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ABSTRACT

it can be shown that there is a minimum eritical size for the water mass below
Bo increase in concentration of phytoplankton can occur. In a one-dimen-
water mass with leakage at both ends, this size, after a time of the order of

) , D the diffusion, and K the rate of increase
8 population. The corresponding size in a cylindrical water mass is given by

R. = 2.4048 1/2_:
K

S gﬁﬂmﬂgisthamdius of the water mass.

‘Any _Unispecific phytoplankton population can be considered as
mvi_ng In some water mass characterized by suitable values of such
4 €8 a8 temperature, salinity, dissolved oxygen, and dissolved

i ;Et‘l'i_ents. If this water mass were completely isolated from the

; mmfﬁng water it should be possible to analyze the growth of the
}Wpulatlon in terms of one of the equations which have been developed
lor laboratory populations (Smith, 1952).
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As a matter of fact, any mass of physiologically suitable water will
mix, at its borders, with unsuitable water. TFor a species with re.
stricted physiological tolerances it is quite likely that large masses of
suitable water will rarely occur. It is of interest, therefore, to de-
termine whether or not there exists a minimum water mass size below
which no increase of phytoplankton concentration is possible,

In the simplest analysis the population growth in a diffusing water
mass can be expressed as

daN

— =(K-NN,

% ( ) ¢))
where K is the growth rate per unit population, AN the rate of loss by
diffusion, and N the total number of organisms in the water mass,
The simple condition for population increase is (K > A). This does
not take into account the size of water mass or the distribution of

organisms. A more precise analysis of the leakage A has been made, =
We consider for simplicity the one-dimensional problem of a long -

narrow body of water limited on the two sides by natural boundaries,
We assume further that there is a region of length L and transverse
cross-sectional area A in which the effective diffusivity D remains
constant. We assume that, outside this region, the diffusivity be-
comes large or that the water is physiologically unsuitable for the
organism. Either condition requires that the concentration of

organisms drop to zero at the ends of the region. We can neglect i

transverse diffusion and consider the concentration ¢ to be a function

of the longitudinal position only. Let one end be at « = 0 and the
other at + = L. If the organism did not multiply, we would require

the solution of the diffusion equation (Churchill, 1941: 19):
dc &%

Pkt
in which { is time. But reproduction must be accounted for by adding
a linear growth term to (2). We have then,

dc

we can write as

@, &

o ik

We seek solutions of (3) which vanish at £ = 0 and X = L and e
which correspond to any given initial distribution of organisms, which o

¢ = g{t) when ¢ = 0. C) ‘-_;
If we introduce the new variable, o
J=ce®, ()

Kiers
find by substitu

twhich is the ordina
initial and boundar
bhoundary condition
; &
it
Ll
A

W

18 the constants
al distribution.

an expression

c

onal dependenc
n*x2D/L?) is ne
ome negligibly sm
population w

on unless there

the smallest va
ice of the popula

¥e shall assume that
S22 L Ade
i3 the case for all
would not be tri
Y 0>2> 1 and
ore be greater than



reh X1, 1%
| cally suitable water i"

For a species with red
2ly that large masses ofl
erest, therefore, to i
1 water mass size below
ition is possible, 1
| 7th in a diffusing waep il

@ |

e
- AN the rate of loss by
i 08 in the water mass, |
| 3 (K >2N). Thisd
. or the distribution of
tage X has been made 8
nal problem of g long™
¥ natural boundaries;
1gth L-and transve
diffusivity D remaing "
- 1, the diffusivity be.l
ly unsuitable for
he concentration o -
on. We can neglect '
on ¢ to be a functio
| be at z = 0 and th
| Iy, we would require;
1941: 19): '

&)

O0and X = L and
of organisms, which

4)

(8)

1953] Kierstead and Slobodkin: Plankion Blooms 143
we find by substitution in (3) that f must satisfy the equation

d 9?2

a_ e

oz dx? (6)

which is the ordinary diffusion equation; f must also satisfy the same
initial and boundary conditions as e, The solution of (6) for these
boundary conditions is known to be (Churchill, 1941: 104)

w x
f =n2_3113,. sin nx 7 e~mrDIL L (7)
where . . .
B, = — g () sin nr — gz, (8)
L s L

Thus the constants B, (n = 1,2, 3,...) depend on the form of the

initial distribution. OQur principal conclusions will not depend on the
exact values of these constants. Due to the symmetry properties of
the sine functions in (8), the even-numbered terms in (7) will vanish if
the initial distribution ig symmetric with respect to the plane x = L/2;
in any event, as we shal see, the values of N and A will de
pend only on the odd-numbered terms. Substituting (5) into (7), we
obtain an expression for the concentration at any position and time:

® z
c =u§l B, sin nr i el—n'riD/LY e {9)

It should be noted that the different terms in the series have different
functional dependence on the time. In particular, the terms for which
(K — n*x*D/L?) is negative will decrease with time and will eventually
become negligibly small,
The population will then be unable to maintain itself against
iffusion unless there is gt least one term in the series for which

D
— g2
K — n2y 7 >0. (10)
Since the smallest value of 7 is one,* g necessary condition for main-
tenance of the population is

g D 11

Kzqg E . (11}
? We shall assume that all infinite series used in this Paper converge properly for

{>0,0< 2K L A detailed investigation of their convergence properties shows

that this is the ease for all situations of physical interest,

. *This would not be true if B: = 0. However, sin »z/L is positive throughout the

Inferval 0 > 2 > L, and in any real population g(x) cannot be negative and must

therefors be grester than zero somewhere. Hence the integral in (8) is necessarily
Ppositive,
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For given values of D and K, there is a critical length given by

L.-,=1r/‘/FD(T,- (12)

such that 2 population will increase if L > L., decrease if L < L., and
will remain static if I = L.. Of course the situation is exactly analo-
gous to the situation in a chain-reacting pile.

Going back to equation (9), we can calculate the total number of
organisms by integration:

elk—(n+1)® D/ 1% ¢ , (13)
——1 2n + 1

the terms with even n vanishing on account of their symmetry. The
net number of organisms diffusing in the forward direction past any
plane in unit time is given by

dc

T® x
niz,il) = —AD— = — AD —3 n Bacosn r— eh—n*DILY ¢ 14
S dx L i L (14)

The number lost from the system per unit time by diffusion through
the end boundaries z = G and 2 = [, is

]

n(L,t) — n(0,8) =2 AD %Z (2n + 1) Bpays elt=Gn+13 #0117 ¢ | (15)
Nl

It is useful to define the ‘leakage’ \ as

_ (L, ~n(0,0
= 7 .

(16}
Then

D éo(zn_,_ 1) Bayy ele-@2ntn? r*.mm ¢
N = e (17)

2
L b Brnn lh=@ni1)T 21D/ L7 ¢
n=02n+1

oD
3 (20 + 1) Bonyy e=5n(nk)) 22D/ 15 ¢
2 |
) . (18)

?
L 3 Brnnn g—intntD) BDL? ¢
"= 2n +1

i 1953] Kierstead ¢
i 5"? By differentiating (13) wi
L o

o

W 1aN .,
N d

=K - -

j E and, introducing (17),

%7 which is identical to (1),
© be deseribed therefors by
will be a function of time,
L*{8x*D, the first terms in
of importance. We have

A=

The generality of these
geometrical model. Let t
a cylinder of radius R and
cally unsuitable water; als
(2) must then be replaced b

¢
at

" and a similar modification
¢« modified equations in the
< (Churehill, 1951: 166)

it .
; flm]

Where J, is a Bessel functior
Bx's are the roots of the equ

numbered in order of increa
2

E, =
[RJ, (8




‘h given by
{

(12)

aseif L < L,, and
| t1is exactly analo-

: total number of ¢

DI ¢ , (13)

symmetry. The |

irection past any

i=nirID/LY ¢ . (14)

[XI1, 1

liffusion through

HI' DL ¢ (15)

(16)

L7 e

. (17)

1953]

By differentiating (13) with respect to time, we find

o0
1 dN. D En(zn + 1) Bﬂn.H e[“"(2"+1)’ **D[LY ¢t
—_—— =K - - — e
N dt L $ 2n41 SR —

= 2n 41
and, introducing (17},

(20)

which is identical to (1). The over-all growth of the population can
be described therefore by (1) with A defined by (18). In general )
will be a function of time, but after a time of the order of magnitude of
L*{8xD, the first terms in the two series in (18) will be the only ones
of importance, We have then

D
Nt if 63> L28e°D . (21)

The generality of these results can be seen by considering a different
geometrical model. Let the region of constant diffusion coefficient be
& eylinder of radius R and depth & bounded on all sides by physiologi-
cally unsuitable water; also assume cylindrical symmetry. Equation
(2) must then be replaced by

dc D 3 (1 ac) @)
a roar\ror/’

and a similar modification must be made in (3) and (6). Solving the
modified equations in the same manner as the original ones, we find
(Churchill, 1951: 166)

< =f;En Jo (ﬁn %) ek—8,DIR?) . (9,)

where J, is a Bessel function of the first kind and order zero, where the
Bx’s are the roots of the equation

Jo(ﬁn) =0

numbered in order of increasing magnitude, and where

E, =m?@ofﬂrg(r)Jo(an%)dr.
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J11s the Bessel function of order one and g(r) is the initial distribution
as before. The first few 8,’s and the corresponding values of J, (8.
are listed in Table I (Jahnke and Emde, 1945: 166) along with the
values of nr for comparison (for large n, B, approaches ((n — 1{ix).
Equations (11), (12), (18), and (21) become

TABLE 1.—CoMPARISON OF THE COEFFICIENTS 1IN SERIES (9) anp (9)

n nr Bn J1 (8a)
1 3.1416 2.4048 +0.5191
2 6.2832 5.5201 —0.3403
3 9.4248 8.6537 +0.2715
4 12,5664 11.7915 —0.2325
5 15.7080 14.9309 +0.2065
6 18.8496 18.0711 —0.1877
2.40482D
Kz=———0 (11
Rz
R. = 2.4048 /|/ L3 (12
c = . K ¥
R w0 E”
N = 2ch f redr = 2L BT, (6) 2% dmwons, (1g)
nm) ™
0

E .Bn Jl(ﬁn) E,l etﬁl"ﬁn’)DIR’ ¢
Nax=]

D
== i3 s (18"
B 3 J1(B) — etB=8,9D/Rs ¢

o] ,B

n

A=

Ao 2.40482 D if £ > & (21"
R 25D’
while equation (20) remains the same,

Solutions for other models are easily derived, but the results are
essentially the same as those presented here. The numerical constants
in equations (11), (12), and (21) are somewhat different in different
models, but they are always of the same order of magnitude.

We conclude, therefore, that a population in a finite region can
support itself against diffusion only if its reproductive rate exceeds the
leakage, which is of the order of magnitude of the ratio of the diffusivity

to the square of the extent of the region in the direction of most rapid
diffusion,
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