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The North Atlantic Spring
Phytoplankton Bloom and
Sverdrup’s Critical Depth

Hypothesis
D. A. Siegel,1* S. C. Doney,2 J. A. Yoder3

More than 50 years ago, Harald Sverdrup developed a simple model for the
necessary conditions leading to the spring bloom of phytoplankton. Although
this model has been used extensively across a variety of aquatic ecosystems,
its application requires knowledge of community compensation irradiance (IC),
the light level where photosynthetic and ecosystem community loss processes
balance. However, reported IC values have varied by an order of magnitude.
Here, IC estimates are determined using satellite and hydrographic data sets
consistent with the assumptions in Sverdrup’s 1953 critical depth hypothesis.
Retrieved values of IC are approximately uniform throughout much of the North
Atlantic with a mean value of 1.3 mol photons meter22 day21. These com-
munity-based IC determinations are roughly twice typical values found for
phytoplankton alone indicating that phytoplankton account for approximately
one-half of community ecosystem losses. This work also suggests that impor-
tant aspects of heterotrophic community dynamics can be assessed using
satellite observations.

The spring bloom of phytoplankton in the
North Atlantic Ocean has long fascinated
oceanographers from the 1930s to 1950s (1–
3) to the present day, where large interdisci-
plinary field experiments have been conduct-
ed to assess its role in the global carbon cycle

(4). When viewed from space, the North
Atlantic spring bloom is among the largest
mass greenings observed on the Earth surface
extending over scales of more than 2000 km
(5–7). The North Atlantic spring bloom prop-
agates to the north at speeds of the order of 20
km day21 as can be clearly seen in time
series observations of chlorophyll pigment
concentration (Chl) made from spaceborne
sensors (8).

Sverdrup’s 1953 critical depth hypothe-
sis (1) has been applied to a variety of
aquatic ecosystems in an effort to quantify
the roles of light availability and vertical
mixing leading to spring blooms of phyto-
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plankton (9–13). This simple model as-
sumes that under nutrient replete conditions
primary production, P(z), is linearly related
to the light flux, I(z), and that the effects of
community respiration and other loss pro-
cesses, R(z), are depth independent, or

P(z) 5 aI(z) 5 aIoe
–Kz5Poe

–Kz (1a)

R(z) 5 Ro (1b)

where a is the slope of the light-productivity
relationship, Io is the flux of incident photo-
synthetically available radiation (PAR), K is
the diffuse attenuation coefficient for PAR,
Po is the surface productivity (5 a Io), and z
is depth within the water column. Communi-
ty loss processes include autotrophic and het-
erotrophic respiration, grazing, excretion, and
vertical export by sinking particles (10, 14).
Net production occurs above depths where
P(z) is greater than Ro and the depth where
these rates are equal defines the compensa-
tion depth, ZC [5 (1/K) ln(Po/Ro)] or alterna-
tively the compensation irradiance, IC (5
IoRo/Po).

Net community production, and thereby
the initiation of a spring bloom, occurs when
the vertically integrated net productivity is
greater than the integrated loss rates. Sver-
drup’s critical depth, ZCR, is defined as the
depth where these integrated rates are equal.
If the depth of the ocean mixed layer, ZML, is
greater than ZCR, there is insufficient light to
drive net production and rapid increases in
phytoplankton biomass will not occur. Spring
shoaling of the mixed layer to depths less

than ZCR elevates the average light of the
mixed layer, increasing mixed layer average
rates of production. This increase of produc-
tion over community losses initiates the
spring bloom and leads to rapid increases in
phytoplankton standing stocks. Values for
ZCR can be derived if estimates of Io, K, and
IC are available following

1

KZCR
S 12e 2 KZCRD5

R0

P0
5

IC

I0
(2)

Key to the application of Sverdrup’s critical
depth hypothesis is knowledge of the com-
pensation irradiance as the other terms are
relatively easy to constrain. Values of IC

often come from phytoplankton culture ex-
periments assessing the minimum irradiance
required for a population to survive. Sverdrup
assumed a value for IC of ;0.6 mol photons
m22 day21, on the basis of previous phyto-
plankton culture studies (1), and this exact
value is still in use (12). A compilation of
recent laboratory-derived compensation irra-
diance determinations over a range of phyto-
plankton species gives values of IC ranging
from 0.1 to 0.8 mol photons m22 day21 (15).
However, these phytoplankton-based IC esti-
mates do not account for many of the loss
processes in pelagic communities and are
likely to be lower bounds for the true com-
munity IC values (1, 10, 14). Observations by
Riley in 1957 (3) suggest a community-level
IC of 3.5 mol photons m22 day21 (16), and
this value has been used by several investi-
gators (11, 17). However, a recent analysis of

seasonal dissolved oxygen cycles found a
North Atlantic mean, community-level IC of
1 W m22 (;0.35 mol photons m22 day21),
which is nearly one-half of typical phyto-
plankton IC values (18). All told, reported IC

values range over a full order of magnitude,
from 0.35 to 3.5 mol photons m22 day21.
Our goal is to provide consistent community-
level estimates of IC by assessing the time/
space characteristics of the North Atlantic
spring bloom. This results in a partitioning
between the autotrophic and heterotrophic
ecosystem components during the initiation
of the spring bloom. The approach can also
provide quantitative determinations of com-
munity loss processes, which remain poorly
characterized compared to ocean primary
production rates (19).

Satellite ocean color imagery from the
Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) mission are used to assess chlo-
rophyll and incident PAR flux distributions
for the North Atlantic Ocean (20). The timing
of a spring bloom can be diagnosed by eval-
uating the year/day where events in a Chl
time record occur. For example, the day when
the maximum Chl concentration occurs,
YDMaxChl, provides one useful index. How-
ever, YDMaxChl occurs during the peak of the
bloom (Table 1), and it will not be useful for
diagnosing spring bloom initiation (7). The
year/day where Chl levels first rise a small
threshold above median values is found to be
a reasonable index for bloom initiation, be-
cause a bloom should correspond to a large

Fig. 1. Spatial distributions
of (A) year/day of bloom
initiation (YDinit; Julian day
of the year starting with
January 1), (B) mixed layer
depth at YDinit (ZMLD in
meters), (C) incident pho-
tosynthetically available
radiation at YDinit (Io in mol
photons m22 day21), and
(D) community compensa-
tion irradiance (IC in mol
photons m22 day21). Cli-
matological values of ZMLD
and IC are plotted only if
more than five indepen-
dent observations went
into the ZMLD climatology
(22). SeaWiFS data for
years 1998, 1999, and
2000 are averaged togeth-
er to provide an appropri-
ate climatology.
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increase in biomass above normal (i.e., me-
dian) conditions (21). Little quantitative dif-
ferences in the resulting computations were
found using thresholds ranging from 1 to
30%, and a final value of 5% was selected
(hereafter denoted YDinit).

The spatial distribution of YDinit shows
the expected northward propagation of the
spring bloom (Fig. 1A). South of 40°N, the
bloom starts early in the year (YD 32 is
February 1), whereas north of 50°N, the
bloom start is much later (YD 152 is June 1).
Two distinct zones of spring bloom initiation
are apparent. From 35°N to 50°N, the year/
day for bloom initiation increases steadily
(from YD 13 to 112), whereas north of about
50°N, YDinit increases only marginally over a
scale of ;2000 km (Fig. 1A and Table 1).
Superimposed on these latitudinal trends in
YDinit values are large-scale features that ap-
pear related to seasonal ice zone processes
and topographic features.

Following Sverdrup’s hypothesis, the
depth of the mixed layer, ZMLD, at the time of
bloom initiation defines the critical depth,
ZCR. Monthly mean mixed layer depth esti-
mates are taken from available oceanographic
climatologies (22) and are interpolated to
YDinit (Fig. 1B). Values of ZMLD during
bloom initiation show no obvious latitudinal
trends for latitudes greater than 40°N (Table
1). Deep mixed layer depths are found in the
subtropical gyre due to the convergence of
Ekman surface water transports (23, 24). A
large degree of variability about these general
trends is observed, which is due to the rela-
tively few data points contributing to the
ZMLD climatology (22).

The incident PAR flux (25) at bloom initia-
tion shows a counterintuitive pattern where Io

actually increases to the north (Fig. 1C). This is
due simply to increased day length as the spring
bloom progresses northward. Values of Io are
more than twofold lower between 35°N and
40°N than they are north of 55°N (Table 1).

Climatological fields for IC can now be de-

termined using the data sets presented and esti-
mates of the depth penetration for PAR (26).
Although many outliers exist, values of IC are
roughly uniform north of 40°N with typical
values between 1 and 1.5 mol photons m22

day21 (Fig. 1D). Median IC retrievals for 5°
bands of latitude are equal to 1.3 (6 0.3 SD)
mol photons m22 day21 north of 40°N (Table
1). Interestingly, these IC estimates are seeming-
ly constant over six or more distinct biogeo-
chemical provinces (21). Values for the com-
pensation depth, ZC, show a decrease with lati-
tude starting at 31 m at 35°N and rising to about
22 m north of 50°N (Table 1). Thus, ZC lies far
above the 1% PAR isolume. The present deter-
minations of IC are roughly two times larger
than typical values for phytoplankton respiration
alone, suggesting that phytoplankton processes
contribute about one-half of the total community
losses of fixed carbon. South of 40°N, median
values of IC increase significantly (Table 1).
These changes are particularly apparent in the
eastern portion of the basin where shallow
mixed layers increase retrieved values of IC to
;3 mol photons m22 day21 (Fig. 1D).

The retrieved IC distributions suggest that
there are two distinct regimes for spring bloom
dynamics in the North Atlantic Ocean (Fig. 1D
and Table 1) (27). North of ;40°N, deep win-
ter mixing elevates surface water nutrient con-
centrations; however, this mixing also reduces
the average irradiance within the mixed layer to
below community compensation. Once the
mixed layer depth shallows, a spring bloom
occurs following Sverdrup’s 1953 hypothesis.
South of 40°N especially in the eastern basin,
winter mixing is less vigorous and the eco-
system is likely to be limited by nutrients
rather than by light. Hence, the spring bloom
is initiated by the supply of nutrients from
winter mixing, and the conditions required by
Sverdrup’s 1953 hypothesis do not hold (27).
Differences in nutrient supply may also cre-
ate changes in plankton community structure
between the two domains (28).

The present results suggest a role of pre-

bloom community structure on the timing of the
North Atlantic spring bloom [see also (7)]. Prior
to the spring bloom, autotrophic production bal-
ances community losses, and these losses appear
to be partitioned equally between autotrophic
respiration and the sum of heterotrophic respi-
ration, grazing, and export processes. When
physical factors enable phytoplankton produc-
tion to exceed community losses, the balance
breaks down and a bloom can occur. The struc-
ture of the prebloom heterotrophic community
is therefore important to the initiation of the
bloom. If the grazers in the community are able
to increase their biomass fast enough to keep
pace with the blooming autotrophs, then a
bloom may be arrested. If not, a bloom can
proceed unimpeded.

The present estimates of community com-
pensation provide a potentially powerful way of
quantifying heterotrophic processes from satel-
lite data sets. Used along with appropriate mea-
sures of autotrophic biomass and productivity,
interannual variations of heterotrophic rate pro-
cesses can be assessed. In particular, this ap-
proach may be a great tool for understanding the
consequences of the North Atlantic Oscillation
on ecosystem function and structure (29, 30).
Clearly, improvements must be made to pres-
ently available estimates of mixed layer proper-
ties and spring bloom characteristics. It seems
likely that numerical modeling and data assim-
ilation approaches will mature rapidly, enabling
these interannual changes to be appropriately
assessed (31, 32). Once this is achieved, consis-
tent analyses of organic carbon energy flow by
heterotrophs and autotrophs could be made us-
ing satellite-borne data systems.
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Role of Yersinia Murine Toxin in
Survival of Yersinia pestis in the

Midgut of the Flea Vector
B. Joseph Hinnebusch,1* Amy E. Rudolph,2† Peter Cherepanov,3

Jack E. Dixon,2 Tom G. Schwan,1 Åke Forsberg3

Transmission by flea bite is a relatively recent adaptation that distinguishes Yersinia
pestis, the plague bacillus, from closely related enteric bacteria. Here, a plasmid-
encoded phospholipase D (PLD), previously characterized as Yersinia murine toxin
( Ymt), was shown to be required for survival of Y. pestis in the midgut of its
principal vector, the rat flea Xenopsylla cheopis. Intracellular PLD activity appeared
to protect Y. pestis from a cytotoxic digestion product of blood plasma in the flea
gut. By enabling colonization of the flea midgut, acquisition of this PLD may have
precipitated the transition of Y. pestis to obligate arthropod-borne transmission.

Y. pestis, the highly virulent flea-borne agent of
bubonic plague, is a recently emerged clone of
Yersinia pseudotuberculosis, which causes a rel-
atively mild food- and water-borne enteric dis-
ease (1). A major genetic difference between
them is the presence of two Y. pestis–specific
plasmids, one of which contains the gene for
Ymt (2–5), a phospholipase D (PLD) (6). Mu-
rine toxin was characterized as a protein fraction
of Y. pestis in the 1950s (7) and later shown to
have b-adrenergic blocking ability (8). Toxicity
is manifested by hypotension and vascular col-
lapse when Ymt is released from lysing bacteria
at the terminal stage of septicemic plague (9,
10). Y. pestis Ymt has since been shown to
belong to a family of PLD enzymes, character-
ized by conserved HKD (HXKX4DX6GG/S; X,
any amino acid) catalytic motifs, found in
plants, animals, fungi, bacteria, and eukaryotic
viruses (6, 11–13). Because Ymt is toxic to mice
and rats but not to other animals (9, 10), it has
been presumed that the high lethality of plague
for mice is partly attributable to Ymt. However,
the lethal dose of Y. pestis in mouse infection
models is not changed significantly by deletion
of ymt (14–16). This, and the fact that ymt
expression is greater at 26°C than at 37°C (15),
prompted us to investigate a role for Ymt in the

insect vector. We infected X. cheopis fleas with
Ymt1 or isogenic Ymt2 Y. pestis and monitored
them for 4 weeks after the infectious blood meal
(17). To produce a transmissible infection, wild-
type Y. pestis multiplies in the flea midgut to
form cohesive aggregates. In some fleas, bacte-
ria eventually fill the proventriculus (a valve that
connects the esophagus to the midgut) and block
normal blood feeding. Blocked fleas transmit
plague efficiently because during their persistent
efforts to feed, plague bacilli are dislodged from
the proventriculus into the bite site (18). Y.
pestis ymtH188N, a strain that synthesizes a
mutant form of Ymt in which a single amino
acid change in one of the two HKD catalytic
motifs reduces PLD activity by .99% (6), did
not block any of 319 fleas examined (Table 1).
In contrast, the isogenic parent Y. pestis KIM61
blocked 24 to 38% of fleas and caused high
mortality due to blockage-induced starvation.
Complementation of the ymtH188N mutant by
transformation with pCH16, a plasmid that con-
tained a wild-type copy of ymt, restored the
normal blockage rate. Similarly, a ymt deletion
mutant of Y. pestis that blocked only 3 of 310
fleas regained normal blockage capability when
complemented with ymt.

Because blockage depends on prior coloni-
zation of the digestive tract, we assessed the
infection rate and bacterial load of fleas at var-
ious times after a single infectious blood meal
(17) (Fig. 1). Y. pestis KIM61 established
chronic infection in 50 to 80% of fleas, the
normal infection rate (19, 20), but the
ymtH188N mutant was eliminated from 80 to
95% of fleas within the first 24 hours, and the
average number of viable bacteria per positive
flea decreased from 4.7 3 104 to 250 during the
first 24 hours. Similar results were obtained
from fleas infected with the Y. pestis ymt dele-
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