Climate Response Functions for the Arctic

Key “switches” for the Arctic Ocean

1. Wind forcing
 increasing and decreasing the wind field
 both within the Arctic basin and (just)
 outside the basin.
2. Freshwater forcing
 stepping up and down freshwater fluxes
 (R and E-P)
3. Inflows
 changes in the heat and freshwater flux
 from waters flowing in to the Arctic Ocean.

Conclusions and expected benefits from Arctic CRF study

- A focus on transient response of Arctic models is of direct relevance to Arctic climate change.
- Framework would enable the project to be informed by, and inform, observations over recent decades, as well as future projections.
- Many different kinds of models could be engaged including ocean-only, coupled, coarse resolution and eddying models.
- The robustness, or otherwise, the CRFs could be determined across a wide range of models.
- The ‘physics’ behind the form of the CRFs would become a natural theme and lead to insights into mechanisms underlying Arctic ocean and ice dynamics.
- Different forcing mechanisms can be ranked in order of importance.
- The CRFs could become the building blocks of a physically-based forecast system for the Arctic which harnesses the input of many models to refine the response functions.

Emerging themes

1. FWC of the BG
 John Marshall et al
2. Arctic Climate change, ice
 Renske Gelderloos et al
3. Arctic-Atlantic exchange
 Lars Smelserud et al
4. Arctic CRFs in coupled models
 Helen Johnson et al
5. Ice-mediated stress
 Gianluca Meneghelo et al

IDEAS?
Please get involved!