reflects the pressure that grazing zooplankton can put on phyto-
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plankton, even when all other parameters are held constant. In this time series, P is initially
higher than Z in the first year, but in the second year, Z starts higher and peaks earlier
as a function of this 20% random property. This increase in the gZ term decreases P, and
because P (t+15) is a multiple of P (t) with some exponential factor, decreased P propagates
forward in time, reducing the average amplitude of the spring peaks. Overall, P lags Z quite
closely, such as in the last year of the time series, where a higher than average series of Z
values in the summer leads to a much smaller fall peak.

Interestingly, both the spring and fall bloom show up in most years of the timeseries,
albeit with different magnitudes. Looking at a plot of the seasonal cycle of the observations
and P from the baseline model, it’s clear that the second peak is largely tied to a decline
in zooplankton concentrations while nutrients and light are still readily available, which de-
creases the grazing term. Hence, because Z only varies within ± 20%, the two blooms persist
in the longer time-series. However, because Riley’s approach treats Z as independent from
P, rather than adding a ∂Z

∂t
term, we don’t see the response of the Z term to the P term.

In other words, the response of P to increased grazing is apparent in the time-series, but
zooplankton populations don’t decrease as the source of food, P, decreases.
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Figure 10: Seasonal cycle of P, Z, z1, k, I, (1-N), (1-V), and respiration R
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