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Abstract

Marine systems models are becoming increasingly complex and sophisticated, but far too little attention has been paid to model
errors and the extent to which model outputs actually relate to ecosystem processes. Here we describe the application of summary
error statistics to a complex 3D model (POLCOMS-ERSEM) run for the period 1988–1989 in the southern North Sea utilising
information from the North Sea Project, which collected a wealth of observational data. We demonstrate that to understand model
data misfit and the mechanisms creating errors, we need to use a hierarchy of techniques, including simple correlations, model bias,
model efficiency, binary discriminator analysis and the distribution of model errors to assess model errors spatially and temporally.
We also demonstrate that a linear cost function is an inappropriate measure of misfit. This analysis indicates that the model has
some skill for all variables analysed. A summary plot of model performance indicates that model performance deteriorates as we
move through the ecosystem from the physics, to the nutrients and plankton.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For several decades, there has been increasing
concern that anthropogenic influences are having a
detrimental effect on the ecosystem of the North Sea. A
persistent problem is the enrichment of water by
nutrients causing an accelerated growth of algae and
higher forms of plant life to produce an undesirable
disturbance to the balance of organisms present in the
water and to the quality of the water concerned. We need
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to quantify issues of scale and natural variability to
understand and manage human impacts on ecosystems
successfully (Hardman-Mountford et al., 2005). It is
also essential to be able to separate anthropogenic
impacts from natural fluctuations. Regional-scale ma-
rine ecosystem models are tools with which we can
potentially quantify this range of variability, and its
causes, thus underpinning a marine management.

Recent reviews of the current state of coupled
hydrodynamic-ecosystem modelling of the North West
European Shelf (Jones, 2002; Moll and Radach, 2003
and references within) describe a wide range of
modelling approaches from simple NPZ models to
complex ecosystem models, with some including
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explicitly resolved benthic processes. A more recent
review of the validation of these model systems
(Radach and Moll, 2006) concluded that many model
systems are capable of reproducing observations of the
state variables correctly to within an order of magni-
tude, but that most of the models still need to be
evaluated more intensively before their predictive
potential can be judged.

A systematic analysis of the performance of 153
biological models that include plankton demonstrated
that the efforts over the last decade to increase the level
of biological detail and spatial complexity, and to
explore longer simulation periods, have not led to a
systematic or demonstrable improvement in model
performance (Arhonditsis and Brett, 2004). They found
that only 47% of the models assessed had any validation
and only 30% determined some measure of goodness of
fit. It would seem to be a basic requirement that before
any model can be used for either scientific or policy
application with any confidence an assessment of their
accuracy and predictive capability is required.

Many marine management procedures involve
assessing whether or not thresholds have been
exceeded, for example the OSPAR common compre-
hensive procedure for eutrophication has specific levels
to indicate eutrophication risk (OSPAR, 2003). For
example, ‘elevated’ levels of winter dissolved inorganic
nitrogen and/or phosphate concentrations are defined as
a concentration of 50% above a salinity related and/or
region specific background concentration; while for
chlorophyll-a, ‘elevated’ levels are defined as a
concentration of 50% above a spatially defined
(offshore)/historical background concentrations. Con-
sequently, there is a clear imperative to understand how
well management models can resolve such thresholds.

The POLCOMS-ERSEM model system is a state-of-
the-art coupled 3D hydrodynamic-ecosystem model for
shelf seas. For this study, it has been applied to the North
West European Continental Shelf on a ∼7 km grid. The
model is currently being evaluated within an operational
framework using operationally available high-resolution
atmospheric and lateral boundary forcing, allowing
hindcast and near-real time nowcast simulations to be
performed (Siddorn et al., in press). It is our aim in this
paper and Holt et al. (2005) to give a comprehensive
overview of the uncertainties associated with as many
aspects of the coupled model as possible from a single
simulation period. Holt et al. (2005) describe the
validation of the physics of the model along with the
basic phytoplankton dynamics.

Focusing on a subset of model outputs for which we
have appropriate comparative observations, we apply a
combination of error statistics and correlations in order
to explore relationships between model outputs and
observations, and the distribution of errors within the
model; it is not our purpose at this stage to concentrate
on the causes of model errors and possible solutions. In
this paper, we discuss model performance when sim-
ulating chlorophyll-a, nutrients, and suspended partic-
ulate matter (SPM). We have two goals, firstly to
propose a set of metrics to benchmark model per-
formance against which we can assess the success of
future model developments and secondly to use
decision theory (receiver operator characteristics) to
determine the ability of the model to discriminate
thresholds.

A third paper in this series describes validation of
these simulations against continuous plankton recorder
(CPR) survey data (Lewis et al., 2006).

2. Model description

2.1. Data sets — simulations and observations

The medium resolution continental shelf (MRCS)
model is a hindcasting/forecasting system, developed
by Proudman Oceanographic Laboratory, Plymouth
Marine Laboratory and The Met Office. It is based on a
coupled 3D hydrodynamic and ecosystem model
(POLCOMS-ERSEM; Allen et al., 2001; Holt et al.,
2004), set up on a 1/10° longitude by 1/15° latitude
horizontal grid (∼7 km resolution) with 20-s levels
(Song and Haidvogel, 1994) in the vertical and bound-
aries following the North-West European Continental
Shelf break (approximately along the 200 m isobath,
except for the Norwegian Trench). Boundary forcing
for temperature, salinity, currents and sea surface ele-
vation is obtained from a 1/6° longitude by 1/9°
latitude (∼12 km) Atlantic Margin Model, which is
nested in the Met Office's FOAM system (Bell et al.,
2000). An averaged annual cycle is used for boundary
conditions since the operational system has not
simulated the period of interest here (discussed
below). The model includes the density evolving
physics of POLCOMS (Holt and James, 2001) and a
size-fractionated SPM submodel (Holt and James,
1999), coupled with the state-of-the-art biogeochem-
ical processes of ERSEM (Baretta-Bekker et al., 1998;
Blackford et al., 2004); Fig. 1 is a schematic of the
pelagic model. We use a generic parameter set which
was devised by fitting to data at 6 diverse stations: well
mixed and a stratified North Sea station, oligotrophic
eastern and western Mediterranean sea stations and
upwelling and oligotrophic tropical Arabian Sea sites;



Fig. 1. A schematic diagram of the functional groups and linkages in the pelagic components of the ERSEM model.
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this process and the resultant simulations are described
by Blackford et al. (2004). The model is spun up using
1988 forcing then runs forward for 1988 and 1989, full
details of the model experiment are given by Holt et al.
(2005).

The North Sea community project (NSP, Charnock
et al., 1994) collected a wealth of observational data
from the southern North Sea in 1988 and 1989. Fig. 2
shows the model domain and the area sampled during
the NSP, on which our analyses focus. Data (available
from British Oceanographic Data Centre), including
temperature, salinity, chlorophyll-a, nitrate, phos-
phate, ammonia, silicate and suspended sediment,
were collected at ∼120 CTD (conductivity, tempera-
ture and depth) and water-sampling stations during
each of 16 monthly cruises between August 1988 and
October 1989 (∼1600 stations in total); these were
preceded by a preliminary cruise in May 1988. Nat-
urally, there are large variations in the quantity and
quality of data for each variable, however, there are
data to verify many variables in the ecosystem model,
and all elements of the physics model apart from the
turbulence variables. Holt et al. (2005) have previous-
ly reported a rigorous validation of the non-biological
components of these simulations. They indicate
that the model has a simulation skill for tempera-
ture, salinity, currents, tidal components, and po-
tential energy anomaly, where they define skill as a
quantifiable measure of agreement between model and
observations.
In this work we use the following data sets for the
analyses: temperature (28,595 measurements); salinity
(28,490); chlorophyll-a (24,820); total sediment
(23,645); oxygen (20,833); nitrate (4467); phosphate
(4856); silicate (4818); ammonia (3532); 1% light depth
(925). In the summary plot of model performance, we
also consider dissolved oxygen, net primary production
(Joint and Pomroy, 1993), semi-diurnal (M2) tides,
potential energy anomaly and daily mean residual
velocities (Holt et al., 2005). The CTD profiles from
the stations provide three dimensional distributions of
conductivity (for salinity), temperature, depth, dissolved
oxygen, transmittance (for suspended sediment concen-
tration), fluorescence (for chlorophyll) and irradiance
(from which the 1% light penetration depth was
estimated). Water bottle samples were collected on
almost all CTD casts, usually with bottles being fired at
the bottom, middle and top of a cast. In order to calibrate
the CTD sensors, temperatures were obtained from
reversing thermometers and salinity determinations and
dissolved oxygen measurements were made. Spectro-
photometric chlorophyll and phaeopigment determina-
tions were carried out, the chlorophyll values for a cruise
were used to calibrate the CTD fluorometer. Sediment
content was determined by filtration and the values used
to calibrate the transmissometer. Nutrients (nitrate, ni-
trite, silicate, phosphate and ammonium) were deter-
mined from water bottle samples using an autoanalyser.
Primary productivity was investigated on each survey
cruise, the uptake of Carbon-14 being measured in an



Fig. 2. The Medium Resolution Continental Shelf (MRCS) model domain. Also shown is the sub-domain of the MRCS analysed in this paper, the
crosses indicate the NSP survey stations. The stations shown in Figs. 5–7 and the QSA are marked.
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on-deck incubator. Water bottle samples from a pre-
dawn CTD cast were taken from six depths (usually 1, 3,
7, 15, 20 and 30 m) instead of the more usual top, middle
and bottom samples. Triplicate samples were then
incubated at six simulated depths for a 24-hour period
(Joint and Pomroy, 1993).
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2.2. Model error calculations—measures of reliability?

An assessment of the confidence we can place on
model results (known as model validation) must take
into account the complex combination of model and
observational uncertainties. Model errors derive from
inaccuracies in process descriptions, parameterisation,
initialisation and forcing functions. Errors in observa-
tions arise from basic measurement error, inappropriate
scales of sample distribution (for example data that are
over influenced by small-scale processes) or lack of
replication in highly heterogenous systems and issues
of methodology. A crucial issue is balancing precision
(how well does the model fit each data point) with
trend (i.e. how well the model reproduces the observed
seasonal cycles). For example, even when the trend is
well reproduced small differences in the timing of an
event can lead to large errors in precision. The choice
of error statistic (model efficiency, bias, cost function
and so on) is crucial and a comprehensive validation
process must consider several. In this paper we focus
on precision and we consider the direct like-with-like
comparison of model and data in space and time. We
have deliberately chosen this rather unforgiving
comparison to enable us to assess the model's short-
term forecast potential. We have used the following
eight criteria to assess model performance. In a
companion paper (Lewis et al., 2006), we investigate
the trends.

The Nash Sutcliffe Model Efficiency (Nash and
Sutcliffe, 1970) of a model variable is a measure of the
ratio of the model error to the variability of the data. It
was developed to assess the performance of river
catchment models, which exhibit a similar temporal
variability to phytoplankton (rapid increases and
decreases).

ME ¼ 1−

XN
n¼1

ðDn−MnÞ2

PN
n¼1

ðDn−D̄Þ2
ð1Þ

where D is the data, M the corresponding model
estimate and the overbar indicates the mean of the
data set for the chosen variable, N is the total number
of model data matches and n is the nth comparison.
The squaring of the error rewards a good fit and
punishes a poor fit. Performance levels are cate-
gorised as follows N0.65 excellent, 0.65–0.5 very
good, 0.5–0.2 good, b0.2 poor and are taken from
Maréchal (2004).
The percentage model bias (the sum of model error
normalized by the data) is given by

Pbias ¼

XN
n¼1

ðDn−MnÞ

PN
n¼1

Dn

T100 ð2Þ

and gives measure of whether the model is systemati-
cally underestimating or overestimating the observa-
tions. The closer the value is to zero the better the model.
Performance levels are categorised as follows |Pbias|
b10 excellent, 10–20 very good, 20–40 good, N40 poor
(Maréchal, 2004).

The cost function gives a non-dimensional value
which is indicative of the “goodness of fit” between two
sets of data; it quantifies the difference between model
results and measurement data (see OSPAR Commission,
1998). The function is as follows:

CF ¼ 1
N

XN
n¼1

jDn−Mnj
rD

ð3Þ

where σD is the standard deviation of the data. It is a
measure of ratio of the model data misfit to a measure of
the variance of the data; the closer the value is to zero the
better the model. Performance criteria are generally
scaled by numbers of standard deviations. Two sets of
criteria have been used:

CFb1=very good, 1–2=good, 2–5=reasonable,
N5=poor; OSPAR Commission (1998).
CFb1=very good, 1–2=good, 2–3=reasonable,
N3=poor; Radach and Moll (2006).

The skewness of the error distribution characterizes
the degree of asymmetry of a distribution around its
mean.

Skew ¼ N
ðN−1ÞðN−2Þ

XN
n¼1

ðDn−MnÞ−ð
P
Dn−MnÞ

rD

 !
3

ð4Þ
Positive skewness indicates a distribution with an

asymmetric tail extending toward large positive values,
i.e. the model tends to make more underestimations.
Negative skewness indicates a distribution within
asymmetric tail extending toward values that are more
negative (i.e. a greater number of large overestimations
by the model). The standard error of skewness can be
roughly estimated as (6 /N)0.5 (N is the number of data;
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Tabachnick and Fidell, 1996) and skewness values of 2
standard errors or more (regardless of sign) can be taken
to be substantially skewed. An order of magnitude
analysis based on N ∼1000 indicates that any of our
error distributions with a skewness greater than∼0.15 is
significantly skewed.

The receiver operator characteristic (ROC) curve is
a graphical means of evaluating the predictive power of
binary classification system as a discrimination thresh-
old is varied; that is to say how useful a model is for a
decision making process. It was devised during the
Second World War as a means for radar operators to
correctly identify hostile or friendly aircraft based on a
radar signal, a situation where the incorrect identifica-
tion of a hostile aircraft could be catastrophic. These
techniques are now widely used in a number of fields,
particularly medical research. Brown and Davis (2006)
provide a detailed and accessible tutorial of the use of
ROC curves and related metrics. We outline the metrics
used in this paper below, following the nomenclature of
Brown and Davis (2006).

The root is a simple yes/no decision, based on the
comparison of two independent information sets (in
our case observations and model) with respect to a
threshold value. In a standard ROC analysis, the aim is
to assess how well a test (model) can discriminate
between two discrete observed outcomes (e.g. harmful
algal bloom event or not; disease, no disease etc.). The
decision process is illustrated by Fig. 3; there are four
possible outcomes for each trial, either correctly
positive (CP), correctly negative (CN), incorrectly
positive (IP) and incorrectly negative (IN). We can use
this approach to make an analysis of similarity of how
well the model fits the data. The perfect model is one
where all the points in a scatter diagram of model
vs. data lie on the x= y line (Fig. 3). If we set a
Fig. 3. Schematic diagram of th
threshold criteria (t) dividing the data into two sets and
then compare it with the model using the same
threshold (Fig. 3) we can assess model data similarity
at that threshold, effectively assessing the model ability
to discriminate that threshold. The perfect model will
only give CP and CN outcomes; the more scatter there
is in the model–data relationship the more IP and IN
conditions will occur and the worse the model per-
formance. By varying the threshold across the full
range of observations, we obtain a non-parametric
measure of the model's ability to simulate a given
variable, which can be compared directly for other
simulated variables.

The decision process can be further assessed by
calculating the correct negative fraction (CNF) and the
correct positive fraction (CPF).

CNF ¼ CN
CNþ IP

ð5Þ

CPF ¼ CP
CPþ IN

ð6Þ

CNF and CPF express the fraction of negative and
positive events, which are correctly determined. These
values are independent of the actual numbers of
positive and negative events in the trials. The ROC
curve is calculated by plotting CPFi on the vertical
axis and 1−CNFi on the horizontal axis for i=1, k
threshold values. A model ideal for decision making
corresponds to a point in the top left hand corner of the
ROC axis (i.e. CNF=1 and CPF=1). The top right
(CPF=1, CNF=0) and bottom left (CPF=0 and
CNF=1) correspond to the extremes of the decision
process where every trial is always deemed either
positive or negative. A completely random predictor
e discrimination analysis.



Fig. 4. Modelled spatial distribution of flagellates, 1st of July 1989.
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gives a straight line at an angle of 45° from the
horizontal. This is because as the threshold rises equal
numbers of true and false positives occur. Results
below this line suggest that the model gives consis-
tently incorrect results.

Decisions based on CPF and CPN are estimators
of probabilities of decisions contingent on events: if
a positive event has occurred what is the probability
I will make the correct decision. While these prob-
abilities are useful they do not address the fun-
damental question, if I make a positive decision
what's the probability that the decision is correct.
The positive predictive value (PPV) and negative
predictive value (NPV) can be expressed as (see
Brown and Davis, 2006 for the theoretical back-
ground and derivation).

PPV ¼ CP
CPþ IP

ð7Þ

NPV ¼ CN
CNþ IN

ð8Þ

Values of PPV and NPV can range between 0 and 1,
reflecting the intrinsic power of the decision; high
values indicating a decision can be trusted, low values
suggesting the decision should be regarded with
suspicion.

The median error is defined as the 50th percentile of
the error distribution.

The ratio of the standard deviations of the data to
model (RSD) is given by:

rD
rm

where σ is the standard
deviation.

The correlation coefficient (R)is defined by

R ¼

PN
n¼1

Dn− D̄n

� �
Mn− M̄n

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1

Dn− D̄n

� �2P
Mn−M̄n

� �2vuut

It expresses the quality of a least squares fitting
between two model and data (R=0 no relationship, R=1
perfect fit). The square of the correlation coefficient
(R2) expresses the percentage of the variability in data
that can be accounted for by the model.

Finally, in addition to these objective criteria evi-
dently many scientists base at least an initial, and some-
times their complete analyses of model outputs on a
subjective visual comparison of plots of model against
data. In order to begin to investigate how scientists
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subjectively assess model outputs, and how this relates to
the objective criteria described, we have conducted the
following Quantitative Subjective Analysis experiment.
A group of 16 scientists (both modellers and experi-
mentalists) were asked to rank 15 model data compar-
isons visually on an arbitrary scale of 0 to 5 (0 poor, 5
excellent), using their own skill and judgement (i.e. they
set the criteria). These scores have been collated to obtain
a mean and standard deviation score for each graph.
Additionally individual scores were correlated with the
ME and Pbias associated with each model data com-
parison to assess the range of individual performance.
Fig. 5. Comparison of model (solid line) surface chlorophyll with data (cross)
the Quantitative Subjective Analysis (QSA) score are shown.
3. Results

As an example of the level of spatial detail the model
produces, Fig. 4 shows the sea surface distribution of
flagellate biomass on the 1st of July 1989. It demon-
strates how the plankton distribution is constrained by
the physical structure of the water column, in particular
low biomass in the stratified central/northern North and
Celtic Seas, and enhanced production along the fronts.
Further examples of spatial output are published by
Allen et al. (2001), Holt et al. (2004) and Holt et al.
(2005).
at stations CT CI, EK, AB and BQ. The mean and standard deviation of



Fig. 6. Comparison of model (solid line) surface nitrate with data (cross) at stations CT, CI, EK, AB and BQ. The mean and standard deviation of the
Quantitative Subjective Analysis (QSA) score are shown.
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The seasonal cycles of chlorophyll, nitrate and
phosphate at five stations in different parts of the
southern North Sea are shown in Figs. 5–7. These
stations were chosen because they are representative of
the range of conditions found in the southern North Sea
based on multivariate analysis (Allen et al., 2007). A
visual assessment of data presented in this way relies on
the subjective judgement of the evaluator as to whether
the model performance is adequate or not. Simple
changes to the presentation (e.g. scale choice, symbol
size, line thickness) can influence the judgement of how
good a simulation is. These results give a general
indication that the model captures the general seasonal
trends in chlorophyll, nitrate and phosphate, except at
station BQ where the model fails to reproduce the
observed nutrient draw down. In total, we have similar
plots for 122 stations and 9 variables; consequently, it is
difficult, if not impossible, to get a good feeling for the
performance of the model based on a visual assessment,
nor is it a suitable method of comparing the performance
of model versions.

3.1. Summary statistics

A summary of basic model data fit metrics for the
whole of the North Sea Project (space and time) for



Fig. 7. Comparison of model (solid line) surface phosphate with data (cross) at stations CT, CI, EK, AB and BQ. The mean and standard deviation of
the Quantitative Subjective Analysis (QSA) score are shown.
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temperature, salinity, chlorophyll-a, nitrate, phosphate,
oxygen, ammonia, silicate and total suspended matter
(Fig. 8) indicates substantial differences between
variables. The square of correlation coefficient R2

(Fig. 8a) shows how much of the variability of the
data can be reproduced by the model with the correct
spatial and temporal distribution. R2 is high (N0.65) for
temperature and salinity, mid range (0.35bN0.65) for
nitrate, oxygen and phosphate and low (b0.3) for the
rest. However, all of the correlations are significant at a
95% confidence level. The distributions of model
efficiency (Fig. 8b) and model bias (Fig. 8c) confirm
this, the correlation coefficient reflecting the highest
model efficiencies and the smallest bias. The results of
the cost function (Fig. 8d) are ambiguous, having no
clear correspondence with the other metrics; by the
classification of OSPAR (1998) or Radach and Moll
(2006), all the variables evaluated are good or very
good.

3.2. Temporal propagation of errors

To investigate temporal changes in the error dis-
tribution we plot the median error value for each season
(the median error) against the skew of the error (data
minus model) (Fig. 9). We choose this analysis to
assess whether errors are being propagated over time;
increasing skew and median error is indicative of



Fig. 8. Model performance summary statistics for the whole North Sea data set, (a) the square of correlation coefficient, (b) model efficiency,
(c) model bias, (d) cost function.
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increasing error. Temperature (Fig. 9a) shows distinct
patterns; median errors are positive (underestimation)
while skew is close to zero (±0.25) in winter and
spring. In summer and autumn, the median error im-
plies both a general overestimation of temperature by
the model but an asymmetric distribution (positive
skew) indicating that the tail of the distribution is
skewed towards underestimation. The repeating pat-
tern implies no long-term error propagation. Salinity
(Fig. 9b) has the same median error (∼0.5 psu,
overestimation) throughout the simulation, but the
skewness in the error distribution shifts from negative
in winter and spring to positive in summer and autumn,
possibly reflecting uncertainties in freshwater inputs
and salinity stratification; too high in winter and spring,
too low in summer and autumn. Nitrate (Fig. 9c) has
positive skewness in autumn 88, winter 89 and spring
89 (underestimation); and negative median error, and
skewness in the summer and autumn 89 (overestima-
tion). Phosphate (Fig. 9d) errors and skew are close to
zero in autumn 88 and winter 89, in spring and summer
the median error indicates consistent overestimation,
with an asymmetric tail biased towards underestimation
in autumn 89. Chlorophyll-a (Fig. 9e) shows positive
median error and skewness in all seasons except winter,
implying consistent underestimation of plankton bio-
mass. The skew and median error values are much
higher in 1989 than in 1988 suggesting cumulative
error propagation or more comprehensive data cover-
age in 1989. The skew and median errors for silicate
(Fig. 9f) are always positive most notably in autumn
and winter, again demonstrating consistent underesti-
mation by the model and implying errors in either the
recycling of silicate or the behaviour of diatoms in the
model. Comparison of this simulation with continuous
plankton recorder data (Lewis et al., 2006) indicates
that the modelled diatom bloom occurs a month early.
Silicate errors are larger in 1989 implying error sig-
nificant propagation. Ammonia (Fig. 9g) simulations
are characterized by highly positively skewed distribu-
tions. The median errors starts as positive (underesti-
mation) in autumn 1988, and then shifts to being
negative (overestimation) from winter 1989 onwards.
SPM (Fig. 9h) shows large median errors and skew in
the winter and spring, implying consistent underesti-
mation during these seasons. Nutrients have the largest
median errors in the winter, while chlorophyll has the
largest errors in the summer; unsurprisingly nutrient



Fig. 9. Seasonal mean median model error vs. the skewness of the model error distribution for that season, (a) temperature, (b) salinity, (c) nitrate,
(d) phosphate, (e) chlorophyll, (f) silicate, (g) ammonia, (h) suspended sediment. The dotted lines indicate the temporal progression. Seasons are
defined as: winter (Jan–Mar), spring (Apr–Jun), summer (July–Sept), autumn (Oct–Dec). The error is calculated as model data, hence positive skew
indicates an error distribution biased towards model underestimation, and negative skew vice versa. All of the skew values show a significant
deviation from a normal distribution.
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Table 2
Percentage of NSP stations in each skill class as classified by model
bias

% Stations Excellent
b10

Very good
10–20

Good
20–40

Poor
N40

Temperature 85 10 4 1
Salinity 100 0 0 0
Chlorophyll 10 22 32 38
Nitrate 17 12 37 34
Phosphate 8 11 34 47
Silicate 5 2.5 22 70.5
Ammonium 7.5 16 27.5 49
Sediment 11 13 19 57

393J.I. Allen et al. / Journal of Marine Systems 68 (2007) 381–404
errors are inversely correlated to median errors of
chlorophyll (R2; NO3=0.60; PO4=0.41, SiO4=0.84).
The skew of silicate is also inversely correlated to the
skew of chlorophyll (R2; SiO4=0.38), again pointing to
the importance of diatoms in determining the simula-
tion quality.

3.3. Spatial variability of errors

Tables 1 and 2 summarise the model efficiency and
model bias for each variable calculated on a station-by-
station basis over the period of the NSP survey and
clearly show an ability to reproduce the observed
variations in temperature, nitrate and phosphate. The
model efficiency for salinity on a station-by-station
basis is poor; this is because the variability in the
observation at each station is much smaller than of the
whole domain (the spatial variability is much greater
than the temporal variability). The quality of simulation
of chlorophyll-a, silicate ammonia and sediment is low
with more than 80% of the stations classified as poor.
The model bias shows that temperature and salinity
simulations exhibit very low bias (99% stations good or
better). The largest systematic biases are in SPM and
silicate (57% and 70.5%). For the remaining variables
between 30 and 50% of the stations are classified as
poor.

To understand the spatial variability of the errors we
have produced bubble plots of Bias and ME for each
station (Figs. 10 and 11). For ME (Fig. 10), the temper-
ature is simulated well except in the seasonally stratified
NW of the domain, where errors occur due to in-
accuracies in modelling mixing in strongly stratified
water. Similar errors are found for nitrate, phosphate,
chlorophyll, SPM and salinity, implying that errors in
the thermal structure of the model may be propagated
through biogeochemical variables. The other region of
clear differences is the Case II waters (Fig. 2) where
Table 1
Percentage of NSP stations in each skill class as classified by model
efficiency

% Stations Excellent
N0.65

Very good
0.65–0.5

Good
0.5–0.2

Poor
b0.2

Temperature 81 3 4 12
Salinity 0 0 4 96
Chlorophyll 2 0 2 96
Nitrate 16 21 27 36
Phosphate 10 13 21 56
Silicate 3 6 9 82
Ammonium 0 0 2 98
Sediment 0 0 0 100
nitrate and (particularly) phosphate are poorly simulat-
ed, and silicate has some skill. The ME for both chlo-
rophyll and SPM are mostly less than 0 indicating no
model skill, however the simulations are better in the
coastal zone than in the offshore regions. Ammonia has
similar skill levels but displays the opposite pattern
(better offshore, worse inshore). The simulation of sa-
linity only shows skill in a few stations which are away
from both regions influenced by stratification and major
freshwater inputs.

The plots of simulation bias (Fig. 11) also demon-
strate some clear patterns, particularly along the con-
tinental European coast, and the stratified NW of the
region. Nitrate and phosphate are overestimated inshore
and underestimated offshore, the reverse being true for
chlorophyll, SPM and ammonia. The levels of bias for
temperature and salinity are very low, while across the
whole region silicate is systematically underestimated.

3.4. Overall model performance

Plotting R2 against RSD (ratio of standard deviations,
σD/σm) gives a simple representation of model perfor-
mance (the closer R2 and RSD are to 1 the better the fit;
(Fig. 12)). This is a simplified version of the Taylor
diagram, often used to assess climate model perfor-
mance (Taylor, 2001). It clearly shows that the model
has some degree of skill (in descending order of
correlation coefficient) for temperature, tidal (M2)
elevations and currents, potential energy anomaly,
salinity, oxygen, nitrate, phosphate and 1% light
depth. The model clearly underestimates the variance
of chlorophyll and silicate, both of these are systemat-
ically underestimated in the coastal regions of the
model. We hypothesise that this is due to poor
representation of the optical environment in the model
and possible underestimation of the freshwater silicate
loads. A bias plot for the 1% light depth (Fig. 13) shows



Fig. 10. Spatial distribution of model efficiency for each NSP station for the whole period of the survey, (a) temperature, (b) salinity, (c) nitrate,
(d) phosphate, (e) chlorophyll, (f) silicate, (g) ammonia, (h) suspended sediment. Solid bubbles indicate ME positive, clear bubbles indicate ME
negative. The size of the bubble indicates the ME value (i.e. large solid bubbles indicate the model performs well (max value=1 the perfect model),
large clear bubbles indicate poor performance). The Bubble plots were created using the PRIMER software (Plymouth Routines In Multivatiate
Research v6, Clarke and Gorley, 2006). Non-metric multi-dimensional scaling ordination (MDS), derived from normalized Euclidean-distance
matrices, are used to visualise spatial relationships between the stations to illustrate the spatial distribution of the bubbles.
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Fig. 11. Spatial distribution of model bias for each NSP station for the whole period of the survey, (a) temperature, (b) salinity, (c) nitrate,
(d) phosphate, (e) chlorophyll, (f) silicate, (g) ammonia, (h) suspended sediment. Solid bubbles (see right) indicate negative bias (i.e. model
overestimates), clear bubbles (see right) indicate positive bias (i.e. model underestimates). The size of the bubble indicates the size of the bias, the
smaller the bubble the closer the bias is to zero.
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Fig. 12. A simplified (non-polar coordinate) Taylor diagram, giving an overall summary of model performance. It is a plot of the ratio of the standard
deviations of data to model (y axis) against the square of the correlation coefficient between model and data (x axis).
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that the model systematically overestimates the light
penetration over the southern North Sea particularly in
the western and southern regions. The freshwater
nutrient inputs are monthly mean values used to drive
the ERSEM box model (Patsch and Radach, 1997) and
consequently underestimate the daily variability of the
nutrient loads. The model clearly has no skill for
ammonia suggesting that the parameterisations of its
biological production, nitrification and denitrification
processes require further work. The lateral boundary
conditions exclude any residual currents or elevation,
for example from a north–south density gradient. This is
likely to result in an underestimate of the transport into
the North Sea, as shown by Holt et al. (2005). How this
might influence the ecosystem model is the subject of
ongoing work.
Fig. 13. Spatial distribution of model bias of 1% light for each NSP station for
model overestimates). The size of the bubble indicates the size of the bias.
3.5. Discriminating thresholds

Employing the ROC technique (Fig. 14) indi-
cates that the model has some predictive skill for
all variables analysed. Unsurprisingly temperature
(Fig. 14a) has the most skill, followed by salinity,
nitrate, silicate and phosphate (Fig. 14b, c, d and f; the
curves are all above and to the left of the random 45°
line). Salinity (Fig. 14b) shows high specificity but
low sensitivity indicating a reduced predictive skill at
small values. Chlorophyll-a demonstrates some skill at
low concentrations (curve is above but close to the
random line) but when the discrimination threshold is
above 5 mg Chl m− 3 (Fig. 14e) the model is random,
suggesting no predictive skill during bloom periods.
The ROC curves for ammonia and SPM (Fig. 14g, h)
the whole period of the survey. Solid bubbles indicate negative bias (i.e.



Fig. 14. Receiver operator characteristic (ROC) plots of model performance, (a) temperature, (b) salinity, (c) nitrate, (d) phosphate, (e) chlorophyll,
(f) silicate, (g) ammonia, (h) suspended sediment. The sensitivity is the probability that case X classified correctly as above the threshold and the
specificity (Sp) is the probability that X classified correctly as below the threshold. Dots indicate threshold point, calculated lowest threshold is top
right, highest bottom left.
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lie closest to, but just above the random line indicating
a lack of predictive skill.

Fig. 15 shows the probabilities that a positive or
negative decision is correct at a particular threshold
for each of the variables considered. Temperature
(Fig. 15a) is clearly the most reliable variable, with a
greater than 90% probability that both positive and
negative decisions are correct over the range 8–16 °C.



Fig. 15. Probability that a positive or negative decision is correct. As the discrimination threshold is varied, (a) temperature, (b) salinity, (c) nitrate,
(d) phosphate, (e) chlorophyll, (f) silicate, (g) ammonia, (h) suspended sediment. Positive predictive value=solid line, negative predictive
value=dashed line.
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For salinity (Fig. 15b) the model can discriminate
positive decisions over a wide range of thresholds (up
to 34.0 psu) and negative decisions above this thresh-
old. For nitrate, phosphate, chlorophyll silicate and
suspended sediment (Fig. 15c–g) the negative predic-
tive values are in excess of 0.9 over substantial ranges



Table 3
Average QSA scores for Figs. 5–7 along with ME and bias

CT CI EK AB BQ

Chlorophyll
QSA 2.74 2.22 3.91 3.45 2.33
S QSA 0.53 0.64 0.35 0.75 1.03
ME 0.59 0.68 0.62 0.74 −0.19
Bias 1.86 8.32 20.28 28.04 80.0

Nitrate
QSA 2.93 2.25 2.44 3.12 3.00
S QSA 1.01 0.71 1.12 0.64 0.76
ME 0.69 0.18 0.51 0.59 0.01
Bias 29.2 39.24 −20.4 14.1 47.8

Phosphate
QSA 3.13 2.38 2.25 3.18 1.5
S QSA 0.64 0.51 0.38 0.37 0.76
ME 0.82 0.91 0.72 0.33 −2.7
Bias 5.2 2.3 3.2 −7.9 125.5
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of the data range. The ability to discriminate a positive
event is poor; nitrate and silicate are best (∼60–70%
chance the decision is correct), chlorophyll, phosphate
and suspended sediment having very little skill. The
discriminatory skill for ammonia (Fig. 15h) is very
poor.

3.6. Quantiative subjective analysis

The mean and standard deviations of the QSA scores
for each model data comparison included in the test
(Figs. 5–7) are shown in Table 3 along with the ME and
bias for each graph. They indicate a wide range of
assessment, the lowest scores are associated with stations
CI and BQ, the highest scores with station AB, implying
a consensus that AB is the best simulation and CI/BQ are
the weakest. However these mean values show little
Fig. 16. Plot of the correlation between the QSA score and model efficiency
correspondence with the ME and Pbias calculated for
each of the plots. If we examine the relationships be-
tween individual QSA scores and goodness of fit criteria
we can see a clear relationship (Fig. 16) which indicates
the range of abilities of individuals to discriminate
goodness of fit; some individuals apparently having no
ability to discriminate goodness of fit visually.

4. Discussion

The purpose of quantitative modelling in science is to
gain understanding of the natural world (Oreskes, 2003).
In marine science, such models have two primary
purposes. The first is a heuristic role, whereby models
are used to corroborate a hypothesis, illuminate areas
which require further study and identify where extra
data are required. The second is as predictive tools,
which can be used to aid management and assess the
impact of man on the environment.

4.1. Assessing model performance

In this study, we have deliberately chosen to be
unforgiving by making a direct model–data comparison
in space and time, with no tolerance for errors in, for
example, the time of a bloom or the depth of the
thermocline, so we are effectively assessing the ability
of the model to reproduce the short-term variability of
the observations. This is appropriate as these models are
being evaluated elsewhere (e.g. Siddorn et al., 2006) for
their short-term operational forecast potential by the UK
National Centre for Ocean Forecasting (www.ncof.gov.
uk). Interannual simulations (e.g. Taylor et al., 2002) of
this model, albeit in different physical environments,
indicate a reasonable ability to resolve interannual
against the correlation between QSA score and percentage model bias.

http://www.ncof.gov.uk
http://www.ncof.gov.uk
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variability through the model ecosystem in response to
changes in meteorological forcing.

The model does well in terms of hindcast perfor-
mance for temperature and has some degree of skill for
nitrate and phosphate in parts of the Southern North Sea
as evidenced by the bubble plots (Figs. 10 and 11).
Our analysis indicates that the model is incapable of
reproducing the observed short-term variability in
chlorophyll, silicate, ammonia and suspended sediment,
although further analysis (Allen et al., 2007) indicates
that it is capable of simulating bulk seasonal chlorophyll
concentration. There is also evidence that the error in
chlorophyll, silicate and ammonia, particularly the skew
of the error distribution, increases as the simulation
progresses (Fig. 8), indicating that data assimilation
might be appropriate to address this.

Errors in plankton growth may arise from a
combination of light, turbulence and nutrient availabil-
ity. One obvious reason for the inability of the model to
reproduce short-term small-scale dynamics is the poor
resolution of the cloud cover used (based on daily
satellite observations for the whole region) which has
no spatial variation over the Southern North Sea and
only limited temporal variation. The southern North Sea
is a highly optically complex region and the model
clearly fails to represent this (Fig. 13). The available
light for photosynthesis is reduced by absorption by
coloured dissolved organic matter (CDOM) and
inorganic sediment. The model does not describe
CDOM and the substantial land derived sources of
CDOM into the region remain unquantified. The SPM
sources are derived from NSP data and multiple linear
regression (Holt and James, 1999b), and were then
reduced 3.8 M ton/y in an attempt to improve the
chlorophyll simulation. However, there are large
uncertainties in land derived sediment inputs, both
freshwater and from episodic coastal erosion particu-
larly from the east coast of England (Holderness); the
model ability to simulate 1% light depth is poor in this
region (Fig. 13.). The overestimation of light levels in
coastal waters leads to excessive winter diatom
production, depleting silicate levels, and allowing
zooplankton biomass to be maintained over the winter
(as indicated by comparison with CRP data, tows HE
and LG, Lewis et al., 2006). The combination of lower
silicate concentrations (Fig. 11f, Allen et al., 2007) and
enhanced grazing pressure prevents a sharp spring
diatom bloom (as indicated by comparison with CRP
data, tows HE and LG, Lewis et al., 2006) and
substantial nitrate and phosphate draw down, hence
the overestimation of nitrate and phosphate levels
during the summer (Figs. 6 and 7; Allen et al., 2007).
During 1988/89, there were no ocean colour satellite
missions; this prevents us from attempting to correct the
in-situ light field with satellite derived absorption
fields. Similarly, uncertainty in the land derived inputs
of nutrients, and the absence of atmospheric sources,
may also impact on the plankton dynamics, although
the variable C:N and C:P ratios in ERSEM phytoplank-
ton allow them to buffer these changes (Allen, 1997).

In the central and northern North Sea, where the
optics are less complex, we hypothesise that the
accuracy of the turbulence model is the dominant factor.
The spring bloom in 1989 at station CS in our model
starts approximately a month early, when compared with
in-situ fluorometry and CPR data (Holt et al., 2005;
Lewis et al., 2006) and is dominated by diatoms.
Huisman et al. (1999) introduced the notion of critical
turbulence thresholds for phytoplankton growth; i.e.
phytoplankton maintains a population as long as growth
rates in the euphotic zone exceed rates of vertical
transport downwards. Consequently, the simulation of
vertical turbulent transport (as distinct from turbulent
effects on the density profile) is critical to the simulation
of the spring bloom. The consistent early modelled
spring diatom bloom in the central and northern North
Sea (e.g. Holt et al., 2005; Lewis et al., 2006) may imply
that vertical mixing is too weak in these regions; this
effect has been confirmed in preliminary experiments
with a different turbulence model (the k-ε in GOTM
based on Canuto et al., 2001). It may also imply errors in
the parameterisation of diatoms. Undoubtedly we could
reparameterise the diatom submodel to push back the
timing of the spring bloom, but we are reluctant to make
biological parameter changes to compensate for errors in
physics.

There is an additional top–down control on phyto-
plankton growth in the North Sea, which remains largely
unquantified. Observed grazing rates for UK coastal
waters (e.g. Burkill et al., 1987) indicate that up to 60%
of the phytoplankton standing stock are grazed out by
microzooplankton. Clearly, it is important to make the
distinction between errors in model processes, and those
derived from external forcing.

4.2. Uncertainties in both the data and the model

The analysis presented in this paper is only possible
because of the existence of a large self-consistent data
set. Unfortunately, such data sets are rare, although the
increasing number of in-situ mooring systems (e.g. in
coastal-observatories) and underway data collection
(including ships of opportunity) is beginning to improve
the situation.
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Establishing natural levels of variability within and
between marine ecosystems is a prerequisite to rigorous
model validation, and requires data collection that takes
account the important (time and space) scales of vari-
ability. In assessing simulation performance, we need to
consider both the quality of the validation data and the
model forcing functions (river inputs, atmospheric forcing
and open boundaries) all of which contain errors. So far,
we have made a like-with-like comparison of model and
measurements assuming that the measurements are
accurate. Obviously, this is not always the case as the
accuracy of measurements of some parameters is highly
variable and the less certainwe are of themeasurement the
harder it is to be certain the model is at fault.

Temperature and salinity from CTD are highly accu-
rate measurements (errors of the order 0.0005 °C in
temperature, 0.01 psu in salinity; Lowry et al., 1992). The
nutrient measurements were made with a Chemlab auto-
analyser and are very accurate, with errors of the order 1%
for PO4 and NO3, and 4% SiO4 over the scales of
measurement (D. Hydes, pers com). In these cases we can
place more trust in the error statistics. Values of ammonia
below 0.5–1.0 mmol m−3 may not be very reliable (D.
Hydes pers com) implying that we can place less trust in
the error estimates. The chlorophyll-a data used here were
measured using a CTD fluorometer calibrated to in-situ
chlorophyll-a. In-situ chlorophyll was measured using the
method of Strickland and Parsons (1972) who state that at
0.5 mg Chl m−3, the measurement error isF 0:26ffiffi

n
p where n

is the number of replicates. This implies that at low
chlorophyll concentrations the errors in the chlorophyll
are of the order 25–50%. When the measurement errors
are coupled with calibration errors for the fluorometer, we
can only conclude that the errors statistics calculated here
should be treated with caution. SPM is measured as the
particulate fraction after seawater is passed through a 47 μ
filter and includes both the inorganic and organic frac-
tions, this was then used to calibrate the CTD transmis-
someter. The uncertainty in such measurements can be
large, particularly near bed SPM concentrations and at
slack water (Jago and Bull, 2000). In an error quantifi-
cation exercise Jago and Bull (2000) estimate the errors in
transmissometer derived sediment fluxes to be of the
order of 20%, when compared with the equivalent gravi-
metric flux. This implies that the errors statistics for SPM
may not be very reliable. Primary production measured
using the C14 technique is also highly variable with errors
up to an order of magnitude, indicating that the error
statistics for primary production should be viewed with
some scepticism.

To interpret our results we also need estimates of the
model errors. These have three components. The formal
model error, defined as the divergence between the true
mathematical solution to an equation and a numerical
solution is not generally accessible for the full model but
can be investigated through convergence experiments.
The second is the propagation of errors in response to
uncertainties in initial conditions, forcing functions and
parameters. We can get an understanding of model va-
riance in response to such perturbations by undertaking
an ensemble sensitivity analysis. However, the compu-
tational cost of such an analysis means that it is currently
not possible for models of this scale. Finally there is the
uncertainty associated with the approximations needed
to formulate the model, for example how to partition the
ecosystem into functional groups.

In these simulations, an averaged annual cycle is used
for the open ocean physical boundary conditions and a
zero net flux boundary condition used for the ecosystem
variables. We can see from the skew analysis that there is
systematic propagation of errors which one can speculate
may result from the propagation of boundary errors
through the model domain. We know that the Atlantic
Ocean is a major source of nutrients to the southern
North Sea (e.g. Howarth et al., 1993). For example
Seitzinger and Giblin (1996) estimated net flux of
nitrogen from the North Atlantic onto the NW European
shelf to be 2.44 Mt y−1, the amount required in excess of
river and atmosphere contributions to balance the loss of
nitrate caused by denitrification; so we might expect the
model to be sensitive to such effects. The acquisition of
better boundary conditions is ongoing, and the impacts
on the model system are being assessed. The bench-
marking of model performance (discussed below) is
crucial to the assessment of changes in the model.

4.3. Choice of metric

Previous model validation exercises in this region
(e.g. Moll, 2000; Radach and Moll, 2006) have focused
on the use the OSPAR recommended cost function,
(OSPAR, 1998). Cost functions are a measure of model
data mismatch and are primarily used in data assimila-
tion, usually taking the form of the difference between
model and observation, scaled by some measure of the
variance of the data; i.e. if the cost function is less than 1
the model data mismatch is less than the variance of the
data. They can be both univariate and multivariate. In
data assimilation, the aim is to determine the set of
parameters or initial conditions that minimise the cost
function, thus drawing the simulation towards the data.
Our results clearly imply that, used on its on own for
classification, the OSPAR cost function is flawed: all the
model variables considered would be classed as very
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good, while the other metrics used (e.g. ME, Pbias, R2)
clearly indicate that this is not always the case. This is
most notable for SPM and ammonia, which the ROC
test demonstrates to be close to random. There is a basic
problem with the mathematical structure of this func-
tion. Because it is linear, it neither rewards goodness of
fit nor punishes poor fit. A cost function including a
power term in the model data mismatch (e.g. that used in
Holt et al., 2005), data variance rewards goodness of fit
and punishes misfit, and we recommend the use of such
metrics.

In order to assess whether changes to our model
system, e.g. parameter changes, new variables or changes
to forcing functions, are effective we need to be able to
compare to a reference or ‘benchmark’ simulation. To
systematically benchmarkmodel performance a hierarchy
of tests is required. As a starting point, we suggest the
following.

1. The ROC, a simple binary discriminator with var-
iable threshold, allows a basic assessment of whether
the model has any skill, or is just a random number
generator.

2. The simplified Taylor plots provide an overview of
model performance and can be used as a benchmark
to assess the success of model developments. Cru-
cially this allows us to see whether the model is
reproducing the observed variance. We should how-
ever caution that these metrics are a summary and are
not a substitute for the detailed analysis of model
behaviour required to gain insight into process
descriptions.

3. The combination of model efficiency and bias is more
informative than using a simple cost function. A bare
minimum performance level should be that the ME is
greater than zero, i.e. model errors are less than the
variability of the data (Allen et al., 2007). Under-
standing model bias is crucial when models are to be
used to define indicators for environmental manage-
ment, and a bias of less than 40% is the bare minimum
acceptable performance criteria (Allen et al., 2007).
Ultimately, we need to be far more stringent.

4. Temporal analysis of error propagation allows the
identification of poorly described processes and
potential target variables for data assimilation.

5. Spatio-temporal analysis of variability in errors allows
the diagnosis of model errors and defines both regions
and processes to work on when combined with cluster
type analysis that identifies biogeomes (these are
regions of self-consistent biogeochemical properties,
which have not been considered here but are described
by Allen et al., 2007).
The QSA points to the range of assessments that
individuals will make about the quality of model output
compared with data. Subjective goodness of fit is one of
the criteria used by many analysts but this begs the
rhetorical question: should we dismiss those analysts
who use other criteria? Clearly, there is a role for expe-
rience, expert knowledge of the system and intuition
when benchmarking model results. Consequently, we
should add the following caveat; when applying any
statistical tests to the model–data comparisons we
should not lose sight of common sense, the basic
assessment of whether or not the results exhibit
plausible behaviour is still highly relevant.

4.4. Discrimination thresholds

Discrimination analysis allows us to assess model
performance in a way which is potentially highly
relevant for environmental management, where many
decisions are based on thresholds. Once thresholds are
defined, we can use the discrimination analysis to
determine the probability that a predicted elevated level
in the model is correct. If for example the threshold for
elevated nitrate (DIN) is 15 mmol m−3 then PPV=0.61
and PPN=0.95, so if the model predicts elevated nitrate,
there is a 61% chance it is correct; there is also a 95%
chance that a prediction below the threshold is correct.
For chlorophyll, if we set a threshold of 5 mg Chl m−3

PPV=0.21 and PPN=0.93 so there is a 21% chance that
if the model predicts elevated concentration it is correct
and there is also a 93% chance that a prediction below
the threshold is correct. While we cannot be sure with
any great confidence that the model can reliably dis-
criminate elevated nutrient or chlorophyll concentra-
tions, we can be more certain of model indications of
non-elevated concentrations.

5. Conclusions

All models are open systems and by definition are
simplifications that do not completely encompass the
natural system (Oreskes, 2003). In the case of marine
ecosystem models they are open with respect to the
assumptions made about the complexity of the system,
the empirical adequacy of the equations and how well
the model variables represent elements of the system.
Consequently, models can be only confirmed by the
demonstration of agreement between observation and
prediction, but confirmation is inherently partial
(Oreskes et al., 1994). This partial confirmation is
however immensely useful in allowing us to test our
understanding of the system being modelled.
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The analyses presented here are among the first steps
towards understanding model uncertainty, identifying
dysfunctional process descriptions and hence improving
the articulation of detail in ecosystem models. If we are
to make reliable simulations, we need to be able to
quantify and understand how model errors propagate.
This also requires an appreciation of the inherent errors
in the data. A sceptical reader may argue at this point that
the process errors we have identified by this analysis
could have been equally well determined from a
combination of conventional plots, visual analysis and
the combination of the modeller's knowledge and
intuition, which is ultimately dependent on the skill of
the modeller rather than the model. This is to some extent
true and the metrics used tend to confirm what we
already knew from previous studies. However, the QSA
(while not rigorous) clearly indicates the wide range of
outcomes subjective analysis can result in. The object
metrics do however give us clear confidence intervals,
which can be taken to policy makers and are the first step
towards a quantitative risk assessment.

Model development is an iterative process: only by a
quantitative benchmarking of model uncertainty can we
reduce subjectivity when assessing changes to a model.
This is important whether the models are used in heuristic
or forecastmode. However, wemust be cautious, as Flynn
(2005) points out ‘just because a model gives a fit to a
particular data set, it does not guarantee the structure is not
dysfunctional’. Consequently, there is a balance to be
achieved between statistical fit and intuitive understand-
ing of system function.We should also bear in mind that a
healthy dose of scepticism is always useful when
interpreting models.
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